

The Public Utility Data Liberation Project

[image: Project Status: Active – The project has reached a stable, usable state and is being actively developed.]
 [https://www.repostatus.org/#active][image: Tox-PyTest Status]
 [https://github.com/catalyst-cooperative/pudl/actions?query=workflow%3Atox-pytest][image: Read the Docs Build Status]
 [https://catalystcoop-pudl.readthedocs.io/en/latest/][image: Codecov Test Coverage]
 [https://codecov.io/gh/catalyst-cooperative/pudl][image: PyPI Latest Version]
 [https://pypi.org/project/catalystcoop.pudl/][image: PyPI - Supported Python Versions]
 [https://pypi.org/project/catalystcoop.pudl/][image: conda-forge Version]
 [https://anaconda.org/conda-forge/catalystcoop.pudl][image: Zenodo DOI]
 [https://zenodo.org/badge/latestdoi/80646423]
What is PUDL?

The PUDL [https://catalyst.coop/pudl/] Project is an open source data processing
pipeline that makes US energy data easier to access and use programmatically.

Hundreds of gigabytes of valuable data are published by US government agencies, but
it’s often difficult to work with. PUDL takes the original spreadsheets, CSV files,
and databases and turns them into a unified resource. This allows users to spend more
time on novel analysis and less time on data preparation.

What data is available?

PUDL currently integrates data from:

	EIA Form 860 [https://www.eia.gov/electricity/data/eia860/] (2004-2019)

	EIA Form 860m [https://www.eia.gov/electricity/data/eia860m/] (2020-2021)

	EIA Form 861 [https://www.eia.gov/electricity/data/eia861/] (2001-2019)

	EIA Form 923 [https://www.eia.gov/electricity/data/eia923/] (2001-2019)

	EPA Continuous Emissions Monitoring System (CEMS) [https://ampd.epa.gov/ampd/] (1995-2020)

	FERC Form 1 [https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-1-electric-utility-annual] (1994-2019)

	FERC Form 714 [https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-no-714-annual-electric/data] (2006-2019)

	US Census Demographic Profile 1 Geodatabase [https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html] (2010)

Thanks to support from the Alfred P. Sloan Foundation Energy & Environment
Program [https://sloan.org/programs/research/energy-and-environment], from
2021 to 2023 we will be integrating the following data as well:

	EIA Form 176 [https://www.eia.gov/dnav/ng/TblDefs/NG_DataSources.html#s176]
(The Annual Report of Natural Gas Supply and Disposition)

	FERC Electric Quarterly Reports (EQR) [https://www.ferc.gov/industries-data/electric/power-sales-and-markets/electric-quarterly-reports-eqr]

	FERC Form 2 [https://www.ferc.gov/industries-data/natural-gas/overview/general-information/natural-gas-industry-forms/form-22a-data]
(Annual Report of Major Natural Gas Companies)

	PHMSA Natural Gas Annual Report [https://www.phmsa.dot.gov/data-and-statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-liquids]

	Machine Readable Specifications of State Clean Energy Standards

Who is PUDL for?

The project is focused on serving researchers, activists, journalists, policy makers,
and small businesses that might not otherwise be able to afford access to this data
from commercial sources and who may not have the time or expertise to do all the
data processing themselves from scratch.

We want to make this data accessible and easy to work with for as wide an audience as
possible: anyone from a grassroots youth climate organizers working with Google
sheets to university researchers with access to scalable cloud computing
resources and everyone in between!

How do I access the data?

There are four main ways to access PUDL outputs. For more details you’ll want
to check out the complete documentation [https://catalystcoop-pudl.readthedocs.io], but here’s a quick overview:

Datasette

We publish a lot of the data on https://data.catalyst.coop using a tool called
Datasette [https://datasette.io] that lets us wrap our databases in a relatively
friendly web interface. You can browse and query the data, make simple charts and
maps, and download portions of the data as CSV files or JSON so you can work with it
locally. For a quick introduction to what you can do with the Datasette interface,
check out this 17 minute video [https://simonwillison.net/2021/Feb/7/video/].

This access mode is good for casual data explorers or anyone who just wants to grab a
small subset of the data. It also lets you share links to a particular subset of the
data and provides a REST API for querying the data from other applications.

Docker + Jupyter

Want access to all the published data in bulk? If you’re familiar with Python
and Jupyter Notebooks [https://jupyter.org/] and are willing to install Docker you
can:

	Download a PUDL data release [https://sandbox.zenodo.org/record/764696] from
CERN’s Zenodo [https://zenodo.org] archiving service.

	Install Docker [https://docs.docker.com/get-docker/]

	Run the archived image using docker-compose up

	Access the data via the resulting Jupyter Notebook server running on your machine.

If you’d rather work with the PUDL SQLite [https://sqlite.org] Databases and
Apache Parquet [https://parquet.apache.org] files directly, they are accessible
within the same Zenodo archive.

The PUDL Examples repository [https://github.com/catalyst-cooperative/pudl-examples]
has more detailed instructions on how to work with the Zenodo data archive and Docker
image.

JupyterHub

Do you want to use Python and Jupyter Notebooks to access the data but aren’t
comfortable setting up Docker? We are working with 2i2c [https://2i2c.org] to host
a JupyterHub that has the same software and data as the Docker container and Zenodo
archive mentioned above, but running in the cloud.

	Request an account [https://forms.gle/TN3GuE2e2mnWoFC4A]

	Log in to the JupyterHub [https://bit.ly/pudl-examples-01]

Note: you’ll only have 4-6GB of RAM and 1 CPU to work with on the JupyterHub, so
if you need more computing power, you may need to set PUDL up on your own computer.
Eventually we hope to offer scalable computing resources on the JupyterHub as well.

The PUDL Development Environment

If you’re more familiar with the Python data science stack and are comfortable working
with git, conda environments, and the Unix command line, then you can set up the
whole PUDL Development Environment on your own computer. This will allow you to run the
full data processing pipeline yourself, tweak the underlying source code, and (we hope!)
make contributions back to the project.

This is by far the most involved way to access the data and isn’t recommended for
most users. You should check out the Development section of the main PUDL
documentation [https://catalystcoop-pudl.readthedocs.io] for more details.

Contributing to PUDL

Find PUDL useful? Want to help make it better? There are lots of ways to help!

	First, be sure to read our Code of Conduct [https://catalystcoop-pudl.readthedocs.io/en/latest/code_of_conduct.html].

	You can file a bug report, make a feature request, or ask questions in the
Github issue tracker [https://github.com/catalyst-cooperative/pudl/issues].

	Feel free to fork the project and make a pull request with new code,
better documentation, or example notebooks.

	Make a recurring financial contribution [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=PZBZDFNKBJW5E&source=url] to support
our work liberating public energy data.

	Hire us to do some custom analysis [https://catalyst.coop/hire-catalyst/]
and allow us to integrate the resulting code into PUDL.

	For more information check out the Contributing section of the
PUDL Documentation [https://catalystcoop-pudl.readthedocs.io]

Licensing

In general, our code, data, and other work are permissively licensed for use by
anybody, for any purpose, so long as you give us credit for the work we’ve done.

	The PUDL software is released under
the MIT License [https://opensource.org/licenses/MIT].

	The PUDL data and documentation are published under the
Creative Commons Attribution License v4.0 [https://creativecommons.org/licenses/by/4.0/]
(CC-BY-4.0).

Contact Us

	For user support, bug reports and anything else that could be useful or interesting
to other users, please make a
GitHub issue [https://github.com/catalyst-cooperative/pudl/issues].

	For private communication about the project or to hire us to provide customized data
extraction and analysis, you can email the maintainers:
pudl@catalyst.coop

	If you’d like to get occasional updates about the project
sign up for our email list [https://catalyst.coop/updates/].

	Follow us on Twitter: @CatalystCoop [https://twitter.com/CatalystCoop]

	More info on our website: https://catalyst.coop

About Catalyst Cooperative

Catalyst Cooperative [https://catalyst.coop] is a small group of data wranglers
and policy wonks organized as a worker-owned cooperative consultancy. Our goal is a
more just, livable, and sustainable world. We integrate public data and perform
custom analyses to inform public policy
(Hire us! [https://catalyst.coop/hire-catalyst]). Our focus is primarily on
mitigating climate change and improving electric utility regulation in the United
States.

Introduction

PUDL is a data processing pipeline Created by Catalyst Cooperative [https://catalyst.coop/] that cleans, integrates, and standardizes some of the most
widely used public energy datasets in the US. The data serve researchers, activists,
journalists, and policy makers that might not have the technical expertise to access it
in its raw form, the time to clean and prepare the data for bulk analysis, or the means
to purchase it from existing commercial providers.

Available Data

Currently, PUDL has cleaned and integrated data from:

	EIA Form 860 (including EIA 860m)

	EIA Form 861 (preliminary)

	EIA Form 923

	FERC Form 1

	FERC Form 714 (preliminary)

	EPA CEMS Hourly

In addition, we distribute an SQLite databases containing all available years of the
raw FERC Form 1 data [https://doi.org/10.5281/zenodo.3677547] and an SQLite
version of the US Census DP1 geodatabase [https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html]

To get started using PUDL data, visit our Data Access page, or continue reading
to learn more about the PUDL data processing pipeline.

Raw Data Archives

PUDL depends on “raw” data inputs from sources that are known to occasionally update
their data or alter the published format. These changes may be incompatible with the way
the data are read and interpreted by PUDL, so, to ensure the integrity of our data
processing, we periodically create archives of the raw inputs on Zenodo [https://zenodo.org/communities/catalyst-cooperative]. Each of the data inputs may
have several different versions archived, and all are assigned a unique DOI and made
available through the REST API. Each release of the PUDL Python package is embedded
with a set of of DOIs to indicate which version of the raw inputs it is meant to
process. This process helps ensure that our outputs are replicable.

To enable programmatic access to individual partitions of the data (by year, state,
etc.), we archive the raw inputs as Frictionless Data Packages [https://specs.frictionlessdata.io/data-package/]. The data packages contain both the
raw data in their originally published format (CSVs, Excel spreadsheets, and Visual
FoxPro database (DBF) files) and metadata that depicts how each the
dataset is partitioned.

The PUDL software will download a copy of the appropriate raw inputs automatically as
needed and organize them in a local datastore.

See also

The software that creates and archives the raw inputs can be found in our PUDL
Scrapers [https://github.com/catalyst-cooperative/pudl-scrapers] and PUDL
Zenodo Storage [https://github.com/catalyst-cooperative/pudl-zenodo-storage]
repositories on GitHub.

The ETL Process

The core of PUDL’s work takes place in the ETL (Extract, Transform, and Load)
process.

Extract

The Extract step reads the raw data from the original heterogeneous formats into a
collection of pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] with uniform column names across all years so
that it can be easily processed in bulk. Data distributed as binary database files, such
as the DBF files from FERC Form 1, may be converted into a unified SQLite database
before individual dataframes are created.

See also

Module documentation within the pudl.extract subpackage.

Transform

The Transform step is generally broken down into two phases. Phase one focuses on
cleaning and organizing data within individual tables while phase two focuses on the
integration and deduplication of data between tables. These tasks can be tedious
data wrangling toil [https://sre.google/sre-book/eliminating-toil/] that impose a
huge amount of overhead on anyone trying to do analysis based on the publicly
available data. PUDL implements common data cleaning operations in the hopes that we
can all work on more interesting problems most of the time. These operations include:

	Standardization of units (e.g. dollars not thousands of dollars)

	Standardization of N/A values

	Standardization of freeform names and IDs

	Use of controlled vocabularies for categorical values like fuel type

	Use of more readable codes and column names

	Imposition of well defined, rich data types for each column

	Converting local timestamps to UTC

	Reshaping of data into well normalized tables which minimize data duplication

	Inferring Plant IDs which link records across many years of FERC Form 1 data

	Inferring linkages between FERC and EIA Plants and Utilities.

	Inferring more complete associations between EIA boilers and generators

See also

The module and per-table transform functions in the pudl.transform
sub-package have more details on the specific transformations applied to each
table.

Many of the original datasets contain large amounts of duplicated data. For instance,
the EIA reports the name of each power plant in every table that refers to otherwise
unique plant-related data. Similarly, many attributes like plant latitude and
longitude are reported separately every year. Often, these reported values are not
self-consistent. There may be several different spellings of a plant’s name, or an
incorrectly reported latitude in one year.

The transform step attempts to eliminate this kind of inconsistent and duplicate
information when normalizing the tables by choosing only the most consistently reported
value for inclusion in the final database. If a value which should be static is not
consistently reported, it may also be set to N/A.

See also

	Tidy Data [https://vita.had.co.nz/papers/tidy-data.pdf] by Hadley
Wickham, Journal of Statistical Software (2014).

	A Simple Guide to the Five Normal Forms in Relational Database Theory [https://www.bkent.net/Doc/simple5.htm]
by William Kent, Communications of the ACM (1983).

Load

At the end of the Transform step, we have collections of DataFrames that correspond to
database tables. These are written out to (“loaded” into) platform independent tabular
data packages [https://specs.frictionlessdata.io/tabular-data-package/] where the
data is stored as CSV files and the metadata is stored as JSON. These static,
text-based output formats are archive-friendly and can be used to populate a database
or read with Python, R, and many other tools. See the
PUDL Data Dictionary page for a list of the normalized database
tables and their contents.

Note

Starting with v0.5.0 of PUDL, we will begin generating SQLite database and Apache
Parquet file outputs directly and using those formats to distribute the
processed data.

See also

Module documentation within the pudl.load sub-package.

Database & Output Tables

Tabular Data Packages are archive friendly and platform independent, but, given the
size and complexity of the data within PUDL, this format isn’t ideal for day to day
interactive use. In practice, we take the clean, processed data in the data packages
and use it to populate a local SQLite database. To handle the ~1 billion row EPA CEMS
hourly time series, we convert the data package into Apache Parquet dataset that are
partitioned by state and year. For more details on these conversions to SQLite and
Parquet formats, see Data Packages.

Denormalized Outputs

We normalized the data to make storage more efficient and avoid data integrity issues,
but you may want to combine information from more than one of the tables to make the
data more readable and readily interpretable. For example, PUDL stores name that EIA
uses to refer to a power plant in the plants_entity_eia table in association with
the plant’s unique numeric ID. If you are working with data from the
fuel_receipts_costs_eia923 table, which records monthly per-plant fuel
deliveries, you may want to have the name of the plant alongside the fuel delivery
information since it’s more recognizable than the plant ID.

Rather than requiring everyone to write their own SQL SELECT and JOIN statements
or do a bunch of pandas.merge() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge] operations to bring together data, PUDL provides a
variety of predefined queries as methods of the pudl.output.pudltabl.PudlTabl
class. These methods perform common joins to return output tables (pandas DataFrames)
that contain all of the useful information in one place. In some cases, like with EIA,
the output tables are composed to closely resemble the raw spreadsheet tables you’re
familiar with.

Note

In the future, we intend to replace the simple denormalized output tables with
database views that are integrated into the distributed SQLite database directly.
This will provide the same convenience without requiring use of the Python software
layer.

Analysis Outputs

There are several analytical routines built into the
pudl.output.pudltabl.PudlTabl output objects for calculating derived values
like the heat rate by generation unit (hr_by_unit) or the capacity factor by generator
(capacity_factor). We intend to
integrate more analytical outputs into the library over time.

See also

	The PUDL Examples GitHub repo [https://github.com/catalyst-cooperative/pudl-examples]
to see how to access the PUDL Database directly, use the output functions, or
work with the EPA CEMS data using Dask.

	How to Learn Dask in 2021 [https://coiled.io/blog/how-to-learn-dask-in-2021/]
is a great collection of self-guided resources if you are already familiar with
Python, Pandas, and NumPy.

Data Validation

We have a growing collection of data validation test cases that we run before
publishing a data release to try and avoid publishing data with known issues. Most of
these validations are described in the pudl.validate module. They check things
like:

	The heat content of various fuel types are within expected bounds.

	Coal ash, moisture, mercury, sulfur etc. content are within expected bounds

	Generator heat rates and capacity factors are realistic for the type of prime mover
being reported.

Some data validations are currently only specified within our test suite, including:

	The expected number of records within each table

	The fact that there are no entirely N/A columns

A variety of database integrity checks are also run either during the ETL process or
when the data is loaded into SQLite.

See our Testing PUDL documentation for more information.

Data Access

We publish the PUDL pipeline outputs in several ways to serve
different users and use cases. We’re always trying to increase accessibility of the
PUDL data, so if you have suggestions or questions please open a GitHub issue [https://github.com/catalyst-cooperative/pudl/issues] or email us at
pudl@catalyst.coop.

How Should You Access PUDL Data?

We provide four primary ways of interacting with PUDL data. Here’s how to find out
which one is right for you and your use case.

	Access Method

	Types of User

	Use Cases

	Datasette

	Curious Explorer, Spreadsheet Analyst, Web Developer

	Explore the PUDL database interactively in a web browser.
Select data to download as CSVs for local analysis in spreadsheets.
Create sharable links to a particular selection of data.
Access PUDL data via a REST API.

	Zenodo Archives

	Researcher, Database User, Notebook Analyst

	Use a stable, citable, fully processed version of the PUDL on your own computer.
Use PUDL in Jupyer Notebooks running in a stable, archived Docker container.
Access the SQLite DB and Parquet files directly using any toolset.

	JupyterHub

	New Python User, Notebook Analyst

	Work through the PUDL example notebooks without any downloads or setup.
Perform your own notebook-based analyses using PUDL data and limited
computational resources.

	Development Environment

	Python Developer, Data Wrangler

	Run the PUDL data processing pipeline on your own computer.
Edit the PUDL source code and run the software tests and data validations.
Integrate a new data source or newly released data from one of existing sources.

	Data Packages

	Deprecated

	For working with our published data prior to v0.4.0

Datasette

We provide web-based access to the PUDL data via a
Datasette [https://datasette.io] deployment at https://data.catalyst.coop.

Datasette is an open source tool that wraps SQLite databases in an interactive
front-end. It allows users to browse database tables, select portions of them using
dropdown menus, build their own SQL queries, and download data to CSVs. It also
creates a REST API allowing the data in the database to be queried programmatically.
All the query parameters are stored in the URL so you can also share links to the
data you’ve selected.

Note that only data that has been fully integrated into the SQLite databases are
available here. Currently this includes the core PUDL database [https://data.catalyst.coop/pudl] and our concatenation of all historical FERC
Form 1 databases [https://data.catalyst.coop/ferc1].

Zenodo Archives

We use Zenodo to archive our fully processed data as a SQLite databasees and
Parquet files. We also archive a Docker image that contains the software environment
required to use PUDL within Jupyter Notebooks. You can find all our archived data
products in the Catalyst Cooperative Community on Zenodo [https://zenodo.org/communities/catalyst-cooperative/].

	The current (beta) version of the archived data and Docker container can be
downloaded from This Zenodo archive [https://sandbox.zenodo.org/record/764417]

	Detailed instructions on how to access the archived PUDL data using a Docker
container can be found in our PUDL Examples repository [https://github.com/catalyst-cooperative/pudl-examples/].

	The SQLite databases and Parquet files containing the PUDL data, the complete FERC 1
database, and EPA CEMS hourly data are contained in that same archive, if you want
to access them directly without using PUDL.

Note

If you’re already familiar with Docker, you can also pull
the image we use [https://hub.docker.com/r/catalystcoop/pudl-jupyter] to run
Jupyter directly:

$ docker pull catalystcoop/pudl-jupyter:latest

JupyterHub

We’ve set up a JupyterHub [https://jupyter.org/hub] in collaboration with
2i2c.org [https://2i2c.org] to provide access to all of the processed PUDL
data and the software environment required to work with it. You don’t have to
download or install anything to use it, but we do need to create an account for you.

	Request an account by submitting this form [https://forms.gle/TN3GuE2e2mnWoFC4A].

	Once we’ve created an account for you
follow this link [https://bit.ly/pudl-examples-01] to log in and open up the first
example notebook on the JupyterHub.

	You can create your own notebooks and upload, save, and download modest amounts of
data on the hub.

We can only offer a small amount of memory (4-6GB) and processing power (1 CPU) per
user on the JupyterHub for free. If you need to work with lots of data or do
computationally intensive analysis, you may want to look into using the
Zenodo Archives option on your own computer. The JupyterHub uses exactly the
same data and software environment as the Zenodo Archives. Eventually we also want to
offer paid access to the JupyterHub with plenty of computing power.

Development Environment

If you want to run the PUDL data processing pipeline yourself from scratch, run the
software tests, or make changes to the source code, you’ll need to set up our
development environment. This is a bit involved, so it has its
own separate documentation.

Most users shouldn’t need to do this, and will probably find working with the
pre-processed data via one of the other access modes easier. But if you want to
contribute to the project please give it a shot!

Data Packages

Note

Prior to v0.4.0 of PUDL we only published processed data as tabular data
packages [https://frictionlessdata.io/specs/tabular-data-package/]. As of
v0.4.0 we are will distribute the SQLite databases and Apache Parquet files
alongside a set of data packages. As of PUDL v0.5.0 we will be generating SQLite
and Apache Parquet outputs directly, and will no longer be archiving tabular data
packages as the format of record, and the format conversions described below will
no longer be necessary.

Archived Data Packages

We periodically publish data packages containing the full outputs from the PUDL ETL
pipeline on Zenodo [https://zenodo.org], an open data archiving service provided
by CERN. The most recent release can always be found through this concept DOI:
10.5281/zenodo.3653158 [https://doi.org/10.5281/zenodo.3653158]. Each individual
version of the data releases will be assigned its own unique DOI.

All of our archived products can be found in the Catalyst Cooperative Community on
Zenodo [https://zenodo.org/communities/catalyst-cooperative/]. These archives and
the DOIs associated with them should be permanently accessible and are suitable for
use as references in academic and other publications.

Once you’ve downloaded or generated your own tabular data packages you will probably
want to convert them into a more analysis-oriented file format. We typically use
SQLite for the core FERC and EIA data, and Apache Parquet files for the very long
tables like EPA CEMS.

Converting to SQLite

If you want to access the data via SQL, we have provided a script that loads several
data packages into a local sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] database. Note that these data packages
must have all been generated by the same ETL run, or they will be considered
incompatible by the script. For example, to load three data packages generated by our
example ETL configuration into your local SQLite DB, you could run the following
command from within your PUDL workspace:

$ datapkg_to_sqlite \
 datapkg/pudl-example/ferc1-example/datapackage.json \
 datapkg/pudl-example/eia-example/datapackage.json \

Run datapkg_to_sqlite --help for more details.

Converting to Apache Parquet

The EPA CEMS Hourly data approaches 100 GB in size uncompressed. This is
too large to work with directly in memory on most systems and take a very long time
to load into SQLite. Instead, we recommend converting the Hourly Emissions table into
an Apache Parquet [https://parquet.apache.org] dataset which is stored on disk
locally, and either reading in only parts of it using pandas, or using Dask
dataframes [https://dask.org], to serialize or distribute your analysis tasks.
Dask can also speed up processing for in-memory tasks, especially if you have a
powerful system with multiple cores, a solid state disk, and plenty of memory.

If you have generated an EPA CEMS data package, you can use the
epacems_to_parquet script to convert the hourly emissions table like this:

$ epacems_to_parquet datapkg/pudl-example/epacems-eia-example/datapackage.json

The script will automatically generate a Parquet Dataset which is partitioned
by year and state in the parquet/epacems directory within your workspace.
Run epacems_to_parquet --help for more details.

Data Sources

Currently Available Data

	EIA Form 860

	EIA Form 923

	EPA CEMS Hourly

	FERC Form 1

Work in Progress & Future Datasets

	Work in Progress & Future Datasets

EIA Form 860

	Source URL

	https://www.eia.gov/electricity/data/eia860/

	Source Description

	The status of existing electric generating plants and associated equipment in
the United States and those scheduled for initial commercial operation within 10
years of the filing.

	Respondents

	Utilities

	Source Format

	Microsoft Excel (.xls/.xlsx)

	Source Years

	2001-2019

	Size (Download)

	413.4 MB

	PUDL Code

	eia860

	Years Liberated

	2004-2019

	Records Liberated

	~1 million

	Issues

	Open EIA 860 issues [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aeia860]

Background

The Form EIA-860 collects utility, owner, plant, and generator-level data from existing
and planned entities with one or more megawatt of capacity. The form also contains
information regarding environmental control equipment and construction cost data from
2013-2018.

	EIA-860 Instructions (PDF, to 2013-10-31)

	EIA-860 Instructions (PDF, to 2017-05-31)

	EIA-860 Instructions (PDF, to 2020-03-31)

	EIA-860 Instructions (PDF, to 2023-05-31)

As of 2019, the EIA-860 Form is organized into the following schedules:

	Schedule 1: Identification

	Schedule 2: Power plant data

	Schedule 3: Generator information

	Schedule 4: Ownership of generators

	Schedule 6: Boiler information

(Schedule 5 contained generator construction cost information)

Who is required to fill out the form?

Respondents include all existing and proposed plants that have a total generator
nameplate capacity (sum for generators at a single site) of 1 Megawatt (MW) or greater
and are connected to the local or regional electric power grid. Annual responses are due
between the beginning of January and the end of February.

Jointly owned plants must be reported only once by their operator or planned operator.

What does the original data look like?

Approximately a year after respondents submit their form, the EIA publishes the data in
a series of spreadsheets that reflect the thematic contents of the form. These
spreadsheets can change year-to-year as the questions in the form are updated or as EIA
adopts new formatting standards for their outputs. They are accessible on the EIA
website [https://www.eia.gov/electricity/data/eia860/] as downloadable ZIP files
categorized by year. To gain greater insight into year-to-year nuances of the form, we
recommend downloading multiple years of EIA-860 ZIP files and comparing both the Form
and the Form Instructions files. See below for our description of notable irregularities
in the data.

How much of the data is accessible through PUDL?

EIA-860 data stretches back to 2001, and PUDL currently covers all years starting from
2004. The prior years are published as DBF files and need a special process to read and
extract. We intend to include these older years as soon as we can.

PUDL does not currently include the files pertaining to specific renewable energy
resources or interconnection.

Notable Irregularities

In 2012 and 2013, the Form was updated to include specific information about renewable
generators. These new data are not included in PUDL.

Prior to 2009, the Generators table was split into two spreadsheets: one for operating
and one for proposed generation. In 2007 and before, there was an additional file for
proposed changes to existing generation. The latter is excluded from PUDL while the
former is combined into a single table during the transformation process.

EIA 860 includes a table in “Schedule 6: Boiler Information” which is an association
table between boilers and generators. This association is important because in EIA 923
the net generation is reported by generators and the fuel consumption is reported by
boilers - so a good boiler generator association is crucial for understanding heat
rates. Unfortunately, the reported associations are incomplete. We have implemented a
methodology fills in many of the missing links 2014 and later that covers more than 95%
net generation reported in the generation_eia923 table. See
this blog post [https://catalyst.coop/2018/08/07/boiler-generator-associations/] and
pudl.transform.eia for more information.

PUDL Data Tables

We’ve segmented the processed EIA-860 data into the following normalized data tables.
Clicking on the links will show you a description of the table as well as
the names and descriptions of each of its fields.

	Data Dictionary

	Browse Online

	generators_eia860

	https://data.catalyst.coop/pudl/generators_eia860

	ownership_eia860

	https://data.catalyst.coop/pudl/ownership_eia860

	boiler_generator_assn_eia860

	https://data.catalyst.coop/pudl/boiler_generator_assn_eia860

	plants_eia860

	https://data.catalyst.coop/pudl/plants_eia860

	utilities_eia860

	https://data.catalyst.coop/pudl/utilities_eia860

We’ve also created the following entity tables modeled after EIA data collected from
multiple tables.

	Data Dictionary

	Browse Online

	boilers_entity_eia

	https://data.catalyst.coop/pudl/boilers_entity_eia

	generators_entity_eia

	https://data.catalyst.coop/pudl/generators_entity_eia

	plants_entity_eia

	https://data.catalyst.coop/pudl/plants_entity_eia

	utilities_entity_eia

	https://data.catalyst.coop/pudl/utilities_entity_eia

PUDL Data Transformations

The PUDL transformation process cleans the input data so that it is adjusted for
uniformity, corrected for errors, and ready for bulk programmatic use.

To see the transformations applied to the data in each table, you can read the
doc-strings for pudl.transform.eia860 created for each tables’ respective
transform function.

EIA Form 923

	Source URL

	https://www.eia.gov/electricity/data/eia923/

	Source Description

	Generation, consumption, stocks, receipts

	Respondents

	Electric, CHP plants, and sometimes fuel transfer terminals with
either 1MW+ or the ability to receive and deliver power to the grid.

	Source Format

	Microsoft Excel (.xls/.xlsx)

	Source Years

	2001-2019

	Size (Download)

	243.3 MB

	PUDL Code

	eia923

	Years Liberated

	2001-2019

	Records Liberated

	~3.6 million

	Issues

	Open EIA 923 issues [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aeia923]

Background

Form EIA-923 is known as the Power Plant Operations Report. The data include
electric power generation, energy source consumption, end of reporting period fossil
fuel stocks, as well as the quality and cost of fossil fuel receipts at the power
plant and prime mover level (with a subset of +10MW steam-electric plants reporting
at the boiler and generator level. Information is available for non-utility plants
starting in 1970 and utility plants beginning in 1999. The Form EIA-923 has evolved
over the years, beginning as an environmental add-on in 2007 and ultimately eclipsing
the information previously recorded in EIA-906, EIA-920, FERC 423, and EIA-423 by
2008.

	EIA-923 Instructions (PDF, to 2013-10-31)

	EIA-923 Instructions (PDF, to 2015-12-31)

	EIA-923 Instructions (PDF, to 2017-05-31)

	EIA-923 Instructions (PDF, to 2020-03-31)

	EIA-923 Instructions (PDF, to 2023-05-31)

As of 2019, the EIA-923 Form is organized into the following schedules:

	Schedule 2: fuel receipts and costs

	Schedules 3A & 5A: generator data including generation, fuel consumption and
stocks

	Schedule 4: fossil fuel stocks

	Schedules 6 & 7: non-utility source and disposition of electricity

	Schedules 8A-F: environmental data

Who is required to fill out the form?

Respondents include all all electric and CHP plants, and in some cases fuel transfer
terminals, that have a total generator nameplate capacity (sum for generators at a
single site) of 1 Megawatt (MW) or greater and are connected to the local or regional
electric power grid.

Selected plants may be permitted to report schedules 1-4B monthly and 6-8 annually so as
to lighten their reporting burden. All other respondents must respond to the Form in its
entirety once a year.

What does the original data look like?

Once the respondents have submitted their responses, the EIA creates a series of
spreadsheets that reflect themes within the form. These spreadsheets have changed over
the years as the form itself evolves. They are accessible on the EIA website [https://www.eia.gov/electricity/data/eia860/] as downloadable ZIP files categorized
by year. The internal data are organized into excel spreadsheets. To gain greater
insight into year-to-year nuances of the form, we recommend downloading multiple years
of EIA-923 ZIP files and comparing both the Form and the Form Instructions files.

How much of the data is accessible through PUDL?

EIA-923 data stretches back to 1970, and PUDL currently covers all years starting from
2009. Due to a difference in reporting between the older and newer years, the older data
will require more time to integrate. Monthly and year to date releases are not yet
integrated.

In addition, We have not yet integrated tables reporting fuel stocks, data from Puerto
Rico, or EIA-923 schedules 6, 7, and 8.

Notable Irregularities

File Naming Conventions

The naming conventions for the raw files are confusing and difficult to trace year to
year. Subtle and not so subtle changes to the form and published spreadsheets make
aggregating pre-2009 data difficult from a programmatic standpoint.

Protected Data

In accordance with the Freedom of Information Act and the Trade Secrets Act, certain
information reported to EIA-923 may remain undisclosed to the public until three months
after its collection date. The fields subject to this legislation include: total
delivered cost of coal, natural gas, and petroleum received at non-utility power plants
and the commodity cost information for all plants (Schedule 2).

Net generation & fuel consumed reported in two seperate tables

Net generation and fuel consumption are reported in two seperate tables in EIA-923:
in the generation_eia923 and generation_fuel_eia923 tables. The
generation_fuel_eia923 table is more complete (the generation_eia923
table includes only ~55% of the reported MWh), but the generation_eia923 table
is more granular (it is reported at the generator level).

Data Estimates

Plants that did not respond or reported unverified data were recorded as estimates
rolled in with the state/fuel aggregates values reported under the plant id 99999.

PUDL Database Tables

We’ve segmented the processed EIA-923 data into the following normalized data tables.
Clicking on the links will show you a description of the table as well as the names and
descriptions of each of its fields.

EIA-923 Data Tables

These tables contain the bulk data reported in the EIA-923.

	Data Dictionary

	Browse Online

	boiler_fuel_eia923

	https://data.catalyst.coop/pudl/boiler_fuel_eia923

	coalmine_eia923

	https://data.catalyst.coop/pudl/coalmine_eia923

	fuel_receipts_costs_eia923

	https://data.catalyst.coop/pudl/fuel_receipts_costs_eia923

	generation_eia923

	https://data.catalyst.coop/pudl/generation_eia923

	generation_fuel_eia923

	https://data.catalyst.coop/pudl/generation_fuel_eia923

EIA-923 Structural Tables

These tables define various codes and abbreviations more fully.

	Data Dictionary

	Browse Online

	energy_source_eia923

	https://data.catalyst.coop/pudl/energy_source_eia923

	fuel_type_aer_eia923

	https://data.catalyst.coop/pudl/fuel_type_aer_eia923

	fuel_type_eia923

	https://data.catalyst.coop/pudl/fuel_type_eia923

	prime_movers_eia923

	https://data.catalyst.coop/pudl/prime_movers_eia923

	transport_modes_eia923

	https://data.catalyst.coop/pudl/transport_modes_eia923

PUDL Data Transformations

The PUDL transformation process cleans the input data so that it is adjusted for
uniformity, corrected for errors, and ready for bulk programmatic use.

To see the transformations applied to the data in each table, you can read the
function level documentation in pudl.transform.eia923.

EPA CEMS Hourly

	Source URL

	ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly

	Source Description

	Hourly CO2, SO2, NOx emissions and gross load

	Respondents

	Coal and high-sulfur fueled plants

	Source Format

	Comma Separated Value (.csv)

	Source Years

	1995-2020

	Size (Download)

	8.7 GB

	PUDL Code

	epacems

	Years Liberated

	1995-2020

	Records Liberated

	~1 billion

	Issues

	Open EPA CEMS issues [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aepacems]

Background

As depicted by the EPA, Continuous Emissions Monitoring Systems (CEMS) [https://www.epa.gov/emc/emc-continuous-emission-monitoring-systems] are the
“total equipment necessary for the determination of a gas or particulate matter
concentration or emission rate.” They are used to determine compliance with EPA
emissions standards and are therefore associated with a given “smokestack” and are
categorized in the raw data by a corresponding unitid. Because point sources of
pollution are not alway correlated on a one-to-one basis with generation units, the
CEMS unitid serves as its own unique grouping. The EPA in collaboration with the
EIA has developed a crosswalk table [https://github.com/USEPA/camd-eia-crosswalk]
that maps the EPA’s unitid onto EIA’s boiler_id, generator_id, and
plant_id_eia. This file has been integrated into the SQL database.

The EPA Clean Air Markets Division (CAMD) [https://www.epa.gov/airmarkets] has
collected emissions data from CEMS units stretching back to 1995. Among the data
included in CEMS are hourly SO2, CO2, NOx emission and gross load.

Who is required to install CEMS and report to EPA?

Part 75 [https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=d20546b42dd4ea978d0de7eabe15cbf4&mc=true&n=pt40.18.75&r=PART&ty=HTML#se40.18.75_12]
of the Federal Code of Regulations (FRC), the backbone of the Clean Air Act Title IV and
Acid Rain Program, requires coal and other solid-combusting units (see §72.2) to install
and use CEMS (see §75.2, §72.6). Certain low-sulfur fueled gas and oil units (see §72.2)
may seek exemption or alternative means of monitoring their emissions if desired (see
§§75.23, §§75.48, §§75.66). Once CEMS are installed, Part 75 requires hourly data
recording, including during startup, shutdown, and instances of malfunction as well as
quarterly data reporting to the EPA. The regulation further details the protocol for
missing data calculations and backup monitoring for instances of CEMS failure (see
§§75,31-37).

A plain English explanation of the requirements of Part 75 is available in section
2.0 Overview of Part 75 Monitoring Requirements [https://www.epa.gov/sites/production/files/2015-05/documents/plain_english_guide_to_the_part_75_rule.pdf]

What does the original data look like?

EPA CAMD publishes the CEMS data in an online data portal [https://ampd.epa.gov/ampd/]
. The files are available in a prepackaged format, accessible via a user interface [https://ampd.epa.gov/ampd/]
or FTP site [ftp://newftp.epa.gov/DMDnLoad] with each downloadable zip file
encompassing a year of data.

How much of the data is accessible through PUDL?

All of it!

Notable Irregularities

CEMS is by far the largest dataset in PUDL at the moment with hourly records for
thousands of plants spanning decades. Note that the ETL process can easily take all
day for the full dataset. PUDL also provides a script that converts the raw EPA CEMS
data into Apache Parquet files that can be read and queried very efficiently with
Dask. Check out the EPA CEMS example notebook [https://github.com/catalyst-cooperative/pudl-examples/blob/main/notebooks/03-pudl-parquet.ipynb]
in our
pudl-examples repository [https://github.com/catalyst-cooperative/pudl-examples]
on GitHub for pointers on how to access this big dataset efficiently using dask.

PUDL Data Tables

Clicking on the links will show you a description of the table as well as the names and
descriptions of each of its fields.

	Data Dictionary

	Browse Online

	hourly_emissions_epacems

	Not Available via Datasette

PUDL Data Transformations

The PUDL transformation process cleans the input data so that it is adjusted for
uniformity, corrected for errors, and ready for bulk programmatic use.

To see the transformations applied to the data in each table, you can read the
documentation for pudl.transform.epacems created for their respective
transform functions.

Thanks to Karl Dunkle Werner [https://github.com/karldw] for contributing
much of the EPA CEMS Hourly ETL code!

FERC Form 1

	Source URL

	https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-1-electric-utility-annual

	Source Description

	Financial and operational information from electric utilities,
licensees and others entities subject to FERC jurisdiction.

	Respondents

	Major electric utilities and licensees.

	Source Format

	FoxPro Database (.DBC/.DBF)

	Source Years

	1994-2019

	Size (Download)

	1.3 GB

	PUDL Code

	ferc1

	Years Liberated

	1994-2019

	Records Liberated

	~12 million (116 raw tables), ~316,000 (7 clean tables)

	Issues

	Open FERC Form 1 issues [https://github.com/catalyst-cooperative/pudl/issues?q=is%3Aissue+is%3Aopen+label%3Aferc1]

Background

The FERC Form 1, otherwise known as the Electric Utility Annual Report, contains
financial and operating data for major utilities and licensees. Much of it is not
publicly available anywhere else.

	A diagram of the 2015 FERC Form 1 Database (PDF)

	Blank FERC Form 1 (PDF, to 2005-03-31)

	Blank FERC Form 1 (PDF, to 2007-06-30)

	Blank FERC Form 1 (PDF, to 2008-07-31)

	Blank FERC Form 1 (PDF, to 2011-12-31)

	Blank FERC Form 1 (PDF, to 2014-12-31)

	Blank FERC Form 1 (PDF, to 2016-11-30)

	Blank FERC Form 1 (PDF, to 2019-12-31)

	Blank FERC Form 1 (PDF, to 2022-11-30)

Who is required to fill out the form?

As outlined in the Commission’s Uniform System of Accounts Prescribed for Public
Utilities and Licensees Subject To the Provisions of The Federal Power Act (18 C.F.R.
Part 101), to qualify as a respondent, entities must exceed at least one of the
following criteria for three consecutive years prior to reporting:

	1 million MWh of total sales

	100MWh of annual sales for resale

	500MWh of annual power exchanges delivered

	500MWh of annual wheeling for others (deliveries plus losses)

Annual responses are due in April of the following year. FERC typically releases the
new data in October.

How much of the data is accessible through PUDL?

Thus far, we have integrated 7 tables into the full PUDL ETL pipeline. We
focused on the tables pertaining to power plants, their capital & operating
expenses, and fuel consumption; however, we have the tools required to pull
just about any other table in as well.

What does the original data look like?

See also

Explore the full FERC Form 1 dataset at: https://data.catalyst.coop/ferc1

The data is published as a collection of Visual FoxPro databases: one per year
beginning in 1994. The databases all share a very similar structure and contain a total
of 116 data tables and ~8GB of raw data (though 90% of that data is in 3 tables
containing binary data). The final release of Visual FoxPro was v9.0 in 2007 [https://en.wikipedia.org/wiki/Visual_FoxPro]. Its extended support period ended
in 2015 [https://www.foxpro.co.uk/foxpro-end-of-life-and-you/]. The bridge
application which allowed this database to be used in Microsoft Access has been
discontinued. FERC’s continued use of this database format creates a significant
barrier to data access.

The FERC 1 database is poorly normalized and the data itself does not appear
to be subject to much quality control. For more detailed context and
documentation on a table-by-table basis, look at
FERC Form 1 Data Dictionary.

Notable Irregularities

Sadly, the FERC Form 1 database is not particularly… relational. The only
foreign key relationships that exist map respondent_id fields in the
individual data tables back to f1_respondent_id. In theory, most of the
data tables use report_year, respondent_id, row_number,
spplmnt_num and report_prd as a composite primary key

In practice, there are several thousand records (out of ~12 million), including some
in almost every table, that violate the uniqueness constraint on those primary keys.
Since there aren’t many meaningful foreign key relationships anyway, rather than
dropping the records with non-unique natural composite keys, we chose to preserve all
of the records and use surrogate auto-incrementing primary keys in the cloned SQLite
database.

Lots of the data included in the FERC tables is extraneous and difficult to parse. None
of the tables have record identification and they sometimes contain multiple rows
pertaining to the same plant or portion of a plant. For example, a utility might report
values for individual plants as well as the sum total, rendering any aggregations
performed on the column inaccurate. Sometimes there are values reported for the total
rows and not the individual plants making them difficult to simply remove. Moreover,
these duplicate rows are incredibly difficult to identify.

To improve their usability, we have developed a complex system of regional mapping in
order to create ids for each of the plants that can then be compared to PUDL ids and
used for integration with EIA and other data. We also remove many of the duplicate rows
and are in the midst of executing a more thorough review of the extraneous rows.

Over time we will pull in and clean up additional FERC Form 1 tables. If there’s data
you need from Form 1 in bulk, you can hire us [https://catalyst.coop/hire-catalyst/]
to liberate it first.

PUDL Data Tables

We’ve segmented the processed FERC Form 1 data into the following normalized data
tables. Clicking on the links will show you a description of the table as well as
the names and descriptions of each of its fields.

	Data Dictionary

	Browse Online

	fuel_ferc1

	https://data.catalyst.coop/pudl/fuel_ferc1

	plant_in_service_ferc1

	https://data.catalyst.coop/pudl/plant_in_service_ferc1

	plants_ferc1

	https://data.catalyst.coop/pudl/plants_ferc1

	plants_hydro_ferc1

	https://data.catalyst.coop/pudl/plants_hydro_ferc1

	plants_pumped_storage_ferc1

	https://data.catalyst.coop/pudl/plants_pumped_storage_ferc1

	plants_small_ferc1

	https://data.catalyst.coop/pudl/plants_small_ferc1

	plants_steam_ferc1

	https://data.catalyst.coop/pudl/plants_steam_ferc1

	purchased_power_ferc1

	https://data.catalyst.coop/pudl/purchased_power_ferc1

	utilities_ferc1

	https://data.catalyst.coop/pudl/utilities_ferc1

PUDL Data Transformations

To see the transformations applied to the data in each table, you can read the
pudl.transform.ferc1 module documentation for more details. created for their
respective transform functions.

Work in Progress & Future Datasets

Contents

	Work in Progress & Future Datasets

	Work in Progress

	Census DP1

	EIA Form 861

	EIA Form 176

	FERC Form 714

	FERC EQR

	FERC Form 2

	PHMSA Natural Gas Pipelines

	Machine Readable Clean Energy Standards

	Future Data of Interest

	Transmission and Distribution Systems

	EIA Water Usage

	MSHA Mines and Production

Work in Progress

Thanks to a grant from the Alfred P. Sloan Foundation Energy & Environment Program [https://sloan.org/programs/research/energy-and-environment], we have support to
integrate the following new datasets between April 2021 and March 2023.

There’s a huge variety and quantity of data about the US electric utility system
available to the public. The data we have integrated is just the beginning! Other data
we’ve heard demand for are listed below. If you’re interested in using one of them and
would like to add it to PUDL check out our contribution guidelines. If there are other datasets you think we should be looking at
integration, don’t hesitate to open an issue on Github [https://github.com/catalyst-cooperative/pudl/issues] requesting the data and
explaining why it would be useful.

Census DP1

The US Census Demographic Profile 1 (DP1) [https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html]
provides Census tract, county, and state-level demographic information, along with the
geometries defining those areas. We use this information in generating historical
utility and balancing authority service territories based on FERC 714 and EIA 861 data.
Currently, we are distributing the Census DP1 data as a standalone SQLite DB.

EIA Form 861

The EIA Form 861 [https://www.eia.gov/electricity/data/eia861/], also known as the
Annual Electric Power Industry Report, compiles information on load, generation,
capacity, sales, revenues, programs, and more. Right now we’ve got all of 861
integrated and are building out our testing and data validation before publishing the
data officially.

	EIA-861 Instructions (PDF, to 2013-10-31)

	EIA-861 Instructions (PDF, to 2015-12-31)

	EIA-861 Instructions (PDF, to 2017-05-31)

	EIA-861 Instructions (PDF, to 2020-03-31)

	EIA-861 Instructions (PDF, to 2023-05-31)

EIA Form 176

EIA Form 176 [https://www.eia.gov/dnav/ng/TblDefs/NG_DataSources.html#s176], also
known as the Annual Report of Natural and Supplemental Gas Supply and Disposition,
describes the origins, suppliers, and disposition of natural gas on a yearly and state
by state basis.

FERC Form 714

FERC Form 714 [https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-no-714-annual-electric/data]
includes hourly loads reported by load balancing authorities annually. This is a
modestly sized dataset, in the 100s of MB, distributed as CSV files exported from a
Visual FoxPro database prior to publication. All of the raw tables are being
extracted, and a couple of them have been integrated into the transform process. None
are in the PUDL DB yet.

	FERC-714 Instructions (PDF, as of 2021-04-16)

FERC EQR

The FERC Electric Quarterly Reports (EQR) [https://www.ferc.gov/industries-data/electric/power-sales-and-markets/electric-quarterly-reports-eqr],
also known as FERC Form 920, includes the details of transactions
between different utilities and transactions between utilities and merchant generators.
It covers ancillary services as well as energy and capacity, time and location of
delivery, prices, contract length, etc. It’s one of the few public sources of
information about renewable energy power purchase agreements (PPAs). This is a large
(~100s of GB) dataset composed of a very large number of relatively clean CSV files,
but it requires fuzzy processing to get at some of the interesting and only indirectly
reported attributes.

FERC Form 2

FERC Form 2 [https://www.ferc.gov/industries-data/natural-gas/overview/general-information/natural-gas-industry-forms/form-22a-data]
is analogous to FERC Form 1, but it pertains to gas rather than electric utilities.
The data paint a detailed picture of the finances of natural gas utilities.

PHMSA Natural Gas Pipelines

The PHMSA Natural Gas Annual Report [https://www.phmsa.dot.gov/data-and-statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-liquids],
published by the Pipeline and Hazardous Materials Safety Administration (part of the US
Dept. of Transportation), collects data about natural gas
gathering and transmission and distribution systems (including their age, length,
diameter, materials, and carrying capacity). PHAMSA also has information about natural
gas storage facilities and liquefied natural gas shipping facilities.

Machine Readable Clean Energy Standards

Renewable Portfolio Standards (RPS) [https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx]
and Clean Energy Standards (CES) have emerged as one of the primary policy tools to
decarbonize the US electricity supply. Researchers who model future electricity systems
need to include these binding regulations as constraints on their models to ensure that
the systems they explore are legally compliant. Unfortunately for modelers, RPS and CES
regulations vary from state to state. Sometimes there are carve outs for different types
of generation, and sometimes there are different requirements for different types of
utilities or distributed resources. Our goal is to compile a programmatically usable
database of RPS/CES policies in the US for quick and easy reference by modelers.

Future Data of Interest

Transmission and Distribution Systems

In order to run electricity system operations models and cost optimizations, you need
some kind of model of the interconnections between generation and loads. There doesn’t
appear to be a generally accepted, publicly available set of these network descriptions
(yet!).

EIA Water Usage

EIA Water [https://www.eia.gov/electricity/data/water/] records water use by thermal
generating stations in the US.

MSHA Mines and Production

The MSHA Mines & Production [https://arlweb.msha.gov/OpenGovernmentData/OGIMSHA.asp]
dataset describes coal production by mine and operating company along with statistics
about labor productivity and safety. This is a smaller dataset (100s of MB) available as
relatively clean and well structured CSV files.

Data Dictionaries

Data Processed & Cleaned by PUDL

	PUDL Data Dictionary

Raw, Unprocessed Data

	FERC Form 1 Data Dictionary

PUDL Data Dictionary

The following data tables have been cleaned and transformed by our ETL process.

assn_gen_eia_unit_epa

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/assn_gen_eia_unit_epa]

	Field Name

	Type

	Description

	generator_id

	string

	Generator identification code. Often numeric, but sometimes includes letters. It's a string!

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	unit_id_epa

	string

	Smokestack unit monitored by EPA CEMS.

assn_plant_id_eia_epa

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/assn_plant_id_eia_epa]

	Field Name

	Type

	Description

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	plant_id_epa

	integer

	N/A

boiler_fuel_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/boiler_fuel_eia923]

	Field Name

	Type

	Description

	ash_content_pct

	number

	Ash content percentage by weight to the nearest 0.1 percent.

	boiler_id

	string

	Boiler identification code. Alphanumeric.

	fuel_consumed_units

	number

	Consumption of the fuel type in physical units. Note: this is the total quantity consumed for both electricity and, in the case of combined heat and power plants, process steam production.

	fuel_mmbtu_per_unit

	number

	Heat content of the fuel in millions of Btus per physical unit.

	fuel_type_code

	string

	The fuel code reported to EIA. Two or three letter alphanumeric.

	fuel_type_code_pudl

	string

	Standardized fuel codes in PUDL.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	report_date

	date

	Date reported.

	sulfur_content_pct

	number

	Sulfur content percentage by weight to the nearest 0.01 percent.

boiler_generator_assn_eia860

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/boiler_generator_assn_eia860]

	Field Name

	Type

	Description

	bga_source

	string

	The source from where the unit_id_pudl is compiled. The unit_id_pudl comes directly from EIA 860, or string association (which looks at all the boilers and generators that are not associated with a unit and tries to find a matching string in the respective collection of boilers or generator), or from a unit connection (where the unit_id_eia is employed to find additional boiler generator connections).

	boiler_id

	string

	EIA-assigned boiler identification code.

	generator_id

	string

	EIA-assigned generator identification code.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	report_date

	date

	Date reported.

	unit_id_eia

	string

	EIA-assigned unit identification code.

	unit_id_pudl

	integer

	Dynamically assigned PUDL unit id. WARNING: This ID is not guaranteed to be static long term as the input data and algorithm may evolve over time.

boilers_entity_eia

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/boilers_entity_eia]

	Field Name

	Type

	Description

	boiler_id

	string

	The EIA-assigned boiler identification code. Alphanumeric.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	prime_mover_code

	string

	Code for the type of prime mover (e.g. CT, CG)

coalmine_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/coalmine_eia923]

	Field Name

	Type

	Description

	county_id_fips

	integer

	County ID from the Federal Information Processing Standard Publication 6-4.

	mine_id_msha

	integer

	MSHA issued mine identifier.

	mine_id_pudl

	integer

	PUDL issued surrogate key.

	mine_name

	string

	Coal mine name.

	mine_type_code

	string

	Type of mine. P: Preparation plant, U: Underground, S: Surface, SU: Mostly Surface with some Underground, US: Mostly Underground with some Surface.

	state

	string

	Two letter US state abbreviations and three letter ISO-3166-1 country codes for international mines.

energy_source_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/energy_source_eia923]

	Field Name

	Type

	Description

	abbr

	string

	N/A

	source

	string

	N/A

ferc_accounts

Account numbers from the FERC Uniform System of Accounts for Electric Plant,
which is defined in Code of Federal Regulations (CFR) Title 18, Chapter I,
Subchapter C, Part 101. (See e.g.
https://www.law.cornell.edu/cfr/text/18/part-101).
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/ferc_accounts]

	Field Name

	Type

	Description

	description

	string

	Long description of the FERC Account.

	ferc_account_id

	string

	Account number, from FERC's Uniform System of Accounts for Electric Plant. Also includes higher level labeled categories.

ferc_depreciation_lines

PUDL assigned FERC Form 1 line identifiers and long descriptions from FERC
Form 1 page 219, Accumulated Provision for Depreciation of Electric Utility
Plant (Account 108).
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/ferc_depreciation_lines]

	Field Name

	Type

	Description

	description

	string

	Description of the FERC depreciation account, as listed on FERC Form 1, Page 219.

	line_id

	string

	A human readable string uniquely identifying the FERC depreciation account. Used in lieu of the actual line number, as those numbers are not guaranteed to be consistent from year to year.

fuel_ferc1

Annual fuel cost and quanitiy for steam plants with a capacity of 25+ MW,
internal combustion and gas-turbine plants of 10+ MW, and all nuclear plants.
As reported on page 402 of FERC Form 1 and extracted from the f1_fuel table in
FERC's FoxPro Database.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/fuel_ferc1]

	Field Name

	Type

	Description

	fuel_cost_per_mmbtu

	number

	Average cost of fuel consumed in the report year, in nominal USD per mmBTU of fuel heat content.

	fuel_cost_per_unit_burned

	number

	Average cost of fuel consumed in the report year, in nominal USD per reported fuel unit.

	fuel_cost_per_unit_delivered

	number

	Average cost of fuel delivered in the report year, in nominal USD per reported fuel unit.

	fuel_mmbtu_per_unit

	number

	Average heat content of fuel consumed in the report year, in mmBTU per reported fuel unit.

	fuel_qty_burned

	number

	Quantity of fuel consumed in the report year, in terms of the reported fuel units.

	fuel_type_code_pudl

	string

	PUDL assigned code indicating the general fuel type.

	fuel_unit

	string

	PUDL assigned code indicating reported fuel unit of measure.

	plant_name_ferc1

	string

	Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.

	record_id

	string

	Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.

	report_year

	year

	Four-digit year in which the data was reported.

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

fuel_receipts_costs_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/fuel_receipts_costs_eia923]

	Field Name

	Type

	Description

	ash_content_pct

	number

	Ash content percentage by weight to the nearest 0.1 percent.

	chlorine_content_ppm

	number

	N/A

	contract_expiration_date

	date

	Date contract expires.Format: MMYY.

	contract_type_code

	string

	Purchase type under which receipts occurred in the reporting month. C: Contract, NC: New Contract, S: Spot Purchase, T: Tolling Agreement.

	energy_source_code

	string

	The fuel code associated with the fuel receipt. Two or three character alphanumeric.

	fuel_cost_per_mmbtu

	number

	All costs incurred in the purchase and delivery of the fuel to the plant in cents per million Btu(MMBtu) to the nearest 0.1 cent.

	fuel_group_code

	string

	Groups the energy sources into fuel groups that are located in the Electric Power Monthly: Coal, Natural Gas, Petroleum, Petroleum Coke.

	fuel_group_code_simple

	string

	Simplified grouping of fuel_group_code, with Coal and Petroluem Coke as well as Natural Gas and Other Gas grouped together.

	fuel_qty_units

	number

	Quanity of fuel received in tons, barrel, or Mcf.

	fuel_type_code_pudl

	string

	Standardized fuel codes in PUDL.

	heat_content_mmbtu_per_unit

	number

	Heat content of the fuel in millions of Btus per physical unit to the nearest 0.01 percent.

	id

	integer

	PUDL issued surrogate key.

	mercury_content_ppm

	number

	Mercury content in parts per million (ppm) to the nearest 0.001 ppm.

	mine_id_pudl

	integer

	PUDL mine identification number.

	moisture_content_pct

	number

	N/A

	natural_gas_delivery_contract_type_code

	string

	Contract type for natrual gas delivery service:

	natural_gas_transport_code

	string

	Contract type for natural gas transportation service.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	primary_transportation_mode_code

	string

	Transportation mode for the longest distance transported.

	report_date

	date

	Date reported.

	secondary_transportation_mode_code

	string

	Transportation mode for the second longest distance transported.

	sulfur_content_pct

	number

	Sulfur content percentage by weight to the nearest 0.01 percent.

	supplier_name

	string

	Company that sold the fuel to the plant or, in the case of Natural Gas, pipline owner.

fuel_type_aer_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/fuel_type_aer_eia923]

	Field Name

	Type

	Description

	abbr

	string

	N/A

	fuel_type

	string

	N/A

fuel_type_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/fuel_type_eia923]

	Field Name

	Type

	Description

	abbr

	string

	N/A

	fuel_type

	string

	N/A

generation_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/generation_eia923]

	Field Name

	Type

	Description

	generator_id

	string

	Generator identification code. Often numeric, but sometimes includes letters. It's a string!

	net_generation_mwh

	number

	Net generation for specified period in megawatthours (MWh).

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	report_date

	date

	Date reported.

generation_fuel_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/generation_fuel_eia923]

	Field Name

	Type

	Description

	fuel_consumed_for_electricity_mmbtu

	number

	Total consumption of fuel to produce electricity, in physical units, year to date.

	fuel_consumed_for_electricity_units

	number

	Consumption for electric generation of the fuel type in physical units.

	fuel_consumed_mmbtu

	number

	Total consumption of fuel in physical units, year to date. Note: this is the total quantity consumed for both electricity and, in the case of combined heat and power plants, process steam production.

	fuel_consumed_units

	number

	Consumption of the fuel type in physical units. Note: this is the total quantity consumed for both electricity and, in the case of combined heat and power plants, process steam production.

	fuel_mmbtu_per_unit

	number

	Heat content of the fuel in millions of Btus per physical unit.

	fuel_type

	string

	The fuel code reported to EIA. Two or three letter alphanumeric.

	fuel_type_code_aer

	string

	A partial aggregation of the reported fuel type codes into larger categories used by EIA in, for example, the Annual Energy Review (AER).Two or three letter alphanumeric.

	fuel_type_code_pudl

	string

	Standardized fuel codes in PUDL.

	net_generation_mwh

	number

	Net generation, year to date in megawatthours (MWh). This is total electrical output net of station service. In the case of combined heat and power plants, this value is intended to include internal consumption of electricity for the purposes of a production process, as well as power put on the grid.

	nuclear_unit_id

	integer

	For nuclear plants only. This unit ID appears to correspond directly to the generator ID, as reported in the EIA-860. Nuclear plants are the only type of plants for which data are shown explicitly at the generating unit level. Note that nuclear plants only report their fuel consumption and net generation in the generation_fuel_eia923 table and not elsewhere.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	prime_mover_code

	string

	Type of prime mover.

	report_date

	date

	Date reported.

generators_eia860

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/generators_eia860]

	Field Name

	Type

	Description

	capacity_mw

	number

	The highest value on the generator nameplate in megawatts rounded to the nearest tenth.

	carbon_capture

	boolean

	Indicates whether the generator uses carbon capture technology.

	cofire_fuels

	boolean

	Can the generator co-fire fuels?.

	current_planned_operating_date

	date

	The most recently updated effective date on which the generator is scheduled to start operation

	data_source

	string

	Source of EIA 860 data. Either Annual EIA 860 or the year-to-date updates from EIA 860M.

	deliver_power_transgrid

	boolean

	Indicate whether the generator can deliver power to the transmission grid.

	distributed_generation

	boolean

	Whether the generator is considered distributed generation

	energy_source_1_transport_1

	string

	Primary Mode of Transportaion for Energy Source 1

	energy_source_1_transport_2

	string

	Secondary Mode of Transportaion for Energy Source 1

	energy_source_1_transport_3

	string

	Third Mode of Transportaion for Energy Source 1

	energy_source_2_transport_1

	string

	Primary Mode of Transportaion for Energy Source 2

	energy_source_2_transport_2

	string

	Secondary Mode of Transportaion for Energy Source 2

	energy_source_2_transport_3

	string

	Third Mode of Transportaion for Energy Source 2

	energy_source_code_1

	string

	The code representing the most predominant type of energy that fuels the generator.

	energy_source_code_2

	string

	The code representing the second most predominant type of energy that fuels the generator

	energy_source_code_3

	string

	The code representing the third most predominant type of energy that fuels the generator

	energy_source_code_4

	string

	The code representing the fourth most predominant type of energy that fuels the generator

	energy_source_code_5

	string

	The code representing the fifth most predominant type of energy that fuels the generator

	energy_source_code_6

	string

	The code representing the sixth most predominant type of energy that fuels the generator

	fuel_type_code_pudl

	string

	Standardized fuel codes in PUDL.

	generator_id

	string

	Generator identification number.

	minimum_load_mw

	number

	The minimum load at which the generator can operate at continuosuly.

	multiple_fuels

	boolean

	Can the generator burn multiple fuels?

	nameplate_power_factor

	number

	The nameplate power factor of the generator.

	operational_status

	string

	The operating status of the generator. This is based on which tab the generator was listed in in EIA 860.

	operational_status_code

	string

	The operating status of the generator.

	other_modifications_date

	date

	Planned effective date that the generator is scheduled to enter commercial operation after any other planned modification is complete.

	other_planned_modifications

	boolean

	Indicates whether there are there other modifications planned for the generator.

	owned_by_non_utility

	boolean

	Whether any part of generator is owned by a nonutilty

	ownership_code

	string

	Identifies the ownership for each generator.

	planned_derate_date

	date

	Planned effective month that the generator is scheduled to enter operation after the derate modification.

	planned_energy_source_code_1

	string

	New energy source code for the planned repowered generator.

	planned_modifications

	boolean

	Indicates whether there are any planned capacity uprates/derates, repowering, other modifications, or generator retirements scheduled for the next 5 years.

	planned_net_summer_capacity_derate_mw

	number

	Decrease in summer capacity expected to be realized from the derate modification to the equipment.

	planned_net_summer_capacity_uprate_mw

	number

	Increase in summer capacity expected to be realized from the modification to the equipment.

	planned_net_winter_capacity_derate_mw

	number

	Decrease in winter capacity expected to be realized from the derate modification to the equipment.

	planned_net_winter_capacity_uprate_mw

	number

	Increase in winter capacity expected to be realized from the uprate modification to the equipment.

	planned_new_capacity_mw

	number

	The expected new namplate capacity for the generator.

	planned_new_prime_mover_code

	string

	New prime mover for the planned repowered generator.

	planned_repower_date

	date

	Planned effective date that the generator is scheduled to enter operation after the repowering is complete.

	planned_retirement_date

	date

	Planned effective date of the scheduled retirement of the generator.

	planned_uprate_date

	date

	Planned effective date that the generator is scheduled to enter operation after the uprate modification.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	reactive_power_output_mvar

	number

	Reactive Power Output (MVAr)

	report_date

	date

	Date reported.

	retirement_date

	date

	Date of the scheduled or effected retirement of the generator.

	startup_source_code_1

	string

	The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.

	startup_source_code_2

	string

	The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.

	startup_source_code_3

	string

	The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.

	startup_source_code_4

	string

	The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.

	summer_capacity_estimate

	boolean

	Whether the summer capacity value was an estimate

	summer_capacity_mw

	number

	The net summer capacity.

	summer_estimated_capability_mw

	number

	EIA estimated summer capacity (in MWh).

	switch_oil_gas

	boolean

	Indicates whether the generator switch between oil and natural gas.

	syncronized_transmission_grid

	boolean

	Indicates whether standby generators (SB status) can be synchronized to the grid.

	technology_description

	string

	High level description of the technology used by the generator to produce electricity.

	time_cold_shutdown_full_load_code

	string

	The minimum amount of time required to bring the unit to full load from shutdown.

	turbines_inverters_hydrokinetics

	string

	Number of wind turbines, or hydrokinetic buoys.

	turbines_num

	integer

	Number of wind turbines, or hydrokinetic buoys.

	uprate_derate_completed_date

	date

	The date when the uprate or derate was completed.

	uprate_derate_during_year

	boolean

	Was an uprate or derate completed on this generator during the reporting year?

	utility_id_eia

	integer

	EIA-assigned identification number for the company that is responsible for the day-to-day operations of the generator.

	winter_capacity_estimate

	boolean

	Whether the winter capacity value was an estimate

	winter_capacity_mw

	number

	The net winter capacity.

	winter_estimated_capability_mw

	number

	EIA estimated winter capacity (in MWh).

generators_entity_eia

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/generators_entity_eia]

	Field Name

	Type

	Description

	associated_combined_heat_power

	boolean

	Indicates whether the generator is associated with a combined heat and power system

	bypass_heat_recovery

	boolean

	Can this generator operate while bypassing the heat recovery steam generator?

	duct_burners

	boolean

	Indicates whether the unit has duct-burners for supplementary firing of the turbine exhaust gas

	fluidized_bed_tech

	boolean

	Indicates whether the generator uses fluidized bed technology

	generator_id

	string

	Generator identification number

	operating_date

	date

	Date the generator began commercial operation

	operating_switch

	string

	Indicates whether the fuel switching generator can switch when operating

	original_planned_operating_date

	date

	The date the generator was originally scheduled to be operational

	other_combustion_tech

	boolean

	Indicates whether the generator uses other combustion technologies

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	previously_canceled

	boolean

	Indicates whether the generator was previously reported as indefinitely postponed or canceled

	prime_mover_code

	string

	EIA assigned code for the prime mover (i.e. the engine, turbine, water wheel, or similar machine that drives an electric generator)

	pulverized_coal_tech

	boolean

	Indicates whether the generator uses pulverized coal technology

	rto_iso_lmp_node_id

	string

	The designation used to identify the price node in RTO/ISO Locational Marginal Price reports

	rto_iso_location_wholesale_reporting_id

	string

	The designation used to report ths specific location of the wholesale sales transactions to FERC for the Electric Quarterly Report

	solid_fuel_gasification

	boolean

	Indicates whether the generator is part of a solid fuel gasification system

	stoker_tech

	boolean

	Indicates whether the generator uses stoker technology

	subcritical_tech

	boolean

	Indicates whether the generator uses subcritical technology

	supercritical_tech

	boolean

	Indicates whether the generator uses supercritical technology

	topping_bottoming_code

	string

	If the generator is associated with a combined heat and power system, indicates whether the generator is part of a topping cycle or a bottoming cycle

	ultrasupercritical_tech

	boolean

	Indicates whether the generator uses ultra-supercritical technology

hourly_emissions_epacems

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/hourly_emissions_epacems]

	Field Name

	Type

	Description

	co2_mass_measurement_code

	string

	Identifies whether the reported value of emissions was measured, calculated, or measured and substitute.

	co2_mass_tons

	number

	Carbon dioxide emissions in short tons.

	facility_id

	integer

	New EPA plant ID.

	gross_load_mw

	number

	Average power in megawatts delivered during time interval measured.

	heat_content_mmbtu

	number

	The energy contained in fuel burned, measured in million BTU.

	nox_mass_lbs

	number

	NOx emissions in pounds.

	nox_mass_measurement_code

	string

	Identifies whether the reported value of emissions was measured, calculated, or measured and substitute.

	nox_rate_lbs_mmbtu

	number

	The average rate at which NOx was emitted during a given time period.

	nox_rate_measurement_code

	string

	Identifies whether the reported value of emissions was measured, calculated, or measured and substitute.

	operating_datetime_utc

	datetime

	Date and time measurement began (UTC).

	operating_time_hours

	number

	Length of time interval measured.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	so2_mass_lbs

	number

	Sulfur dioxide emissions in pounds.

	so2_mass_measurement_code

	string

	Identifies whether the reported value of emissions was measured, calculated, or measured and substitute.

	state

	string

	State the plant is located in.

	steam_load_1000_lbs

	number

	Total steam pressure produced by a unit during the reported hour.

	unit_id_epa

	integer

	Smokestack unit monitored by EPA CEMS.

	unitid

	string

	Facility-specific unit id (e.g. Unit 4)

ownership_eia860

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/ownership_eia860]

	Field Name

	Type

	Description

	fraction_owned

	number

	Proportion of generator ownership.

	generator_id

	string

	Generator identification number.

	owner_city

	string

	City of owner.

	owner_name

	string

	Name of owner.

	owner_state

	string

	Two letter US & Canadian state and territory abbreviations.

	owner_street_address

	string

	Steet address of owner.

	owner_utility_id_eia

	integer

	EIA-assigned owner's identification number.

	owner_zip_code

	string

	Zip code of owner.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	report_date

	date

	Date reported.

	utility_id_eia

	integer

	EIA-assigned identification number for the company that is responsible for the day-to-day operations of the generator.

plant_in_service_ferc1

Balances and changes to FERC Electric Plant in Service accounts, as reported
on FERC Form 1. Data originally from the f1_plant_in_srvce table in FERC's
FoxPro database. Account numbers correspond to the FERC Uniform System of
Accounts for Electric Plant, which is defined in Code of Federal Regulations
(CFR) Title 18, Chapter I, Subchapter C, Part 101. (See e.g.
https://www.law.cornell.edu/cfr/text/18/part-101). Each FERC respondent
reports starting and ending balances for each account annually. Balances are
organization wide, and are not broken down on a per-plant basis. End of year
balance should equal beginning year balance plus the sum of additions,
retirements, adjustments, and transfers.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plant_in_service_ferc1]

	Field Name

	Type

	Description

	amount_type

	string

	String indicating which original FERC Form 1 column the listed amount came from. Each field should have one (potentially NA) value of each type for each utility in each year, and the ending_balance should equal the sum of starting_balance, additions, retirements, adjustments, and transfers.

	distribution_acct360_land

	number

	FERC Account 360: Distribution Plant Land and Land Rights.

	distribution_acct361_structures

	number

	FERC Account 361: Distribution Plant Structures and Improvements.

	distribution_acct362_station_equip

	number

	FERC Account 362: Distribution Plant Station Equipment.

	distribution_acct363_storage_battery_equip

	number

	FERC Account 363: Distribution Plant Storage Battery Equipment.

	distribution_acct364_poles_towers

	number

	FERC Account 364: Distribution Plant Poles, Towers, and Fixtures.

	distribution_acct365_overhead_conductors

	number

	FERC Account 365: Distribution Plant Overhead Conductors and Devices.

	distribution_acct366_underground_conduit

	number

	FERC Account 366: Distribution Plant Underground Conduit.

	distribution_acct367_underground_conductors

	number

	FERC Account 367: Distribution Plant Underground Conductors and Devices.

	distribution_acct368_line_transformers

	number

	FERC Account 368: Distribution Plant Line Transformers.

	distribution_acct369_services

	number

	FERC Account 369: Distribution Plant Services.

	distribution_acct370_meters

	number

	FERC Account 370: Distribution Plant Meters.

	distribution_acct371_customer_installations

	number

	FERC Account 371: Distribution Plant Installations on Customer Premises.

	distribution_acct372_leased_property

	number

	FERC Account 372: Distribution Plant Leased Property on Customer Premises.

	distribution_acct373_street_lighting

	number

	FERC Account 373: Distribution PLant Street Lighting and Signal Systems.

	distribution_acct374_asset_retirement

	number

	FERC Account 374: Distribution Plant Asset Retirement Costs.

	distribution_total

	number

	Distribution Plant Total (FERC Accounts 360-374).

	electric_plant_in_service_total

	number

	Total Electric Plant in Service (FERC Accounts 101, 102, 103 and 106)

	electric_plant_purchased_acct102

	number

	FERC Account 102: Electric Plant Purchased.

	electric_plant_sold_acct102

	number

	FERC Account 102: Electric Plant Sold (Negative).

	experimental_plant_acct103

	number

	FERC Account 103: Experimental Plant Unclassified.

	general_acct389_land

	number

	FERC Account 389: General Land and Land Rights.

	general_acct390_structures

	number

	FERC Account 390: General Structures and Improvements.

	general_acct391_office_equip

	number

	FERC Account 391: General Office Furniture and Equipment.

	general_acct392_transportation_equip

	number

	FERC Account 392: General Transportation Equipment.

	general_acct393_stores_equip

	number

	FERC Account 393: General Stores Equipment.

	general_acct394_shop_equip

	number

	FERC Account 394: General Tools, Shop, and Garage Equipment.

	general_acct395_lab_equip

	number

	FERC Account 395: General Laboratory Equipment.

	general_acct396_power_operated_equip

	number

	FERC Account 396: General Power Operated Equipment.

	general_acct397_communication_equip

	number

	FERC Account 397: General Communication Equipment.

	general_acct398_misc_equip

	number

	FERC Account 398: General Miscellaneous Equipment.

	general_acct399_1_asset_retirement

	number

	FERC Account 399.1: Asset Retirement Costs for General Plant.

	general_acct399_other_property

	number

	FERC Account 399: General Plant Other Tangible Property.

	general_subtotal

	number

	General Plant Subtotal (FERC Accounts 389-398).

	general_total

	number

	General Plant Total (FERC Accounts 389-399.1).

	hydro_acct330_land

	number

	FERC Account 330: Hydro Land and Land Rights.

	hydro_acct331_structures

	number

	FERC Account 331: Hydro Structures and Improvements.

	hydro_acct332_reservoirs_dams_waterways

	number

	FERC Account 332: Hydro Reservoirs, Dams, and Waterways.

	hydro_acct333_wheels_turbines_generators

	number

	FERC Account 333: Hydro Water Wheels, Turbins, and Generators.

	hydro_acct334_accessory_equip

	number

	FERC Account 334: Hydro Accessory Electric Equipment.

	hydro_acct335_misc_equip

	number

	FERC Account 335: Hydro Miscellaneous Power Plant Equipment.

	hydro_acct336_roads_railroads_bridges

	number

	FERC Account 336: Hydro Roads, Railroads, and Bridges.

	hydro_acct337_asset_retirement

	number

	FERC Account 337: Asset Retirement Costs for Hydraulic Production.

	hydro_total

	number

	Hydraulic Production Plant Total (FERC Accounts 330-337)

	intangible_acct301_organization

	number

	FERC Account 301: Intangible Plant Organization.

	intangible_acct302_franchises_consents

	number

	FERC Account 302: Intangible Plant Franchises and Consents.

	intangible_acct303_misc

	number

	FERC Account 303: Miscellaneous Intangible Plant.

	intangible_total

	number

	Intangible Plant Total (FERC Accounts 301-303).

	major_electric_plant_acct101_acct106_total

	number

	Total Major Electric Plant in Service (FERC Accounts 101 and 106).

	nuclear_acct320_land

	number

	FERC Account 320: Nuclear Land and Land Rights.

	nuclear_acct321_structures

	number

	FERC Account 321: Nuclear Structures and Improvements.

	nuclear_acct322_reactor_equip

	number

	FERC Account 322: Nuclear Reactor Plant Equipment.

	nuclear_acct323_turbogenerators

	number

	FERC Account 323: Nuclear Turbogenerator Units

	nuclear_acct324_accessory_equip

	number

	FERC Account 324: Nuclear Accessory Electric Equipment.

	nuclear_acct325_misc_equip

	number

	FERC Account 325: Nuclear Miscellaneous Power Plant Equipment.

	nuclear_acct326_asset_retirement

	number

	FERC Account 326: Asset Retirement Costs for Nuclear Production.

	nuclear_total

	number

	Total Nuclear Production Plant (FERC Accounts 320-326)

	other_acct340_land

	number

	FERC Account 340: Other Land and Land Rights.

	other_acct341_structures

	number

	FERC Account 341: Other Structures and Improvements.

	other_acct342_fuel_accessories

	number

	FERC Account 342: Other Fuel Holders, Products, and Accessories.

	other_acct343_prime_movers

	number

	FERC Account 343: Other Prime Movers.

	other_acct344_generators

	number

	FERC Account 344: Other Generators.

	other_acct345_accessory_equip

	number

	FERC Account 345: Other Accessory Electric Equipment.

	other_acct346_misc_equip

	number

	FERC Account 346: Other Miscellaneous Power Plant Equipment.

	other_acct347_asset_retirement

	number

	FERC Account 347: Asset Retirement Costs for Other Production.

	other_total

	number

	Total Other Production Plant (FERC Accounts 340-347).

	production_total

	number

	Total Production Plant (FERC Accounts 310-347).

	record_id

	string

	Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.

	report_year

	year

	Four-digit year in which the data was reported.

	rtmo_acct380_land

	number

	FERC Account 380: RTMO Land and Land Rights.

	rtmo_acct381_structures

	number

	FERC Account 381: RTMO Structures and Improvements.

	rtmo_acct382_computer_hardware

	number

	FERC Account 382: RTMO Computer Hardware.

	rtmo_acct383_computer_software

	number

	FERC Account 383: RTMO Computer Software.

	rtmo_acct384_communication_equip

	number

	FERC Account 384: RTMO Communication Equipment.

	rtmo_acct385_misc_equip

	number

	FERC Account 385: RTMO Miscellaneous Equipment.

	rtmo_total

	number

	Total RTMO Plant (FERC Accounts 380-386)

	steam_acct310_land

	number

	FERC Account 310: Steam Plant Land and Land Rights.

	steam_acct311_structures

	number

	FERC Account 311: Steam Plant Structures and Improvements.

	steam_acct312_boiler_equip

	number

	FERC Account 312: Steam Boiler Plant Equipment.

	steam_acct313_engines

	number

	FERC Account 313: Steam Engines and Engine-Driven Generators.

	steam_acct314_turbogenerators

	number

	FERC Account 314: Steam Turbogenerator Units.

	steam_acct315_accessory_equip

	number

	FERC Account 315: Steam Accessory Electric Equipment.

	steam_acct316_misc_equip

	number

	FERC Account 316: Steam Miscellaneous Power Plant Equipment.

	steam_acct317_asset_retirement

	number

	FERC Account 317: Asset Retirement Costs for Steam Production.

	steam_total

	number

	Total Steam Production Plant (FERC Accounts 310-317).

	transmission_acct350_land

	number

	FERC Account 350: Transmission Land and Land Rights.

	transmission_acct352_structures

	number

	FERC Account 352: Transmission Structures and Improvements.

	transmission_acct353_station_equip

	number

	FERC Account 353: Transmission Station Equipment.

	transmission_acct354_towers

	number

	FERC Account 354: Transmission Towers and Fixtures.

	transmission_acct355_poles

	number

	FERC Account 355: Transmission Poles and Fixtures.

	transmission_acct356_overhead_conductors

	number

	FERC Account 356: Overhead Transmission Conductors and Devices.

	transmission_acct357_underground_conduit

	number

	FERC Account 357: Underground Transmission Conduit.

	transmission_acct358_underground_conductors

	number

	FERC Account 358: Underground Transmission Conductors.

	transmission_acct359_1_asset_retirement

	number

	FERC Account 359.1: Asset Retirement Costs for Transmission Plant.

	transmission_acct359_roads_trails

	number

	FERC Account 359: Transmission Roads and Trails.

	transmission_total

	number

	Total Transmission Plant (FERC Accounts 350-359.1)

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plant_unit_epa

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plant_unit_epa]

	Field Name

	Type

	Description

	plant_id_epa

	integer

	N/A

	unit_id_epa

	string

	Smokestack unit monitored by EPA CEMS.

plants_eia

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_eia]

	Field Name

	Type

	Description

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	plant_id_pudl

	integer

	N/A

	plant_name_eia

	string

	N/A

plants_eia860

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_eia860]

	Field Name

	Type

	Description

	ash_impoundment

	string

	Is there an ash impoundment (e.g. pond, reservoir) at the plant?

	ash_impoundment_lined

	string

	If there is an ash impoundment at the plant, is the impoundment lined?

	ash_impoundment_status

	string

	If there is an ash impoundment at the plant, the ash impoundment status as of December 31 of the reporting year.

	datum

	string

	N/A

	energy_storage

	string

	Indicates if the facility has energy storage capabilities.

	ferc_cogen_docket_no

	string

	The docket number relating to the FERC qualifying facility cogenerator status.

	ferc_exempt_wholesale_generator_docket_no

	string

	The docket number relating to the FERC qualifying facility exempt wholesale generator status.

	ferc_small_power_producer_docket_no

	string

	The docket number relating to the FERC qualifying facility small power producer status.

	liquefied_natural_gas_storage

	string

	Indicates if the facility have the capability to store the natural gas in the form of liquefied natural gas.

	natural_gas_local_distribution_company

	string

	Names of Local Distribution Company (LDC), connected to natural gas burning power plants.

	natural_gas_pipeline_name_1

	string

	The name of the owner or operator of natural gas pipeline that connects directly to this facility or that connects to a lateral pipeline owned by this facility.

	natural_gas_pipeline_name_2

	string

	The name of the owner or operator of natural gas pipeline that connects directly to this facility or that connects to a lateral pipeline owned by this facility.

	natural_gas_pipeline_name_3

	string

	The name of the owner or operator of natural gas pipeline that connects directly to this facility or that connects to a lateral pipeline owned by this facility.

	natural_gas_storage

	string

	Indicates if the facility have on-site storage of natural gas.

	nerc_region

	string

	NERC region in which the plant is located

	net_metering

	string

	Did this plant have a net metering agreement in effect during the reporting year? (Only displayed for facilities that report the sun or wind as an energy source). This field was only reported up until 2015

	pipeline_notes

	string

	Additional owner or operator of natural gas pipeline.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	regulatory_status_code

	string

	Indicates whether the plant is regulated or non-regulated.

	report_date

	date

	Date reported.

	transmission_distribution_owner_id

	string

	EIA-assigned code for owner of transmission/distribution system to which the plant is interconnected.

	transmission_distribution_owner_name

	string

	Name of the owner of the transmission or distribution system to which the plant is interconnected.

	transmission_distribution_owner_state

	string

	State location for owner of transmission/distribution system to which the plant is interconnected.

	utility_id_eia

	integer

	EIA-assigned identification number for the company that is responsible for the day-to-day operations of the generator.

	water_source

	string

	Name of water source associater with the plant.

plants_entity_eia

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_entity_eia]

	Field Name

	Type

	Description

	balancing_authority_code_eia

	string

	The plant's balancing authority code.

	balancing_authority_name_eia

	string

	The plant's balancing authority name.

	city

	string

	The plant's city.

	county

	string

	The plant's county.

	ferc_cogen_status

	string

	Indicates whether the plant has FERC qualifying facility cogenerator status.

	ferc_exempt_wholesale_generator

	string

	Indicates whether the plant has FERC qualifying facility exempt wholesale generator status

	ferc_small_power_producer

	string

	Indicates whether the plant has FERC qualifying facility small power producer status

	grid_voltage_2_kv

	number

	Plant's grid voltage at point of interconnection to transmission or distibution facilities

	grid_voltage_3_kv

	number

	Plant's grid voltage at point of interconnection to transmission or distibution facilities

	grid_voltage_kv

	number

	Plant's grid voltage at point of interconnection to transmission or distibution facilities

	iso_rto_code

	string

	The code of the plant's ISO or RTO. NA if not reported in that year.

	latitude

	number

	Latitude of the plant's location, in degrees.

	longitude

	number

	Longitude of the plant's location, in degrees.

	plant_id_eia

	integer

	The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.

	plant_name_eia

	string

	Plant name.

	primary_purpose_naics_id

	number

	North American Industry Classification System (NAICS) code that best describes the primary purpose of the reporting plant

	sector_id

	number

	Plant-level sector number, designated by the primary purpose, regulatory status and plant-level combined heat and power status

	sector_name

	string

	Plant-level sector name, designated by the primary purpose, regulatory status and plant-level combined heat and power status

	service_area

	string

	Service area in which plant is located; for unregulated companies, it's the electric utility with which plant is interconnected

	state

	string

	Plant state. Two letter US state and territory abbreviations.

	street_address

	string

	Plant street address

	timezone

	string

	IANA timezone name

	zip_code

	string

	Plant street address

plants_ferc1

Name, utility, and PUDL id for steam plants with a capacity of 25,000+ kW,
internal combustion and gas-turbine plants of 10,000+ kW, and all nuclear
plants.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_ferc1]

	Field Name

	Type

	Description

	plant_id_pudl

	integer

	A manually assigned PUDL plant ID. May not be constant over time.

	plant_name_ferc1

	string

	Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_hydro_ferc1

Generating plant statistics for hydroelectric plants with an installed
nameplate capacity of 10 MW. As reported on FERC Form 1, pages 406-407 and
extracted from the f1_hydro table in FERC's FoxPro database.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_hydro_ferc1]

	Field Name

	Type

	Description

	asset_retirement_cost

	number

	Cost of plant: asset retirement costs. Nominal USD.

	avg_num_employees

	number

	Average number of employees.

	capacity_mw

	number

	Total installed (nameplate) capacity, in megawatts.

	capex_equipment

	number

	Cost of plant: equipment. Nominal USD.

	capex_facilities

	number

	Cost of plant: reservoirs, dams, and waterways. Nominal USD.

	capex_land

	number

	Cost of plant: land and land rights. Nominal USD.

	capex_per_mw

	number

	Cost of plant per megawatt of installed (nameplate) capacity. Nominal USD.

	capex_roads

	number

	Cost of plant: roads, railroads, and bridges. Nominal USD.

	capex_structures

	number

	Cost of plant: structures and improvements. Nominal USD.

	capex_total

	number

	Total cost of plant. Nominal USD.

	construction_type

	string

	Type of plant construction ('outdoor', 'semioutdoor', or 'conventional'). Categorized by PUDL based on our best guess of intended value in FERC1 freeform strings.

	construction_year

	year

	Four digit year of the plant's original construction.

	installation_year

	year

	Four digit year in which the last unit was installed.

	net_capacity_adverse_conditions_mw

	number

	Net plant capability under the least favorable operating conditions, in megawatts.

	net_capacity_favorable_conditions_mw

	number

	Net plant capability under the most favorable operating conditions, in megawatts.

	net_generation_mwh

	number

	Net generation, exclusive of plant use, in megawatt hours.

	opex_dams

	number

	Production expenses: maintenance of reservoirs, dams, and waterways. Nominal USD.

	opex_electric

	number

	Production expenses: electric expenses. Nominal USD.

	opex_engineering

	number

	Production expenses: maintenance, supervision, and engineering. Nominal USD.

	opex_generation_misc

	number

	Production expenses: miscellaneous hydraulic power generation expenses. Nominal USD.

	opex_hydraulic

	number

	Production expenses: hydraulic expenses. Nominal USD.

	opex_misc_plant

	number

	Production expenses: maintenance of miscellaneous hydraulic plant. Nominal USD.

	opex_operations

	number

	Production expenses: operation, supervision, and engineering. Nominal USD.

	opex_per_mwh

	number

	Production expenses per net megawatt hour generated. Nominal USD.

	opex_plant

	number

	Production expenses: maintenance of electric plant. Nominal USD.

	opex_rents

	number

	Production expenses: rent. Nominal USD.

	opex_structures

	number

	Production expenses: maintenance of structures. Nominal USD.

	opex_total

	number

	Total production expenses. Nominal USD.

	opex_water_for_power

	number

	Production expenses: water for power. Nominal USD.

	peak_demand_mw

	number

	Net peak demand on the plant (60-minute integration), in megawatts.

	plant_hours_connected_while_generating

	number

	Hours the plant was connected to load while generating.

	plant_name_ferc1

	string

	Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.

	plant_type

	string

	Kind of plant (Run-of-River or Storage).

	project_num

	integer

	FERC Licensed Project Number.

	record_id

	string

	Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.

	report_year

	year

	Four-digit year in which the data was reported.

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_pudl

Home table for PUDL assigned plant IDs. These IDs are manually generated each
year when new FERC and EIA reporting is integrated, and any newly identified
plants are added to the list with a new ID. Each ID maps to a power plant
which is reported in at least one FERC or EIA data set. This table is read in
from a spreadsheet stored in the PUDL repository:
src/pudl/package_data/glue/mapping_eia923_ferc1.xlsx
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_pudl]

	Field Name

	Type

	Description

	plant_id_pudl

	integer

	A manually assigned PUDL plant ID. May not be constant over time.

	plant_name_pudl

	string

	Plant name, chosen arbitrarily from the several possible plant names available in the plant matching process. Included for human readability only.

plants_pumped_storage_ferc1

Generating plant statistics for hydroelectric pumped storage plants with an
installed nameplate capacity of 10+ MW. As reported on page 408 of FERC Form 1
and extracted from the f1_pumped_storage table in FERC's FoxPro Database.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_pumped_storage_ferc1]

	Field Name

	Type

	Description

	asset_retirement_cost

	number

	Cost of plant: asset retirement costs. Nominal USD.

	avg_num_employees

	number

	Average number of employees.

	capacity_mw

	number

	Total installed (nameplate) capacity, in megawatts.

	capex_equipment_electric

	number

	Cost of plant: accessory electric equipment. Nominal USD.

	capex_equipment_misc

	number

	Cost of plant: miscellaneous power plant equipment. Nominal USD.

	capex_facilities

	number

	Cost of plant: reservoirs, dams, and waterways. Nominal USD.

	capex_land

	number

	Cost of plant: land and land rights. Nominal USD.

	capex_per_mw

	number

	Cost of plant per megawatt of installed (nameplate) capacity. Nominal USD.

	capex_roads

	number

	Cost of plant: roads, railroads, and bridges. Nominal USD.

	capex_structures

	number

	Cost of plant: structures and improvements. Nominal USD.

	capex_total

	number

	Total cost of plant. Nominal USD.

	capex_wheels_turbines_generators

	number

	Cost of plant: water wheels, turbines, and generators. Nominal USD.

	construction_type

	string

	Type of plant construction ('outdoor', 'semioutdoor', or 'conventional'). Categorized by PUDL based on our best guess of intended value in FERC1 freeform strings.

	construction_year

	year

	Four digit year of the plant's original construction.

	energy_used_for_pumping_mwh

	number

	Energy used for pumping, in megawatt-hours.

	installation_year

	year

	Four digit year in which the last unit was installed.

	net_generation_mwh

	number

	Net generation, exclusive of plant use, in megawatt hours.

	net_load_mwh

	number

	Net output for load (net generation - energy used for pumping) in megawatt-hours.

	opex_dams

	number

	Production expenses: maintenance of reservoirs, dams, and waterways. Nominal USD.

	opex_electric

	number

	Production expenses: electric expenses. Nominal USD.

	opex_engineering

	number

	Production expenses: maintenance, supervision, and engineering. Nominal USD.

	opex_generation_misc

	number

	Production expenses: miscellaneous pumped storage power generation expenses. Nominal USD.

	opex_misc_plant

	number

	Production expenses: maintenance of miscellaneous hydraulic plant. Nominal USD.

	opex_operations

	number

	Production expenses: operation, supervision, and engineering. Nominal USD.

	opex_per_mwh

	number

	Production expenses per net megawatt hour generated. Nominal USD.

	opex_plant

	number

	Production expenses: maintenance of electric plant. Nominal USD.

	opex_production_before_pumping

	number

	Total production expenses before pumping. Nominal USD.

	opex_pumped_storage

	number

	Production expenses: pumped storage. Nominal USD.

	opex_pumping

	number

	Production expenses: We are here to PUMP YOU UP! Nominal USD.

	opex_rents

	number

	Production expenses: rent. Nominal USD.

	opex_structures

	number

	Production expenses: maintenance of structures. Nominal USD.

	opex_total

	number

	Total production expenses. Nominal USD.

	opex_water_for_power

	number

	Production expenses: water for power. Nominal USD.

	peak_demand_mw

	number

	Net peak demand on the plant (60-minute integration), in megawatts.

	plant_capability_mw

	number

	Net plant capability in megawatts.

	plant_hours_connected_while_generating

	number

	Hours the plant was connected to load while generating.

	plant_name_ferc1

	string

	Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.

	project_num

	integer

	FERC Licensed Project Number.

	record_id

	string

	Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.

	report_year

	year

	Four-digit year in which the data was reported.

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_small_ferc1

Generating plant statistics for steam plants with less than 25 MW installed
nameplate capacity and internal combustion plants, gas turbine-plants,
conventional hydro plants, and pumped storage plants with less than 10 MW
installed nameplate capacity. As reported on FERC Form 1 pages 410-411, and
extracted from the FERC FoxPro database table f1_gnrt_plant.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_small_ferc1]

	Field Name

	Type

	Description

	capacity_mw

	number

	Name plate capacity in megawatts.

	capex_per_mw

	number

	Plant costs (including asset retirement costs) per megawatt. Nominal USD.

	construction_year

	year

	Original year of plant construction.

	ferc_license_id

	integer

	FERC issued operating license ID for the facility, if available. This value is extracted from the original plant name where possible.

	fuel_cost_per_mmbtu

	number

	Average fuel cost per mmBTU (if applicable). Nominal USD.

	fuel_type

	string

	Kind of fuel. Originally reported to FERC as a freeform string. Assigned a canonical value by PUDL based on our best guess.

	net_generation_mwh

	number

	Net generation excluding plant use, in megawatt-hours.

	opex_fuel

	number

	Production expenses: Fuel. Nominal USD.

	opex_maintenance

	number

	Production expenses: Maintenance. Nominal USD.

	opex_total

	number

	Total plant operating expenses, excluding fuel. Nominal USD.

	peak_demand_mw

	number

	Net peak demand for 60 minutes. Note: in some cases peak demand for other time periods may have been reported instead, if hourly peak demand was unavailable.

	plant_name_ferc1

	string

	PUDL assigned simplified plant name.

	plant_name_original

	string

	Original plant name in the FERC Form 1 FoxPro database.

	plant_type

	string

	PUDL assigned plant type. This is a best guess based on the fuel type, plant name, and other attributes.

	record_id

	string

	Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.

	report_year

	year

	Four-digit year in which the data was reported.

	total_cost_of_plant

	number

	Total cost of plant. Nominal USD.

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_steam_ferc1

Generating plant statistics for steam plants with a capacity of 25+ MW,
internal combustion and gas-turbine plants of 10+ MW, and all nuclear plants.
As reported on page 402 of FERC Form 1 and extracted from the f1_gnrt_plant
table in FERC's FoxPro Database.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/plants_steam_ferc1]

	Field Name

	Type

	Description

	asset_retirement_cost

	number

	Asset retirement cost.

	avg_num_employees

	number

	Average number of plant employees during report year.

	capacity_mw

	number

	Total installed plant capacity in MW.

	capex_equipment

	number

	Capital expense for equipment.

	capex_land

	number

	Capital expense for land and land rights.

	capex_per_mw

	number

	Capital expenses per MW of installed plant capacity.

	capex_structures

	number

	Capital expense for structures and improvements.

	capex_total

	number

	Total capital expenses.

	construction_type

	string

	Type of plant construction ('outdoor', 'semioutdoor', or 'conventional'). Categorized by PUDL based on our best guess of intended value in FERC1 freeform strings.

	construction_year

	year

	Year the plant's oldest still operational unit was built.

	installation_year

	year

	Year the plant's most recently built unit was installed.

	net_generation_mwh

	number

	Net generation (exclusive of plant use) in MWh during report year.

	not_water_limited_capacity_mw

	number

	Plant capacity in MW when not limited by condenser water.

	opex_allowances

	number

	Allowances.

	opex_boiler

	number

	Maintenance of boiler (or reactor) plant.

	opex_coolants

	number

	Cost of coolants and water (nuclear plants only)

	opex_electric

	number

	Electricity expenses.

	opex_engineering

	number

	Maintenance, supervision, and engineering.

	opex_fuel

	number

	Total cost of fuel.

	opex_misc_power

	number

	Miscellaneous steam (or nuclear) expenses.

	opex_misc_steam

	number

	Maintenance of miscellaneous steam (or nuclear) plant.

	opex_operations

	number

	Production expenses: operations, supervision, and engineering.

	opex_per_mwh

	number

	Total operating expenses per MWh of net generation.

	opex_plants

	number

	Maintenance of electrical plant.

	opex_production_total

	number

	Total operating epxenses.

	opex_rents

	number

	Rents.

	opex_steam

	number

	Steam expenses.

	opex_steam_other

	number

	Steam from other sources.

	opex_structures

	number

	Maintenance of structures.

	opex_transfer

	number

	Steam transferred (Credit).

	peak_demand_mw

	number

	Net peak demand experienced by the plant in MW in report year.

	plant_capability_mw

	number

	Net continuous plant capability in MW

	plant_hours_connected_while_generating

	number

	Total number hours the plant was generated and connected to load during report year.

	plant_id_ferc1

	integer

	Algorithmically assigned PUDL FERC Plant ID. WARNING: NOT STABLE BETWEEN PUDL DB INITIALIZATIONS.

	plant_name_ferc1

	string

	Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.

	plant_type

	string

	Simplified plant type, categorized by PUDL based on our best guess of what was intended based on freeform string reported to FERC. Unidentifiable types are null.

	record_id

	string

	Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.

	report_year

	year

	Four-digit year in which the data was reported.

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

	water_limited_capacity_mw

	number

	Plant capacity in MW when limited by condenser water.

prime_movers_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/prime_movers_eia923]

	Field Name

	Type

	Description

	abbr

	string

	N/A

	prime_mover

	string

	N/A

purchased_power_ferc1

Purchased Power (Account 555) including power exchanges (i.e. transactions
involving a balancing of debits and credits for energy, capacity, etc.) and
any settlements for imbalanced exchanges. Reported on pages 326-327 of FERC
Form 1. Extracted from the f1_purchased_pwr table in FERC's FoxPro database.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/purchased_power_ferc1]

	Field Name

	Type

	Description

	billing_demand_mw

	number

	Monthly average billing demand (for requirements purchases, and any transactions involving demand charges). In megawatts.

	coincident_peak_demand_mw

	number

	Average monthly coincident peak (CP) demand (for requirements purchases, and any transactions involving demand charges). Monthly CP demand is the metered demand during the hour (60-minute integration) in which the supplier's system reaches its monthly peak. In megawatts.

	delivered_mwh

	number

	Gross megawatt-hours delivered in power exchanges and used as the basis for settlement.

	demand_charges

	number

	Demand charges. Nominal USD.

	energy_charges

	number

	Energy charges. Nominal USD.

	non_coincident_peak_demand_mw

	number

	Average monthly non-coincident peak (NCP) demand (for requirements purhcases, and any transactions involving demand charges). Monthly NCP demand is the maximum metered hourly (60-minute integration) demand in a month. In megawatts.

	other_charges

	number

	Other charges, including out-of-period adjustments. Nominal USD.

	purchase_type

	string

	Categorization based on the original contractual terms and conditions of the service. Must be one of 'requirements', 'long_firm', 'intermediate_firm', 'short_firm', 'long_unit', 'intermediate_unit', 'electricity_exchange', 'other_service', or 'adjustment'. Requirements service is ongoing high reliability service, with load integrated into system resource planning. 'Long term' means 5+ years. 'Intermediate term' is 1-5 years. 'Short term' is less than 1 year. 'Firm' means not interruptible for economic reasons. 'unit' indicates service from a particular designated generating unit. 'exchange' is an in-kind transaction.

	purchased_mwh

	number

	Megawatt-hours shown on bills rendered to the respondent.

	received_mwh

	number

	Gross megawatt-hours received in power exchanges and used as the basis for settlement.

	record_id

	string

	Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.

	report_year

	year

	Four-digit year in which the data was reported.

	seller_name

	string

	Name of the seller, or the other party in an exchange transaction.

	tariff

	string

	FERC Rate Schedule Number or Tariff. (Note: may be incomplete if originally reported on multiple lines.)

	total_settlement

	number

	Sum of demand, energy, and other charges. For power exchanges, the settlement amount for the net receipt of energy. If more energy was delivered than received, this amount is negative. Nominal USD.

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

transport_modes_eia923

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/transport_modes_eia923]

	Field Name

	Type

	Description

	abbr

	string

	N/A

	mode

	string

	N/A

utilities_eia

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/utilities_eia]

	Field Name

	Type

	Description

	utility_id_eia

	integer

	The EIA Utility Identification number.

	utility_id_pudl

	integer

	A manually assigned PUDL utility ID. May not be stable over time.

	utility_name_eia

	string

	The name of the utility.

utilities_eia860

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/utilities_eia860]

	Field Name

	Type

	Description

	address_2

	string

	N/A

	attention_line

	string

	N/A

	city

	string

	Name of the city in which operator/owner is located

	contact_firstname

	string

	N/A

	contact_firstname_2

	string

	N/A

	contact_lastname

	string

	N/A

	contact_lastname_2

	string

	N/A

	contact_title

	string

	N/A

	contact_title_2

	string

	N/A

	entity_type

	string

	Entity type of principle owner (C = Cooperative, I = Investor-Owned Utility, Q = Independent Power Producer, M = Municipally-Owned Utility, P = Political Subdivision, F = Federally-Owned Utility, S = State-Owned Utility, IND = Industrial, COM = Commercial

	phone_extension_1

	string

	Phone extension for contact 1

	phone_extension_2

	string

	Phone extension for contact 2

	phone_number_1

	string

	Phone number for contact 1

	phone_number_2

	string

	Phone number for contact 2

	plants_reported_asset_manager

	string

	Is the reporting entity an asset manager of power plants reported on Schedule 2 of the form?

	plants_reported_operator

	string

	Is the reporting entity an operator of power plants reported on Schedule 2 of the form?

	plants_reported_other_relationship

	string

	Does the reporting entity have any other relationship to the power plants reported on Schedule 2 of the form?

	plants_reported_owner

	string

	Is the reporting entity an owner of power plants reported on Schedule 2 of the form?

	report_date

	date

	Date reported.

	state

	string

	State of the operator/owner

	street_address

	string

	Street address of the operator/owner

	utility_id_eia

	integer

	EIA-assigned identification number for the company that is responsible for the day-to-day operations of the generator.

	zip_code

	string

	Zip code of the operator/owner

	zip_code_4

	string

	N/A

utilities_entity_eia

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/utilities_entity_eia]

	Field Name

	Type

	Description

	utility_id_eia

	integer

	The EIA Utility Identification number.

	utility_name_eia

	string

	The name of the utility.

utilities_ferc1

This table maps the manually assigned PUDL utility ID to a FERC respondent ID,
enabling a connection between the FERC and EIA data sets. It also stores the
utility name associated with the FERC respondent ID. Those values originate in
the f1_respondent_id table in FERC's FoxPro database, which is stored in a
file called F1_1.DBF. This table is generated from a spreadsheet stored in the
PUDL repository: results/id_mapping/mapping_eia923_ferc1.xlsx
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/utilities_ferc1]

	Field Name

	Type

	Description

	utility_id_ferc1

	integer

	FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

	utility_id_pudl

	integer

	A manually assigned PUDL utility ID. May not be stable over time.

	utility_name_ferc1

	string

	Name of the responding utility, as it is reported in FERC Form 1. For human readability only.

utilities_pudl

Home table for PUDL assigned utility IDs. These IDs are manually generated
each year when new FERC and EIA reporting is integrated, and any newly found
utilities are added to the list with a new ID. Each ID maps to a power plant
owning or operating entity which is reported in at least one FERC or EIA data
set. This table is read in from a spreadsheet stored in the PUDL repository:
src/pudl/package_data/glue/mapping_eia923_ferc1.xlsx
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/utilities_pudl]

	Field Name

	Type

	Description

	utility_id_pudl

	integer

	A manually assigned PUDL utility ID. May not be stable over time.

	utility_name_pudl

	string

	Utility name, chosen arbitrarily from the several possible utility names available in the utility matching process. Included for human readability only.

utility_plant_assn

Pending description.
Browse or query this table in Datasette. [https://data.catalyst.coop/pudl/utility_plant_assn]

	Field Name

	Type

	Description

	plant_id_pudl

	integer

	N/A

	utility_id_pudl

	integer

	N/A

FERC Form 1 Data Dictionary

We have mapped the Visual FoxPro DBF files to their corresponding FERC Form 1
database tables and provided a short description of the contents of each table here.

Note

	The Table Names link to the contents of the database table on our FERC Form 1
Datasette deployment [https://data.catalyst.coop/ferc1] where you can browse
and query the raw data yourself or download the SQLite DB in its entirety.

	The mapping of File Name to Table Name is consistent across all years of data.

	Page numbers correspond to the pages of the FERC Form 1 PDF as it appeared in
2015 and may not be valid for other years.

	Many tables without descriptions were discontinued prior to 2015.

	The “Freq” column indicates the reporting frequency – A for Annual; Q for
Quarterly. A/Q if the data is reported both annually and quarterly.

	Table Name / Data Link

	File Name

	Pages

	Freq

	Table Description

	f1_106_2009 [https://data.catalyst.coop/ferc1/f1_106_2009]

	F1_106_2009.DBF

	106

	A

	Information on Formula Rates

	f1_106a_2009 [https://data.catalyst.coop/ferc1/f1_106a_2009]

	F1_106A_2009.DBF

	106

	A

	Information on Formula Rates

	f1_106b_2009 [https://data.catalyst.coop/ferc1/f1_106b_2009]

	F1_106B_2009.DBF

	106

	A

	Information on Formula Rates

	f1_208_elc_dep [https://data.catalyst.coop/ferc1/f1_208_elc_dep]

	F1_208_ELC_DEP.DBF

	208

	Q

	Electric Plant In Service and Accumulated Provision For Depreciation by Function

	f1_231_trn_stdycst [https://data.catalyst.coop/ferc1/f1_231_trn_stdycst]

	F1_231_TRN_STDYCST.DBF

	231

	A/Q

	Transmission Service and Generation Interconnection Study Costs

	f1_324_elc_expns [https://data.catalyst.coop/ferc1/f1_324_elc_expns]

	F1_324_ELC_EXPNS.DBF

	324

	Q

	Electric Production, Other Power Supply Expenses, Transmission and Distribution Expenses

	f1_325_elc_cust [https://data.catalyst.coop/ferc1/f1_325_elc_cust]

	F1_325_ELC_CUST.DBF

	325

	Q

	Electric Customer Accounts, Service, Sales, Administration and General Expenses

	f1_331_transiso [https://data.catalyst.coop/ferc1/f1_331_transiso]

	F1_331_TRANSISO.DBF

	331

	A/Q

	Transmission of Electricity by ISO/RTOs

	f1_338_dep_depl [https://data.catalyst.coop/ferc1/f1_338_dep_depl]

	F1_338_DEP_DEPL.DBF

	338

	Q

	Depreciation, Depletion and Amortization of Electric Plant (FERC Accounts 403, 403.1, 404, and 405, except Amortization of Acquisition Adjustments)

	f1_397_isorto_stl [https://data.catalyst.coop/ferc1/f1_397_isorto_stl]

	F1_397_ISORTO_STL.DBF

	397

	A/Q

	Amounts Included in ISO/RTO Settlement Statements

	f1_398_ancl_ps [https://data.catalyst.coop/ferc1/f1_398_ancl_ps]

	F1_398_ANCL_PS.DBF

	398

	A

	Purchases and Sales of Ancillary Services

	f1_399_mth_peak [https://data.catalyst.coop/ferc1/f1_399_mth_peak]

	F1_399_MTH_PEAK.DBF

	399

	A/Q

	Monthly Peak Loads and Energy Output

	f1_400_sys_peak [https://data.catalyst.coop/ferc1/f1_400_sys_peak]

	F1_400_SYS_PEAK.DBF

	400

	A/Q

	Monthly Transmission System Peak Load

	f1_400a_iso_peak [https://data.catalyst.coop/ferc1/f1_400a_iso_peak]

	F1_400A_ISO_PEAK.DBF

	980, 400a

	A/Q

	Monthly ISO/RTO Transmission System Peak Load

	f1_429_trans_aff [https://data.catalyst.coop/ferc1/f1_429_trans_aff]

	F1_429_TRANS_AFF.DBF

	429

	A

	Transactions with Associated (Affiliated) Companies

	f1_acb_epda [https://data.catalyst.coop/ferc1/f1_acb_epda]

	F1_2.DBF

	336-337

	A

	Depreciation & Amortization of Electric Plant (Basis for Amortization Charges)

	f1_accumdepr_prvsn [https://data.catalyst.coop/ferc1/f1_accumdepr_prvsn]

	F1_3.DBF

	219

	A

	Accumulated Provision for Depreciation of Elecric Utility Plant (Account 108)

	f1_accumdfrrdtaxcr [https://data.catalyst.coop/ferc1/f1_accumdfrrdtaxcr]

	F1_4.DBF

	266-267

	A

	Accumulated Deferred Investment Tax Credits

	f1_adit_190_detail [https://data.catalyst.coop/ferc1/f1_adit_190_detail]

	F1_5.DBF

	234-234a

	A

	Accumulated Deferred Income Taxes (Individual Schedule Lines)

	f1_adit_190_notes [https://data.catalyst.coop/ferc1/f1_adit_190_notes]

	F1_6.DBF

	234-234b

	A

	Accumulated Deferred Income Taxes (Notes)

	f1_adit_amrt_prop [https://data.catalyst.coop/ferc1/f1_adit_amrt_prop]

	F1_7.DBF

	272-273

	A

	Accumulated Deferred Income Taxes - Accelerated Amortization Property

	f1_adit_other [https://data.catalyst.coop/ferc1/f1_adit_other]

	F1_8.DBF

	276-277

	A

	Accumulated Deferred Income Taxes - Other

	f1_adit_other_prop [https://data.catalyst.coop/ferc1/f1_adit_other_prop]

	F1_9.DBF

	274-275

	A

	Accumulated Deferred Income Taxes - Other Property

	f1_allowances [https://data.catalyst.coop/ferc1/f1_allowances]

	F1_10.DBF

	228-229

	A

	Allowances

	f1_allowances_nox [https://data.catalyst.coop/ferc1/f1_allowances_nox]

	F1_ALLOWANCES_NOX.DBF

	230-230a

	A

	

	f1_audit_log [https://data.catalyst.coop/ferc1/f1_audit_log]

	F1_78.DBF

	
	
	

	f1_bal_sheet_cr [https://data.catalyst.coop/ferc1/f1_bal_sheet_cr]

	F1_11.DBF

	112-113

	A/Q

	Comparative Balance Sheet (Liabilities & Other Credits)

	f1_capital_stock [https://data.catalyst.coop/ferc1/f1_capital_stock]

	F1_12.DBF

	250-251

	A

	Capital Stock

	f1_cash_flow [https://data.catalyst.coop/ferc1/f1_cash_flow]

	F1_13.DBF

	120-121

	A/Q

	Statement of Cash Flows

	f1_cmmn_utlty_p_e [https://data.catalyst.coop/ferc1/f1_cmmn_utlty_p_e]

	F1_14.DBF

	356

	A

	Common Utility Plant & Expenses

	f1_cmpinc_hedge [https://data.catalyst.coop/ferc1/f1_cmpinc_hedge]

	F1_CMPINC_HEDGE.DBF

	990, 122(a)(b)

	A/Q

	Statement of Accumulated Comparative Income, Comparative Income, and Hedging Activities

	f1_cmpinc_hedge_a [https://data.catalyst.coop/ferc1/f1_cmpinc_hedge_a]

	F1_CMPINC_HEDGE_A.DBF

	990

	
	

	f1_co_directors [https://data.catalyst.coop/ferc1/f1_co_directors]

	F1_18.DBF

	105

	A

	Names, Titles, and Addresses of Directors

	f1_codes_val [https://data.catalyst.coop/ferc1/f1_codes_val]

	F1_76.DBF

	
	
	

	f1_col_lit_tbl [https://data.catalyst.coop/ferc1/f1_col_lit_tbl]

	F1_79.DBF

	
	
	Descriptive headers for each column in the Form 1. Useful for discerning their semantic content.

	f1_comp_balance_db [https://data.catalyst.coop/ferc1/f1_comp_balance_db]

	F1_15.DBF

	110-111

	A/Q

	Comparative Balance Sheet (Assets & Other Debits)

	f1_construction [https://data.catalyst.coop/ferc1/f1_construction]

	F1_16.DBF

	217

	
	Spending on Construction (1994-2002 only)

	f1_control_respdnt [https://data.catalyst.coop/ferc1/f1_control_respdnt]

	F1_17.DBF

	102

	A

	Control Over Respondent

	f1_cptl_stk_expns [https://data.catalyst.coop/ferc1/f1_cptl_stk_expns]

	F1_19.DBF

	254-254b

	A

	Capital Stock Expense

	f1_csscslc_pcsircs [https://data.catalyst.coop/ferc1/f1_csscslc_pcsircs]

	F1_20.DBF

	252

	
	

	f1_dacs_epda [https://data.catalyst.coop/ferc1/f1_dacs_epda]

	F1_21.DBF

	336-337

	A

	Depreciation & Amortization of Electric Plant (Depreciation & Amortization Charges)

	f1_dscnt_cptl_stk [https://data.catalyst.coop/ferc1/f1_dscnt_cptl_stk]

	F1_22.DBF

	254

	
	

	f1_edcfu_epda [https://data.catalyst.coop/ferc1/f1_edcfu_epda]

	F1_23.DBF

	336-337

	A

	Depreciation & Amortization of Electric Plant (Factors Used in Estimating Depreciation Charges)

	f1_elc_op_mnt_expn [https://data.catalyst.coop/ferc1/f1_elc_op_mnt_expn]

	F1_27.DBF

	320-323

	A

	Electric Operation & Maintenance Expenses

	f1_elc_oper_rev_nb [https://data.catalyst.coop/ferc1/f1_elc_oper_rev_nb]

	F1_26.DBF

	300-301b

	A/Q

	Electric Operating Revenues (Unbilled Revenues Only)

	f1_elctrc_erg_acct [https://data.catalyst.coop/ferc1/f1_elctrc_erg_acct]

	F1_24.DBF

	401-401a

	A

	Electric Energy Account

	f1_elctrc_oper_rev [https://data.catalyst.coop/ferc1/f1_elctrc_oper_rev]

	F1_25.DBF

	300-301a

	A/Q

	Electric Operating Revenues (Individual Schedule Lines)

	f1_electric [https://data.catalyst.coop/ferc1/f1_electric]

	F1_28.DBF

	429

	
	

	f1_email [https://data.catalyst.coop/ferc1/f1_email]

	F1_EMAIL.DBF

	
	
	

	f1_envrnmntl_expns [https://data.catalyst.coop/ferc1/f1_envrnmntl_expns]

	F1_29.DBF

	431

	
	

	f1_envrnmntl_fclty [https://data.catalyst.coop/ferc1/f1_envrnmntl_fclty]

	F1_30.DBF

	430

	
	

	f1_footnote_data

	F1_85.DBF

	450

	A/Q

	Footnote Data

	f1_footnote_tbl

	F1_87.DBF

	
	
	

	f1_freeze

	F1_FREEZE.DBF

	
	
	

	f1_fuel [https://data.catalyst.coop/ferc1/f1_fuel]

	F1_31.DBF

	402-403b

	A

	Steam-Electric Generation Plant Statistics - Large Plants (Fuel Details)

	f1_general_info [https://data.catalyst.coop/ferc1/f1_general_info]

	F1_32.DBF

	101

	A

	General Information

	f1_gnrt_plant [https://data.catalyst.coop/ferc1/f1_gnrt_plant]

	F1_33.DBF

	410-411

	A

	Generating Plant Statistics (Small Plants)

	f1_hydro [https://data.catalyst.coop/ferc1/f1_hydro]

	F1_86.DBF

	406-407

	A

	Hydroelectric Gen Plant Stats (Large Plants)

	f1_ident_attsttn [https://data.catalyst.coop/ferc1/f1_ident_attsttn]

	F1_88.DBF

	1

	A/Q

	Identification & Attestation

	f1_important_chg [https://data.catalyst.coop/ferc1/f1_important_chg]

	F1_34.DBF

	108-109

	A/Q

	Important Changes During the Quarter/Year

	f1_incm_stmnt_2 [https://data.catalyst.coop/ferc1/f1_incm_stmnt_2]

	F1_35.DBF

	114-117b

	A/Q

	Statement of Income (Other Income & Deductions, Interest Charges, Extraordinary Items)

	f1_income_stmnt [https://data.catalyst.coop/ferc1/f1_income_stmnt]

	F1_36.DBF

	114-117a

	A/Q

	Statement of Income

	f1_leased [https://data.catalyst.coop/ferc1/f1_leased]

	F1_90.DBF

	213

	A

	Electric Plant Leased to Others

	f1_load_file_names [https://data.catalyst.coop/ferc1/f1_load_file_names]

	F1_80.DBF

	
	
	

	f1_long_term_debt [https://data.catalyst.coop/ferc1/f1_long_term_debt]

	F1_93.DBF

	256-257

	A

	Long-Term Debt

	f1_misc_dfrrd_dr [https://data.catalyst.coop/ferc1/f1_misc_dfrrd_dr]

	F1_38.DBF

	233

	A

	Miscellaneous Deferred Debits

	f1_miscgen_expnelc [https://data.catalyst.coop/ferc1/f1_miscgen_expnelc]

	F1_37.DBF

	335

	A

	Miscellaneous General Expenses - Electric

	f1_mthly_peak_otpt [https://data.catalyst.coop/ferc1/f1_mthly_peak_otpt]

	F1_39.DBF

	401-401b

	A

	Monthly Peaks & Output

	f1_mtrl_spply [https://data.catalyst.coop/ferc1/f1_mtrl_spply]

	F1_40.DBF

	227, 228-229

	A

	Materials & Supplies

	f1_nbr_elc_deptemp [https://data.catalyst.coop/ferc1/f1_nbr_elc_deptemp]

	F1_41.DBF

	320

	
	

	f1_nonutility_prop [https://data.catalyst.coop/ferc1/f1_nonutility_prop]

	F1_42.DBF

	221

	
	

	f1_note_fin_stmnt

	F1_43.DBF

	122-123

	A/Q

	Notes to Financial Statements

	f1_nuclear_fuel [https://data.catalyst.coop/ferc1/f1_nuclear_fuel]

	F1_44.DBF

	202-203

	A

	Nuclear Fuel Materials

	f1_officers_co [https://data.catalyst.coop/ferc1/f1_officers_co]

	F1_45.DBF

	104

	A

	Officers

	f1_othr_dfrrd_cr [https://data.catalyst.coop/ferc1/f1_othr_dfrrd_cr]

	F1_46.DBF

	269

	A

	Other Deferred Credits

	f1_othr_pd_in_cptl [https://data.catalyst.coop/ferc1/f1_othr_pd_in_cptl]

	F1_47.DBF

	253

	A

	Other Paid-in Capital

	f1_othr_reg_assets [https://data.catalyst.coop/ferc1/f1_othr_reg_assets]

	F1_48.DBF

	232

	A/Q

	Other Regulatory Assets

	f1_othr_reg_liab [https://data.catalyst.coop/ferc1/f1_othr_reg_liab]

	F1_49.DBF

	278

	A/Q

	Other Regulatory Liabilities

	f1_overhead [https://data.catalyst.coop/ferc1/f1_overhead]

	F1_50.DBF

	218

	
	

	f1_pccidica [https://data.catalyst.coop/ferc1/f1_pccidica]

	F1_51.DBF

	340

	
	

	f1_pins

	F1_PINS.DBF

	
	
	

	f1_plant [https://data.catalyst.coop/ferc1/f1_plant]

	F1_92.DBF

	204, 214

	A

	Electric Plant Held for Future Use

	f1_plant_in_srvce [https://data.catalyst.coop/ferc1/f1_plant_in_srvce]

	F1_52.DBF

	204-207

	A

	Electric Plant in Service

	f1_privilege [https://data.catalyst.coop/ferc1/f1_privilege]

	F1_81.DBF

	
	
	

	f1_pumped_storage [https://data.catalyst.coop/ferc1/f1_pumped_storage]

	F1_53.DBF

	408-409

	A

	Pumped Storage Generating Plant Statistics (Large Plants)

	f1_purchased_pwr [https://data.catalyst.coop/ferc1/f1_purchased_pwr]

	F1_54.DBF

	326-327

	A

	Purchased Power

	f1_r_d_demo_actvty [https://data.catalyst.coop/ferc1/f1_r_d_demo_actvty]

	F1_59.DBF

	352-353

	A

	Research, Development & Demonstration Activities

	f1_reconrpt_netinc [https://data.catalyst.coop/ferc1/f1_reconrpt_netinc]

	F1_55.DBF

	261

	A

	Reconciliation of Reported Net Income with Taxable Income for Federal Income Taxes

	f1_reg_comm_expn [https://data.catalyst.coop/ferc1/f1_reg_comm_expn]

	F1_56.DBF

	350-351

	A

	Regulatory Commission Expenses

	f1_respdnt_control [https://data.catalyst.coop/ferc1/f1_respdnt_control]

	F1_57.DBF

	103

	A

	Corporations Controlled by Respondent

	f1_respondent_id [https://data.catalyst.coop/ferc1/f1_respondent_id]

	F1_1.DBF

	
	
	Respondent ID

	f1_retained_erng [https://data.catalyst.coop/ferc1/f1_retained_erng]

	F1_58.DBF

	118-119

	A/Q

	Statement of Retained Earnings for the Year

	f1_rg_trn_srv_rev [https://data.catalyst.coop/ferc1/f1_rg_trn_srv_rev]

	F1_RG_TRN_SRV_REV.DBF

	302

	A/Q

	Regional Transmission Service Revenues (Account 457.1)

	f1_row_lit_tbl [https://data.catalyst.coop/ferc1/f1_row_lit_tbl]

	F1_84.DBF

	
	
	Descriptive labels for each numbered row in the Form 1. Useful for identifying semantic content and changes in line numbers from year to year.

	f1_s0_checks [https://data.catalyst.coop/ferc1/f1_s0_checks]

	F1_S0_CHECKS.DBF

	
	
	

	f1_s0_filing_log [https://data.catalyst.coop/ferc1/f1_s0_filing_log]

	F1_S0_FILING_LOG.DBF

	
	
	

	f1_sale_for_resale [https://data.catalyst.coop/ferc1/f1_sale_for_resale]

	F1_61.DBF

	310-311

	A

	Sales for Resale

	f1_sales_by_sched [https://data.catalyst.coop/ferc1/f1_sales_by_sched]

	F1_60.DBF

	304

	A

	Sales of Electricity by Rate Schedules

	f1_sbsdry_detail [https://data.catalyst.coop/ferc1/f1_sbsdry_detail]

	F1_91.DBF

	224-225

	A

	Investment in Subsidiary Companies (Account 123.1)

	f1_sbsdry_totals [https://data.catalyst.coop/ferc1/f1_sbsdry_totals]

	F1_62.DBF

	224-225

	A

	Investment in Subsidiary Companies (Total Line for Schedule)

	f1_sched_lit_tbl [https://data.catalyst.coop/ferc1/f1_sched_lit_tbl]

	F1_77.DBF

	
	
	

	f1_schedules_list [https://data.catalyst.coop/ferc1/f1_schedules_list]

	F1_63.DBF

	002-004

	A/Q

	List of Schedules

	f1_security [https://data.catalyst.coop/ferc1/f1_security]

	F1_SECURITY.DBF

	106

	
	

	f1_security_holder [https://data.catalyst.coop/ferc1/f1_security_holder]

	F1_64.DBF

	106

	
	

	f1_slry_wg_dstrbtn [https://data.catalyst.coop/ferc1/f1_slry_wg_dstrbtn]

	F1_65.DBF

	354-355

	A

	Distribution of Salaries & Wages

	f1_steam [https://data.catalyst.coop/ferc1/f1_steam]

	F1_89.DBF

	402-403a

	A

	Steam-Electric Generation Plant Statistics - Large Plants (Plant Information)

	f1_substations [https://data.catalyst.coop/ferc1/f1_substations]

	F1_66.DBF

	426-427

	A

	Substations

	f1_sys_error_log [https://data.catalyst.coop/ferc1/f1_sys_error_log]

	F1_82.DBF

	
	
	

	f1_taxacc_ppchrgyr [https://data.catalyst.coop/ferc1/f1_taxacc_ppchrgyr]

	F1_67.DBF

	262-263

	A

	Taxes Accrued, Prepaid & Charged During Year

	f1_unique_num_val [https://data.catalyst.coop/ferc1/f1_unique_num_val]

	F1_83.DBF

	
	
	

	f1_unrcvrd_cost [https://data.catalyst.coop/ferc1/f1_unrcvrd_cost]

	F1_68.DBF

	230-230b

	A

	Unrecovered Plant & Regulatory Study Costs

	f1_utltyplnt_smmry [https://data.catalyst.coop/ferc1/f1_utltyplnt_smmry]

	F1_69.DBF

	200-201

	A/Q

	Summary of Utility Plant & Accumulated Provisions for Depreciation, Amortization, & Depletion

	f1_work [https://data.catalyst.coop/ferc1/f1_work]

	F1_70.DBF

	216

	A

	Construction Work in Progress - Electric

	f1_xmssn_adds [https://data.catalyst.coop/ferc1/f1_xmssn_adds]

	F1_71.DBF

	424-425

	A

	Transmission Lines Added During Year

	f1_xmssn_elc_bothr [https://data.catalyst.coop/ferc1/f1_xmssn_elc_bothr]

	F1_72.DBF

	332

	A/Q

	Transmission of Electricity by Others

	f1_xmssn_elc_fothr [https://data.catalyst.coop/ferc1/f1_xmssn_elc_fothr]

	F1_73.DBF

	328-330

	A/Q

	Transmission of Electricity for Others

	f1_xmssn_line [https://data.catalyst.coop/ferc1/f1_xmssn_line]

	F1_74.DBF

	422-423

	A

	Transmission Line Statistics

	f1_xtraordnry_loss [https://data.catalyst.coop/ferc1/f1_xtraordnry_loss]

	F1_75.DBF

	230-230a

	A

	Extraordinary Property Losses

Contributing to PUDL

Welcome! We’re excited that you’re interested in contributing to the Public Utility
Data Liberation effort! The work is currently being coordinated by the members of the
Catalyst Cooperative [https://catalyst.coop]. PUDL is meant to serve a wide
variety of public interests including academic research, climate advocacy, data
journalism, and public policy making. This open source project has been supported by
a combination of volunteer contributions, grant funding from the Alfred P. Sloan
Foundation [https://sloan.org], and reinvestment of net income from the
cooperative’s client projects.

Please make sure you review our code of conduct, which is
based on the Contributor Covenant [https://www.contributor-covenant.org/]. We
want to make the PUDL project welcoming to contributors with different levels of
experience and diverse personal backgrounds.

How to Get Involved

We welcome just about any kind of contribution to the project. Alone, we’ll never be
able to understand every use case or integrate all the available data. The project
will serve the community better if other folks get involved.

There are lots of ways to contribute – it’s not all about code!

	Ask questions on Github using the issue tracker [https://github.com/catalyst-cooperative/pudl/issues].

	Suggest new data and features [https://github.com/catalyst-cooperative/pudl/issues/new?template=feature_request.md] that would be useful.

	File bug reports [https://github.com/catalyst-cooperative/pudl/issues/new?template=bug_report.md] on Github.

	Help expand and improve the documentation, or create new
example notebooks [https://github.com/catalyst-cooperative/pudl-examples/]

	Help us create more and better software test cases.

	Give us feedback on overall usability – what’s confusing?

	Tell us a story about how you’re using of the data.

	Point us at interesting publications related to open energy data, open source energy
system modeling, how energy policy can be affected by better data, or open source
tools we should check out.

	Cite PUDL using
DOIs from Zenodo [https://zenodo.org/communities/catalyst-cooperative/]
if you use the software or data in your own published work.

	Point us toward appropriate grant funding opportunities and meetings where
we might present our work.

	Share your Jupyter notebooks and other analyses that use PUDL.

	Hire Catalyst [https://catalyst.coop/hire-catalyst/] to do analysis for
your organization using the PUDL data – contract work helps us self-fund
ongoing open source development.

	Contribute code via
pull requests [https://help.github.com/en/articles/about-pull-requests].
See the developer setup for more details.

	And of course… we also appreciate
financial contributions [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=PZBZDFNKBJW5E&source=url].

See also

	Development Setup for instructions on how to set up the PUDL
development environment.

Find us on GitHub

Github is the primary platform we use to manage the project, integrate
contributions, write and publish documentation, answer user questions, automate
testing & deployment, etc.
Signing up for a GitHub account [https://github.com/join]
(even if you don’t intend to write code) will allow you to participate in
online discussions and track projects that you’re interested in.

Asking (and answering) questions is a valuable contribution! As noted in How to
support open-source software and stay sane [https://www.nature.com/articles/d41586-019-02046-0], it’s much more efficient to
ask and answer questions in a public forum because then other users and contributors
who are having the same problem can find answers without having to re-ask the same
question. The forum we’re using is our Github issues [https://github.com/catalyst-cooperative/pudl/issues].

Even if you feel like you have a basic question, we want you to feel
comfortable asking for help in public – we (Catalyst) only recently came to
this data work from being activists and policy wonks – so it’s easy for us to
remember when it all seemed frustrating and alien! Sometimes it still does. We
want people to use the software and data to do good things in the world. We
want you to be able to access it. Using a public forum also enables the
community of users to help each other!

Don’t hesitate to open an issue with a feature request [https://github.com/catalyst-cooperative/pudl/issues/new?template=feature_request.md],
a pointer to energy data that needs liberating, or a reference to documentation
that’s out of date, unclear, or missing. Understanding how people are using the
software, and how they would like to be using the software, is very valuable and
will help us make it more useful and usable.

Development

	Development Setup
	Install conda

	Fork and Clone the PUDL Repository

	Create the PUDL Dev Environment

	Getting and Storing an EIA API Key

	Updating the PUDL Dev Environment

	Set Up Code Linting

	Creating a Workspace

	Settings Files
	Setttings for ferc1_to_sqlite

	Settings for pudl_etl

	Running the ETL Pipeline
	The Fast ETL

	The Full ETL

	Additional Notes

	Project Management
	Issues and Project Tracking

	GitHub Workflow

	Pull Requests

	Releases

	User Support

	Testing PUDL
	Software Tests

	Running tests with Tox

	Selecting Input Data for Integration Tests

	Data Validation

	Running pytest Directly

	Building the Documentation

	Working with the Datastore
	Adding a new Dataset to the Datastore

	Cloning the FERC Form 1 DB

	Naming Conventions
	Glossary of Abbreviations

	Data Extraction Functions

	Output Functions

	Table Names

	Columns and Field Names

	Data and ETL Design Guidelines
	Input vs. Output Data

	Minimize Data Alteration

	Make Tidy Data

	Use Simple Data Types

	Use Consistent Units

	Silo the ETL Process

	Separate Data from Glue

	Partition Big Data

	Naming Conventions

	Complete, Continuous Time Series

	Packaging and Dependencies
	setup.py

	MANIFEST.in

	pyproject.toml

Development Setup

This page will walk you through what you need to do if you want to be able to
contribute code or documentation to the PUDL project.

These instructions assume that you are working on a Unix-like operating system (MacOS
or Linux) and are already familiar with git, GitHub, and the Unix shell.

Warning

While it should be possible to set up the development environment on Windows, we
haven’t done it. In the future we may create a Docker image that provides the
development environment. E.g. for use with VS Code’s Containers extension [https://code.visualstudio.com/docs/remote/containers].

Note

If you’re new to git and GitHub [https://github.com] , you’ll want to
check out:

	The Github Workflow [https://guides.github.com/introduction/flow/]

	Collaborative Development Models [https://help.github.com/en/articles/about-collaborative-development-models]

	Forking a Repository [https://help.github.com/en/articles/fork-a-repo]

	Cloning a Repository [https://help.github.com/articles/cloning-a-repository/]

Install conda

We use the conda package manager to specify and update our development
environment, preferentially installing packages from the community maintained
conda-forge [https://conda-forge.org] distribution channel. We recommend
using miniconda [https://docs.conda.io/en/latest/miniconda.html] rather
than the large pre-defined collection of scientific packages bundled together
in the Anaconda Python distribution. You may also want to consider using
mamba [https://github.com/mamba-org/mamba] – a faster drop-in replacement for
conda written in C++.

After a conda package manager, make sure it’s configured to use
strict channel priority [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-channels.html#]
with the following commands:

$ conda update conda
$ conda config --set channel_priority strict

Fork and Clone the PUDL Repository

Unless you’re part of the Catalyst Cooperative organization already, you’ll need to
fork the PUDL repository [https://github.com/catalyst-cooperative/pudl]
This makes a copy of it in your personal (or organizational) account on GitHub that
is independent of, but linked to, the original “upstream” project.

Then, clone the repository [https://help.github.com/articles/cloning-a-repository/]
from your fork to your local computer where you’ll be editing the code or docs.
This will download the whole history of the project, including the most recent
version, and put it in a local directory where you can make changes.

Create the PUDL Dev Environment

Inside the devtools directory of your newly cloned repository, you’ll see
an environment.yml file that specifies the pudl-dev conda
environment. You can create and activate that environment from within the
main repository directory by running:

$ conda update conda
$ conda env create --name pudl-dev --file devtools/environment.yml
$ conda activate pudl-dev

This environment installs the catalystcoop.pudl package directly using
the code in your cloned repository so that it can be edited during
development. It also installs all of the software PUDL depends on, some
packages for testing and quality control, packages for working with interactive Jupyter
Notebooks, and a few Python packages that have binary dependencies which can
be easier to satisfy through conda packages.

Getting and Storing an EIA API Key

PUDL accesses Energy Information Agency (EIA) datasets via an API, which requires
permission from the EIA. New users must register for an API key [https://www.eia.gov/opendata/], which is free, nearly instantaneous,
and only requires you give an email address.

To make this key accessible to pudl, store it in an environment variable and
reactivate the environment:

$ conda activate pudl-dev
$ conda env config vars set API_KEY_EIA='your_api_key_here'
$ conda activate pudl-dev

Updating the PUDL Dev Environment

You will need to periodically update your development (pudl-dev) conda
environment to get you newer versions of existing dependencies and
incorporate any changes to the environment specification that have been
made by other contributors. The most reliable way to do this is to remove the
existing environment and recreate it.

Note

Different development branches within the repository may specify their own
slightly different versions of the pudl-dev conda environment. As a
result, you may need to update your environment when switching from one
branch to another.

If you want to work with the most recent version of the code on a branch
named new-feature, then from within the top directory of the PUDL
repository you would do:

$ git checkout new-feature
$ git pull
$ conda deactivate
$ conda update conda
$ conda env remove --name pudl-dev
$ conda env create --name pudl-dev --file devtools/environment.yml
$ conda activate pudl-dev

If you find yourself recreating the environment frequently, and are
frustrated by how long it takes conda to solve the dependencies, we
recommend using the mamba [https://github.com/mamba-org/mamba] solver.
You’ll want to install it in your base conda environment – i.e. with no
conda environment activated):

$ conda deactivate
$ conda install mamba

Then the above development environment update process would become:

$ git checkout new-feature
$ git pull
$ conda deactivate
$ mamba update mamba
$ mamba env remove --name pudl-dev
$ mamba env create --name pudl-dev --file devtools/environment.yml
$ conda activate pudl-dev

If you are working with locally processed data and there have been changes to
the expectations about that data in the PUDL software, you may also need to
regenerate your PUDL SQLite database or other outputs. See Running the ETL Pipeline
for more details.

Set Up Code Linting

We use several automated tools to apply uniform coding style and formatting
across the project codebase. This is known as
code linting [https://en.wikipedia.org/wiki/Lint_(software)], and it reduces
merge conflicts, makes the code easier to read, and helps catch some types of
bugs before they are committed. These tools are part of the pudl-dev conda
environment and their configuration files are checked into the GitHub
repository. If you’ve cloned the pudl repo and are working inside the pudl conda
environment, they should be installed and ready to go.

Git Pre-commit Hooks

Git hooks let you automatically run scripts at various points as you manage
your source code. “Pre-commit” hook scripts are run when you try to make a new
commit. These scripts can review your code and identify bugs, formatting
errors, bad coding habits, and other issues before the code gets checked in.
This gives you the opportunity to fix those issues before publishing them.

To make sure they are run before you commit any code, you need to enable the
pre-commit hooks scripts [https://pre-commit.com/] with this command:

$ pre-commit install

The scripts that run are configured in the .pre-commit-config.yaml file.

See also

	The pre-commit project [https://pre-commit.com/]: A framework for
managing and maintaining multi-language pre-commit hooks.

	Real Python Code Quality Tools and Best Practices [https://realpython.com/python-code-quality/]
gives a good overview of available linters and static code analysis tools.

Code and Docs Linters

Flake8 [http://flake8.pycqa.org/en/latest/] is a popular Python
linting [https://en.wikipedia.org/wiki/Lint_(software)] framework, with a
large selection of plugins. We use it to check the formatting and syntax of
the code and docstrings embedded within the PUDL packages.
Doc8 [https://github.com/PyCQA/doc8] is a lot like flake8, but for Python
documentation written in the reStructuredText format and built by
Sphinx [https://www.sphinx-doc.org/en/master/]. This is the de-facto
standard for Python documentation. The doc8 tool checks for syntax errors
and other formatting issues in the documentation source files under the
docs/ directory.

Automatic Formatting

Rather than alerting you that there’s a style issue in your Python code,
autopep8 [https://github.com/hhatto/autopep8] tries to fix it for you
automatically, applying consistent formatting rules based on PEP 8 [https://www.python.org/dev/peps/pep-0008].
Similarly isort [https://isort.readthedocs.io/en/latest/] automatically
groups and orders Python import statements in each module to minimize diffs
and merge conflicts.

Linting Within Your Editor

If you are using an editor designed for Python development many of these code linting
and formatting tools can be run automatically in the background while you write code or
documentation. Popular editors that work with the above tools include:

	Visual Studio Code [https://code.visualstudio.com/], from Microsoft (free)

	Atom [https://atom.io/] developed by GitHub (free), and

	Sublime Text [https://www.sublimetext.com/] (paid).

Each of these editors have their own collection of plugins and settings for working
with linters and other code analysis tools.

See also

Real Python Guide to Code Editors and IDEs [https://realpython.com/python-ides-code-editors-guide/]

Creating a Workspace

PUDL needs to know where to store its big piles of inputs and outputs. It also comes
with some example configuration files. The pudl_setup script lets PUDL know where
all this stuff should go. We call this a “PUDL workspace”:

$ pudl_setup <PUDL_DIR>

Here <PUDL_DIR> is the path to the directory where you want PUDL to do its
business – this is where the datastore will be located and where any outputs
that are generated end up. The script will also put a configuration file called
.pudl.yml in your home directory that records the location of this
workspace and uses it by default in the future. If you run pudl_setup with
no arguments, it assumes you want to use the current working directory.

The workspace is laid out like this:

	Directory / File

	Contents

	data/

	Raw data, automatically organized by source, year, etc.

	datapkg/

	Tabular data packages [https://frictionlessdata.io/specs/tabular-data-package/] generated by PUDL.

	parquet/

	Apache Parquet [https://parquet.apache.org/] files
generated by PUDL.

	settings/

	Example configuration files for controlling PUDL scripts.

	sqlite/

	sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] databases generated by PUDL.

Settings Files

Several of the scripts provided as part of PUDL require more arguments than can be
easily managed on the command line. It’s also useful to preserve a record of how the
data processing pipeline was run in one instance so that it can be re-run in exactly the
same way. We have these scripts read their settings from YAML files, examples of
which are included in the distribution.

There are two example files that are deployed into a users workspace with the
pudl_setup script (see: Creating a Workspace). The two settings files direct
PUDL to process 1 year (“fast”) and all years (“full”) of data respectively. Each
file contains parameters for both the ferc1_to_sqlite and the pudl_etl
scripts.

Setttings for ferc1_to_sqlite

	Parameter

	Description

	ferc1_to_sqlite_refyear

	A single 4-digit year to use as the reference for inferring FERC Form 1
database’s structure. Typically, the most recent year of available data.

	ferc1_to_sqlite_years

	A list of years to be included in the cloned FERC Form 1 database. You
should only use a continuous range of years. 1994 is the earliest year
available.

	ferc1_to_sqlite_tables

	A list of strings indicating what tables to load. The list of acceptable
tables can be found in the the example settings file and corresponds to
the values found in the ferc1_dbf2tbl dictionary in
pudl.constants.

Settings for pudl_etl

The pudl_etl script requires a YAML settings file. In the repository this
example file is lives in src/pudl/package_data/settings. This example file
(etl_example.yml) is deployed onto a user’s system in the
settings directory within the PUDL workspace when the pudl_setup script
is run. Once this file is in the settings directory, users can copy it and
modify it as appropriate for their own use.

This settings file allows users to determine the scope of the integrated by
PUDL. Most datasets can be used to generate stand-alone data packages. If you
only want to use FERC Form 1, you can remove the other data package
specifications or alter their parameters such that none of their data is
processed (e.g. by setting the list of years to be an empty list). The settings
are verified early on in the ETL process, so if you got something wrong, you
should get an assertion error quickly.

While PUDL largely keeps datasets disentangled for ETL purposes (enabling
stand-alone ETL), the EPA CEMS and EIA datasets are exceptions. EPA CEMS cannot
be loaded without EIA because it relies on IDs that come from EIA 860.
Similarly, EIA Forms 860 and 923 are very tightly related. You can load only
EIA 860, but the settings verification will automatically add in a few 923
tables that are needed to generate the complete list of plants and generators.

Warning

If you are processing the EIA 860/923 data, we strongly recommend
including the same years in both datasets. We only test two combinations
of inputs:

	That all available years of EIA 860/923 can be processed together, and

	That the most recent year of both datasets can be processed together.

Other combinations of years may yield unexpected results.

Structure of the pudl_etl Settings File

The general structure of the settings file and the names of the keys of the
dictionaries should not be changed, but the values of those dictionaries
can be edited. There are two high-level elements of the settings file which
pertain to the entire bundle of tabular data packages which will be generated:
datapkg_bundle_name and datapkg_bundle_settings. The
datapkg_bundle_name determines which directory the data packages are
written into. The elements and structure of the datapkg_bundle_settings
are described below:

datapkg_bundle_settings
 ├── name : unique name identifying the data package
 │ title : short human readable title for the data package
 │ description : a longer description of the data package
 │ datasets
 │ ├── dataset name
 │ │ ├── dataset etl parameter (e.g. states) : list of states
 │ │ └── dataset etl parameter (e.g. years) : list of years
 │ └── dataset name
 │ │ ├── dataset etl parameter (e.g. states) : list of states
 │ │ └── dataset etl parameter (e.g. years) : list of years
 └── another data package...

The dataset names must not be changed. The dataset names enabled include:
eia (which includes Forms 860/923 only for now), ferc1, and epacems.
Any other dataset name will result in an assertion error.

Note

We strongly recommend leaving the arguments that specify which database
tables are generated unchanged – i.e. always include all of the tables;
many analyses require data from multiple tables, and removing a few
tables doesn’t change how long the ETL process takes by much.

Dataset ETL parameters (like years, states, tables) will only register if they
are a part of the correct dataset. If you put some FERC Form 1 ETL parameter in
an EIA dataset specification, FERC Form 1 will not be loaded as a part of that
dataset. For an exhaustive listing of the available parameters, see the
etl_example.yml file.

Running the ETL Pipeline

So you want to run the PUDL data processing pipeline? This is the most involved way
to get access to PUDL data. It’s only recommended if you want to edit the ETL process
or contribute to the code base. Check out the Data Access documentation if you
just want to use the processed data.

These instructions assume you have already gone through the development setup
(see: Development Setup).

There are four main scripts that are involved in the PUDL processing pipeline:

	ferc1_to_sqlite converts the FERC Form 1 DBF files into a
single large SQLite database so that the data is easier to extract.

	pudl_etl is where the magic happens. This is the main script which
coordinates the “Extract, Transform, Load” process that generates
Tabular Data Packages [https://frictionlessdata.io/specs/tabular-data-package/].

	datapkg_to_sqlite converts the Tabular Data Packages into a SQLite
database. We recommend doing this for all of the smaller to medium sized tables,
which is currently everything but the hourly EPA CEMS data.

	epacems_to_parquet converts the (~1 billion row) EPA CEMS Data Package into
Apache Parquet files for fast on-disk querying.

Settings files dictate which datasets, years, tables, or states get run through the
the processing pipeline. Two example settings files are provided in the settings
folder that is created when you run pudl_setup.

See also

	Creating a Workspace for more on how to create a PUDL data workspace.

	Settings Files for info details on the contents of the settings files.

The Fast ETL

Running the fast ETL processes one year of data for each dataset. This is what
we do in our software integration tests.

$ ferc1_to_sqlite settings/etl_fast.yml
$ pudl_etl settings/etl_fast.yml
$ datapkg_to_sqlite \
 datapkg/pudl-fast/ferc1/datapackage.json \
 datapkg/pudl-fast/epacems-eia/datapackage.json
$ epacems_to_parquet --years 2019 --states ID -- \
 datapkg/pudl-fast/epacems-eia/datapackage.json

The Full ETL

The full ETL setting file includes all the datasets with all of the years and
tables with the exception of EPA CEMS. A full ETL for EPA CEMS can take up to
15 hours of processing time, so the example setting here is all years of CEMS
for one state (Idaho!) and takes around 20 minutes to process.

$ ferc1_to_sqlite settings/etl_full.yml
$ pudl_etl settings/etl_full.yml
$ datapkg_to_sqlite datapkg/pudl-full/ferc1/datapackage.json \
 datapkg/pudl-full/eia/datapackage.json
$ epacems_to_parquet --states ID -- datapkg/pudl-full/epacems-eia/datapackage.json

Additional Notes

These commands should result in a bunch of Python logging [https://docs.python.org/3/library/logging.html#module-logging] output describing
what the script is doing, file outputs in the sqlite, datapkg, and
parquet directories within your workspace. When the ETL is complete, you should
see new files at sqlite/ferc1.sqlite and sqlite/pudl.sqlite as well as a new
directory at datapkg/pudl-fast or datapkg/pudl-full containing several
datapackage directories – one for each of the ferc1, eia (Forms 860 and
923), and epacems-eia datasets.

Each of the data packages that are part of the bundle have metadata describing their
structure. This metadata is stored in the associated datapackage.json file.
The data are stored in a bunch of CSV files (some of which may be gzip [https://docs.python.org/3/library/gzip.html#module-gzip]
compressed) in the data/ directories of each data package.

You can use the pudl_etl script to process more or different data by copying and
editing either of the settings files and running the script again with your new
settings file as an argument. Comments in the example settings file explain the
available parameters. Know that these example files are the only configurations that
are tested automatically and supported.

If you want to re-run pudl_etl and replace an existing bundle of data packages,
you can use --clobber. If you want to generate a new data packages with a new or
modified settings file, you can change the name of the output datapackage bundle in
the configuration file.

All of the PUDL scripts have help messages if you want additional information (run
script_name --help).

Project Management

The people working on PUDL are distributed all over North America.
Collaboration takes place online. We make extensive use of Github’s project
management tools as well as Zenhub [https://www.zenhub.com] which provides
additional features for sprint planning, task estimation, and progress reports.

Issues and Project Tracking

We use Github issues [https://github.com/catalyst-cooperative/pudl/issues] to
track bugs, enhancements, support requests, and just about any other work that goes
into the project. Try to make sure that issues have informative tags so we can find
them easily.

We use Zenhub Sprints, Epics, and Releases to track our progress. These won’t be
visible unless you have the ZenHub browser extension [https://www.zenhub.com/extension] installed.

GitHub Workflow

	We have 2 persistent branches: main and dev.

	We create temporary feature branches off of dev and make pull requests to
dev throughout our 2 week long sprints.

	At the end of each sprint, assuming all the tests are passing, dev is
merged into main.

Pull Requests

	Before making a PR, make sure the tests run and pass locally, including the
code linters and pre-commit hooks. See Set Up Code Linting for details.

	Don’t forget to merge any new commits to the dev branch into your feature
branch before making a PR.

	If for some reason the continuous integration tests fail for your PR, try and
figure out why and fix it, or ask for help. If the tests fail, we don’t want
to merge it into dev. You can see the status of the CI builds in the
GitHub Actions for the PUDL repo [https://github.com/catalyst-cooperative/pudl/actions].

	Please don’t decrease the overall test coverage – if you introduce new code,
it also needs to be exercised by the tests. See Testing PUDL for
details.

	Write good docstrings using the Google format [https://www.sphinx-doc.org/en/master/usage/extensions/example_google.html#example-google]

	Pull Requests should update the documentation to reflect changes to the
code, especially if it changes something user-facing, like how one of the
command line scripts works.

Releases

	Periodically, we tag a new release on main and upload the packages to
the Python Package Index and conda-forge [https://conda-forge.org/].

	Whenever we tag a release on Github, the repository is archived on Zenodo [https://zenodo.org] and issued a DOI.

	For some software releases we archive processed data on Zenodo along with a
Docker container that encapsulates the necessary software environment.

User Support

We don’t (yet) have funding to do user support, so it’s currently all community
and volunteer based. In order to ensure that others can find the answers to
questions that have already been asked, we try to do all support in public
using Github issues.

Testing PUDL

We use Tox [https://tox.readthedocs.io] to coordinate our software testing
and to manage other build and sanity checking tools. Under the hood, it invokes
a variety of other collections of command-line tools in predefined combinations
that are described in tox.ini. These include software tests defined using
pytest [https://pytest.org], code linters like flake8, documentation
generators like Sphinx, and sanity checks defined as git pre-commit hooks. Each
of these tools, or sometimes collections of related tools, can be selected at
the command line. They can also be run independently without using Tox, but for
the sake of simplicitly and standardization, we try to mostly just run them
using the predefined settings we have configured in Tox.

The simplest way to test PUDL – which is also how the code is tested
automatically by our continuous integration setup – is to just run Tox alone
with no arguments. This will typically take 25 minutes to run.

$ tox

Note

If you aren’t familiar with pytest and Tox already, you may want to go
peruse their introductory documentation.

	Getting Started with pytest [https://docs.pytest.org/en/latest/getting-started.html]

	Tox Documentation [https://tox.readthedocs.io/en/latest/]

Software Tests

Our pytest based software tests are all stored under the test/
directory in the main repository. They are organized into 3 broad categories,
each with its own subdirectory:

	Software Unit Tests (test/unit/) can be run in seconds and don’t
require any external data. They test the basic functionality of various
functions and classes, often using minimal inline data structures that are
specified in the test modules themselves.

	Software Integration Tests (test/integration/) test larger
collections of functionality including the interactions between different
parts of the overall software system and in some cases interactions with
external systems requiring network connectivity. The main thing our
integration tests do is run the full PUDL data processing pipeline for the
most recent year of data. This takes around 15 minutes.

	Data Validations (test/validate/) sanity check the PUDL outputs
generated by the data processing pipeline. This helps us catch issues with
the input data as well as more subtle bugs that don’t prevent the code from
executing but do have unintended or unexpected impacts on the output data.
The data validation requires a fully populated PUDL database and is quite
different from the other tests.

Running tests with Tox

Tox installs the PUDL package in a fresh Python environment, ensuring that the
tests only have access to packages which would be installed on a new user’s
computer. Tox’s overall behavior is configured with the tox.ini file in the
main repository directory. There are several different “test environments”
defined to test different aspects of the software or to perform other
actions like building the documentation. We’ll go through some of the most
common ones below.

Continuous Integration Tests

Our default tox test environment is ci – that includes all of the tests
that will be run in continuous integration using a GitHub Action [https://github.com/features/actions]. You should run these tests before
pushing code to the repository or making a pull request. Because it’s the
default test environment, it will be run if you call Tox without any
arguments:

$ tox

This is equivalent to:

$ tox -e ci

If the PUDL package’s dependencies have been changed (in setup.py) or you
recently ran the tests while on another branch of the repository with other
dependencies, you may need to tell Tox to recreate the software environment
it uses with the -r flag. This behavior is turned on by default for the
ci, full, and validate tests since they take a long time to run
and the extra time required to recreate the software environment is short by
comparison.

Note

You will need to register for an EIA API key [https://www.eia.gov/opendata/register.php] to run the integration
tests which are included as part of the ci tests. We use data from the
EIA API to fill in missing monthly fuel costs in the marginal cost of
electricity calculations. Once you have the API key, you’ll need to store it
in an environment variable named API_KEY_EIA within the shell where you
are running the tests. You may want to add it to your .bashrc or
.zshrc so that it’s automatically available to PUDL in the future. There
are many tutorials on how to manage environment variables online. Here’s one
tutorial from Digital Ocean [https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-linux].

In addition to running the unit and integration tests, the CI test
environment lints the code and documentation input files and uses Sphinx to
build the documentation. It also generates a test coverage report. Running
the full set of CI tests takes 20-25 minutes and requires a fair amount of
data. If you don’t already have that data downloaded, it will be downloaded
automatically and put in your local datastore

Note

Locally the tests will run using whatever version of Python is part of your
pudl-dev conda environment, but we have our CI set up to test on both
Python 3.8 and 3.9 in parallel.

Software Unit and Integration Tests

To run the unit or integration tests on their own, you use the -e
flag to choose those test environments explicitly:

$ tox -e unit

or:

$ tox -e integration

Full ETL Tests

As mentioned above, the CI tests process a single year of data. If you would
like to more exhaustively test the ETL process without affecting your
existing FERC 1 and PUDL databases, you can use the full test
environment which may take close to an hour to run:

$ tox -e full

This will process all years of data for the EIA and FERC datasets and all
years of EPA CEMS data for a single state (Idaho). The ETL parameters for
this test are defined in test/settings/full-integration-tests.yml

Running Other Commands with Tox

You can run any of the individual test environments that tox -av lists on
their own:

$ tox -av

default environments:
ci -> Run all continuous integration (CI) checks & generate test coverage.

additional environments:
flake8 -> Run the full suite of flake8 linters on the PUDL codebase.
pre_commit -> Run git pre-commit hooks not covered by the other linters.
bandit -> Check the PUDL codebase for common insecure code patterns.
linters -> Run the pre-commit, flake8, and bandit linters.
doc8 -> Check the documentation input files for syntactical correctness.
docs -> Remove old docs output and rebuild HTML from scratch with Sphinx
unit -> Run all the software unit tests.
ferc1_solo -> Test whether FERC 1 can be loaded into the PUDL database alone.
integration -> Run all software integration tests and process a full year of data.
validate -> Run all data validation tests. This requires a complete PUDL DB.
ferc1_schema -> Verify FERC Form 1 DB schema are compatible for all years.
full_integration -> Run ETL and integration tests for all years and data sources.
full -> Run all CI checks, but for all years of data.
build -> Prepare Python source and binary packages for release.
testrelease -> Do a dry run of Python package release using the PyPI test server.
release -> Release the PUDL package to the production PyPI server.

Note that not all of them literally run tests. For instance, to lint and
build the documentation you can run:

$ tox -e docs

To run all of the code and documentation linters, but not run any of the other
tests:

$ tox -e linters

Each of the test environments defined in tox.ini is just a collection of
dependencies and commands. To see what they consist of, you can open the file
in your text editor. Each section starts with [testenv:xxxxxx] and the
section called commands is a list of shell commands that that test
environment will run.

Selecting Input Data for Integration Tests

The software integration tests need a year’s worth of input data to process. By
default they will look in your local PUDL datastore to find it. If the data
they need isn’t available locally, they will download it from Zenodo and put it
in the local datastore.

However, if you’re editing code that affects how the datastore works, you
probably don’t want to risk contaminating your working datastore. You can
use a disposable temporary datastore instead by having Tox pass the
--tmp-data flag in to pytest like this:

$ tox -e integration -- --tmp-data

The floating -- isn’t a typo, it tells Tox that you’re done giving it
command line arguments, and that any additional arguments it gets should be
passed through to pytest. We’ve configured pytest (through the
test/conftest.py configuration file) to be on the lookout for the
--tmp-data flag and act accordingly.

See also

	Development Setup for more on how to set up a PUDL workspace, including a
datastore.

	Working with the Datastore for more on how to work with the datastore.

Data Validation

Given the processed outputs of the PUDL ETL pipeline, we have a collection of
tests that can be run to verify that the outputs look correct. We run all
available data validations before each data release is archived on Zenodo. It
is useful to run the data validation tests prior to making a pull request
that makes changes to the ETL process or output functions to ensure that the
outputs have not been unintentionally affected.

These data validation tests are organized into datasource specific modules
under test/validate. Running the full data validation can take as much as
an hour, depending on your computer. These tests require a fully populated
PUDL database which contains all available FERC and EIA data, as specified by
the src/pudl/package_data/settings/etl_full.yml input file. They are run
against the “live” SQLite database in your pudl workspace at
sqlite/pudl.sqlite. To run the full data validation against an existing
database:

$ tox -e validate

The data validation cases that pertain to the contents of the data tables are
currently stored as part of the pudl.validate module.

The expected number of records in each output table is stored in the validation
test modules under test/validate as pytest parameterizations.

Data Validation Notebooks

We have a collection of Jupyter Notebooks that run the same functions as the
data validation. The notebooks also produce some visualizations of the data
to make it easier to understand what’s wrong when validation fails. These
notebooks are stored in test/notebooks

Like the data validations, the notebooks will only run successfully when
there’s a full PUDL SQLite database available in your PUDL workspace.

Running pytest Directly

Running tests directly with pytest gives you the ability to run only
tests from a particular test module or even a single individual test case.
It’s also faster because there’s no testing environment to set up. Instead,
it just uses your Python environment which should be the pudl-dev conda
environment discussed in Development Setup. This is convenient if you’re
debugging something specific or developing new test cases, but it’s not as
robust as using Tox.

Running specific tests

To run the software unit tests with pytest directly (the same set of tests
that would be run by tox -e unit):

$ pytest test/unit

To run only the unit tests for the Excel spreadsheet extraction module:

$ pytest test/unit/extract/excel_test.py

To run only the unit tests defined by a single test class within that module:

$ pytest test/unit/extract/excel_test.py::TestGenericExtractor

Custom PUDL pytest flags

We have defined several custom flags to control pytest’s behavior when running
the PUDL tests. They are mostly intended for use internally to specify the
behavior we want in the high level Tox test environments.

You can always check to see what custom flags exist by running
pytest --help and looking at the custom options section:

custom options:
--live-dbs Use existing PUDL/FERC1 DBs instead of creating temporary ones.
--tmp-data Download fresh input data for use with this test run only.
--etl-settings=ETL_SETTINGS
 Path to a non-standard ETL settings file to use.
--gcs-cache-path=GCS_CACHE_PATH
 If set, use this GCS path as a datastore cache layer.
--sandbox Use raw inputs from the Zenodo sandbox server.

The main flexibility that these custom options provide is in selecting where
the raw input data comes from and what data the tests should be run
against. Being able to specify the tests to run and the data to run them
against independently simplifies the test suite and keeps the data and tests
very clearly separated.

The --live-dbs option lets you use your existing FERC 1 and PUDL databases
instead of building a new database at all. This can be useful if you want to
test code that only operates on an existing database, and has nothing to do
with the construction of that database. For example, the output routines:

$ pytest --live-dbs test/integration/fast_output_test.py

We also use this option to run the data validations.

Assuming you do want to run the ETL and build new databases as part of the test
you’re running, the contents of that database are determined by an ETL settings
file. By default, the settings file that’s used is
test/settings/integration-test.yml But it’s also possible to use a
different input file, generating a different database, and then run some
tests against that database.

For example, we test that FERC 1 data can be loaded into a PUDL database all
by itself by running the ETL tests with a settings file that includes only A
couple of FERC 1 tables for a single year. This is the ferc1_solo Tox
test environment:

$ pytest --etl-settings=test/settings/ferc1-solo-test.yml test/integration/etl_test.py

Similarly, we use the test/settings/full-integration-test.yml settings file
to specify an exhaustive collection of input data, and then we run a test that
checks that the database schemas extracted from all historical FERC 1 databases
are compatible with each other. This is the ferc1_schema test:

$ pytest --etl-settings test/settings/full-integration-test.yml test/integration/etl_test.py::test_ferc1_schema

The raw input data that all the tests use is ultimately coming from our
archives on Zenodo [https://zenodo.org/communities/catalyst-cooperative].
However, you can optionally tell the tests to look in a different places for more
rapidly accessible caches of that data and to force the download of a fresh
copy (especially useful when you are testing the datastore functionality
specifically). By default, the tests will use the datastore that’s part of your
local PUDL workspace.

For example, to run the ETL portion of the integration tests and download
fresh input data to a temporary datastore that’s later deleted automatically:

$ pytest --tmp-data test/integration/etl_test.py

Building the Documentation

We use Sphinx [https://www.sphinx-doc.org/] and
Read The Docs [https://readthedocs.io] to semi-automatically build and host
our documentation.

Sphinx is tightly integrated with the Python programming language and needs
to be able to import and parse the source code to do its job. Thus, it also
needs to be able to create an appropriate python environment. This process is
controlled by docs/conf.py.

If you are editing the documentation and need to regenerate the outputs as
you go to see your changes reflected locally, the most reliable option is to
use Tox. Tox will remove the previously generated outputs and regenerate
everything from scratch:

$ tox -e docs

If you’re just working on a single page and don’t care about the entire set
of documents being regenerated and linked together, you can call Sphinx
directly:

$ sphinx-build -b html docs docs/_build/html

This will only update any files that have been changed since the last time the
documentation was generated.

To view the documentation that’s been output at HTML, you’ll need to open the
docs/_build/html/index.html file within the PUDL repository with a web
browser. You may also be able to set up automatic previewing of the rendered
documentation in your text editor with appropriate plugins.

Note

Some of the documentation files are dynamically generated. We use the
sphinx-apidoc utility to generate RST files from the docstrings embedded
in our source code, so you should never edit the files under docs/api.
If you create a new module, the corresponding documentation file will also
need to be checked in to version control.

Similarly the PUDL Data Dictionary is generated dynamically
by the pudl.convert.datapkg_to_rst script that gets run by Tox when it
builds the docs.

Working with the Datastore

The input data that PUDL processes comes from a variety of US government agencies.
However, these agencies typically make the data available on their websites or via FTP
without planning for programmatic access. To ensure reproducible, programmatic access,
we periodically archive the input files on the
Zenodo [https://zenodo.org/communities/catalyst-cooperative/]
research archiving service maintained by CERN. (See our
pudl-scrapers [https://github.com/catalyst-cooperative/pudl-scrapers] and
pudl-zenodo-storage [https://github.com/catalyst-cooperative/pudl-zenodo-storage]
repositories on GitHub for more information.)

When PUDL needs a data resource, it will attempt to automatically retrieve it from
Zenodo and store it locally in a file hierarchy organized by dataset and the
versioned DOI of the corresponding Zenodo deposition.

The pudl_datastore script can also be used to pre-download the raw input data in
bulk. It uses the routines defined in the pudl.workspace.datastore module. For
details on what data is available, for what time periods, and how much of it there
is, see the PUDL Data Sources. At present the pudl_datastore script
downloads the entire collection of data available for each dataset. For the FERC Form
1 and EPA CEMS datasets, this is several gigabytes.

For example, to download the full EIA Form 860 dataset
(covering 2001-present) you would use:

$ pudl_datastore --dataset eia860

For more detailed usage information, see:

$ pudl_datastore --help

The downloaded data will be used by the script to populate a datastore under
the data directory in your workspace, organized by data source, form, and
date:

data/censusdp1tract/
data/eia860/
data/eia861/
data/eia923/
data/epacems/
data/ferc1/
data/ferc714/

If the download fails to complete successfully, the script can be run repeatedly until
all the files are downloaded. It will not try and re-download data which is already
present locally.

Adding a new Dataset to the Datastore

There are three components necessary to prepare a new datastet for use with the PUDL
datastore.

	Create a pudl-scraper to download the raw data.

	Use pudl-zenodo-storage to upload the data to Zenodo.

	Prepare the datastore to retrieve the data from Zenodo.

In the event that data is already available on Zenodo in the appropriate format, it may
be possible to skip steps 1 and 2.

Create a scraper

Where possible, we use Scrapy [https://docs.scrapy.org/en/latest/] to handle data
collection. Our scrapy spiders, as well as any custom scripts, are located in our
scrapers repo [https://github.com/catalyst-cooperative/pudl-scrapers].
Familiarize yourself with scrapy, and note the following.

From a scraper, a correct ouput directory takes the form:

`pudl_scrapers.helpers.new_output_dir(self.settings["OUTPUT_DIR"] /
"datastet_name")`

The pudl_scrapers.settings and pudl_scrapers.helpers can be imported
outside the context of a Scrapy scraper to achieve the same effect as needed.

To take advantage of the existing file saving pipeline, create a custom item in
the items.py collection. Make sure that it inherits from the existing
DataFile class, and ensure that your spider yields the new item. See the
items.py for examples.

If you follow those guidelines, your new scraper should play well with the rest
of the environment.

Prepare zenodo_store

Our zenodo_store [https://github.com/catalyst-cooperative/pudl-zenodo-storage]
script initializes and updates data sources that we maintain on
Zenodo [https://zenodo.org/] . It prepares
Frictionless Datapackages [https://frictionlessdata.io/] from scraped files and
uploads them to the appropriate Zenodo archive.

To add a new archive to our Zenodo storage collection:

	
	Update zs.metadata with a UUID and metadata for the new Zenodo archive.
	These details will be used by Zenodo to identify and describe the archive on
the website. The UUID is used to uniquely distinguish the archive prior to
the creation of a DOI.

	Prepare a new library to handle the frictionless datapackage descriptor of
the archive.

	The library name should take the form frictionless.DATASET_raw.

	The library must contain
frictionless data metadata [https://specs.frictionlessdata.io/data-package/#language]
describing the archive.

	The library must contain a datapackager(dfiles) function that:

	receives a list of
zenodo file descriptors [https://developers.zenodo.org/#deposition-files]

	converts each to an appropriate
frictionless datapackage resource descriptor [https://specs.frictionlessdata.io/data-resource/#language]

	Important: The resource descriptor must include an
additional descriptor["remote_url"] that contains
the zenodo url to download its resource. This will be the same
as the descriptor["path"] at this stage.

	If there are criteria by which you wish to be able to discover or
filter specific resources, descriptor["parts"][...] should be
used to denote those details. For example,
descriptor["parts"]["year"] = 2018 would be appropriate to
allow filtering by year.

	Combines the resource descriptors and frictionless metadata to produce
the complete datapackage descriptor as a python dict.

	In the bin/zenodo_store.py script:

	Import the new frictionless library.

	Add the new source to the archive_selection function; follow the
format of the existing selectors.

	Add the new source name to the help text in the parse_main() ..
deposition argument.

The above steps should be sufficient to allow automatic initialization and
updates of the new data source on Zenodo.

You initialize an archive (preferably starting with the sandbox) by running
zenodo_store.py --initialize --verbose --sandbox

If successful, the DOI and url for your archive will be printed. You will
need to visit the url to review and publish the Zenodo archive before it can
be used.

If you lose track of the DOI, you can look up the archive on Zenodo using the
UUID from zs.metadata.

Prepare the Datastore

If you have used a scraper and zenodo_store to prepare a Zenodo archive as above, you
can add support for your archive to the datastore by adding the DOI to
pudl.workspace.datastore.DOI, under “sandbox” or “production” as appropriate.

If you want to prepare an archive for the datastore separately, the following
are required.

#. The root path must contain a datapackage.json file that conforms to the
frictionless datapackage spec [https://specs.frictionlessdata.io/data-package/]
#. Each listed resource among the datapackage.json resources must include:

	path containing the zenodo download url for the specific file.

	remote_url with the same url as the path

	name of the file

	hash with the md5 hash of the file

	parts a set of key / value pairs defining additional attributes that
can be used to select a subset of the whole datapackage. For example, the
epacems dataset is partitioned by year and state, and
"parts": {"year": 2010, "state": "ca"} would indicate that the
resource contains data for the state of California in the year 2010.
Unpartitioned datasets like the ferc714 which includes all years in
a single file, would have an empty "parts": {}

Cloning the FERC Form 1 DB

FERC Form 1 is… special.

The FERC Form 1 is published in a particularly inaccessible
format (proprietary binary FoxPro database [https://en.wikipedia.org/wiki/FoxPro] files),
and the data itself is unclean and poorly organized. As a result, very few
people are currently able to use it. This means that, while we have not yet integrated
the vast majority of the available data into PUDL, it’s useful to
just provide programmatic access to the bulk raw data, independent of the
cleaner subset of the data included within PUDL.

To provide that access, we’ve broken the pudl.extract.ferc1 process
down into two distinct steps:

	Clone the entire FERC Form 1 database from FoxPro into a local
file-based sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] database. This includes 116 distinct tables,
with thousands of fields, covering the time period from 1994 to the
present.

	Pull a subset of the data out of that database for further processing and
integration into the PUDL data packages and sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] database.

If you want direct access to the original FERC Form 1 database, you can just do
the database cloning and connect directly to the resulting database. This has
become especially useful since Microsoft recently discontinued the database
driver that until late 2018 had allowed users to load the FoxPro database files
into Microsoft Access.

In any case, cloning the original FERC database is the first step in the PUDL
ETL process. This can be done with the ferc1_to_sqlite script (which is an
entrypoint into the pudl.convert.ferc1_to_sqlite module) which is
installed as part of the PUDL Python package. It takes its instructions from a
YAML file, an example of which is included in the settings directory in
your PUDL workspace. Once you’ve created a datastore, you can
try this example:

$ ferc1_to_sqlite settings/etl-full.yml

This should create an SQLite database that you can find in your workspace at
sqlite/ferc1.sqlite By default, the script pulls in all available years of
data and all but 3 of the 100+ database tables. The excluded tables
(f1_footnote_tbl, f1_footnote_data and f1_note_fin_stmnt) contain
unreadable binary data, and increase the overall size of the database by a
factor of ~10 (to ~8 GB rather than 800 MB). If for some reason you need access
to those tables, you can create your own settings file and un-comment those
tables in the list of tables that it directs the script to load.

Note

This script pulls all of the FERC Form 1 data into a single database,
but FERC distributes a separate database for each year. Virtually all
the database tables contain a report_year column that indicates which
year they came from, preventing collisions between records in the merged
multi-year database. One notable exception is the f1_respondent_id
table, which maps respondent_id to the names of the respondents. For
that table, we have allowed the most recently reported record to take
precedence, overwriting previous mappings if they exist.

Note

There are a handful of respondent_id values that appear in the FERC
Form 1 database tables but do not show up in f1_respondent_id.
This renders the foreign key relationships between those tables invalid.
During the database cloning process we add these respondent_id values to
the f1_respondent_id table with a respondent_name indicating that
the ID was filled in by PUDL.

Naming Conventions

In the PUDL codebase, we aspire to follow the naming and other conventions
detailed in PEP 8 [https://www.python.org/dev/peps/pep-0008].

Admittedly we have a lot of… named things in here, and we haven’t been
perfect about following conventions everywhere. We’re trying to clean things up
as we come across them again in maintaining the code.

	Imperative verbs (e.g. connect) should precede the object being acted upon
(e.g. connect_db), unless the function returns a simple value (e.g. datadir).

	No duplication of information (e.g. form names).

	lowercase, underscores separate words (i.e. snake_case).

	Semi-private helper functions (functions used within a single module only
and not exposed via the public API) should be preceded by an underscore.

	When the object is a table, use the full table name (e.g. ingest_fuel_ferc1).

	When dataframe outputs are built from multiple tables, identify the type of
information being pulled (e.g. “plants”) and the source of the tables (e.g.
eia or ferc1). When outputs are built from a single table, simply use
the table name (e.g. boiler_fuel_eia923).

Glossary of Abbreviations

General Abbreviations

	Abbreviation

	Definition

	abbr

	abbreviation

	assn

	association

	avg

	average (mean)

	bbl

	barrel (quantity of liquid fuel)

	capex

	capital expense

	corr

	correlation

	db

	database

	df & dfs

	dataframe & dataframes

	dir

	directory

	epxns

	expenses

	equip

	equipment

	info

	information

	mcf

	thousand cubic feet (volume of gas)

	mmbtu

	million British Thermal Units

	mw

	Megawatt

	mwh

	Megawatt Hours

	num

	number

	opex

	operating expense

	pct

	percent

	ppm

	parts per million

	ppb

	parts per billion

	q

	(fiscal) quarter

	qty

	quantity

	util & utils

	utility & utilities

	us

	United States

	usd

	US Dollars

Data Source Specific Abbreviations

	Abbreviation

	Definition

	frc_eia923

	Fuel Receipts and Costs (EIA Form 923)

	gen_eia923

	Generation (EIA Form 923)

	gf_eia923

	Generation Fuel (EIA Form 923)

	gens_eia923

	Generators (EIA Form 923)

	utils_eia860

	Utilities (EIA Form 860)

	own_eia860

	Ownership (EIA Form 860)

Data Extraction Functions

The lower level namespace uses an imperative verb to identify the action the
function performs followed by the object of extraction (e.g.
get_eia860_file). The upper level namespace identifies the dataset where
extraction is occurring.

Output Functions

When dataframe outputs are built from multiple tables, identify the type of
information being pulled (e.g. plants) and the source of the tables (e.g.
eia or ferc1). When outputs are built from a single table, simply use
the table name (e.g. boiler_fuel_eia923).

Table Names

See this article [http://www.vertabelo.com/blog/technical-articles/naming-conventions-in-database-modeling] on database naming conventions.

	Table names in snake_case

	The data source should follow the thing it applies to e.g. plant_id_ferc1

Columns and Field Names

	total should come at the beginning of the name (e.g.
total_expns_production)

	Identifiers should be structured type + _id_ + source where
source is the agency or organization that has assigned the ID. (e.g.
plant_id_eia)

	The data source or label (e.g. plant_id_pudl) should follow the thing it
is describing

	Units should be appended to field names where applicable (e.g.
net_generation_mwh). This includes “per unit” signifiers (e.g. _pct
for percent, _ppm for parts per million, or a generic _per_unit when
the type of unit varies, as in columns containing a heterogeneous collection
of fuels)

	Financial values are assumed to be in nominal US dollars.

	_id indicates the field contains a usually numerical reference to
another table, which will not be intelligible without looking up the value in
that other table.

	The suffix _code indicates the field contains a short abbreviation from
a well defined list of values, that probably needs to be looked up if you
want to understand what it means.

	The suffix _type (e.g. fuel_type) indicates a human readable category
from a well defined list of values. Whenever possible we try to use these
longer descriptive names rather than codes.

	_name indicates a longer human readable name, that is likely not well
categorized into a small set of acceptable values.

	_date indicates the field contains a Date object.

	_datetime indicates the field contains a full Datetime object.

	_year indicates the field contains an integer 4-digit year.

	capacity refers to nameplate capacity (e.g. capacity_mw)– other
specific types of capacity are annotated.

	Regardless of what label utilities are given in the original data source
(e.g. operator in EIA or respondent in FERC) we refer to them as
utilities in PUDL.

Data and ETL Design Guidelines

Here we list some technical norms and expectations that we strive to adhere to
and hope that contributors can also follow.

We’re all learning as we go – if you have suggestions for best practices we
might want to adopt, let us know!

Input vs. Output Data

It’s important to differentiate between the original data we’re attempting
to provide easy access to and analyses or data products that are derived from
that original data. The original data is meant to be archived and re-used as an
alternative to other users re-processing the raw data from various public
agencies. For the sake of reproducibility, it’s important that we archive the
inputs alongside the ouputs – since the reporting agencies often go back and
update the data they have published without warning and without version
control.

Minimize Data Alteration

We are trying to provide a uniform, easy-to-use interface to existing public
data. We want to provide access to the original data, insofar as that is
possible, while still having it be uniform and easy-to-use. Some alteration is
unavoidable and other changes make the data much more usable, but these should
be made with care and documentation.

	Make sure data is available at its full, original resolution.
Don’t aggregate the data unnecessarily when it is brought into PUDL. However,
creating tools to aggregate it in derived data products is very useful.

Todo

Need fuller enumeration of data alteration / preservation principles.

Examples of Acceptable Changes

	Converting all power plant capacities to MW, or all generation to MWh.

	Assigning uniform NA values.

	Standardizing datetime [https://docs.python.org/3/library/datetime.html#module-datetime] types.

	Re-naming columns to be the same across years and datasets.

	Assigning simple fuel type codes when the original data source uses free-form
strings that are not programmatically usable.

Examples of Unacceptable Changes

	Applying an inflation adjustment to a financial variable like fuel cost.
There are a variety of possible inflation indices users might want to use,
so that transformation should be applied in the output layer that sits on
top of the original data.

	Aggregating data that has date/time information associated with it into a
time series when the individual records do not pertain to unique timesteps.
For example, the EIA 923 Fuel Receipts and
Costs table lists fuel deliveries by month, but each plant might receive
several deliveries from the same supplier of the same fuel type in a month –
the individual delivery information should be retained.

	Computing heat rates for generators in an original table that contains both
fuel heat content and net electricity generation. The heat rate would
be a derived value and not part of the original data.

Make Tidy Data

The best practices in data organization go by different names in data science,
statistics, and database design, but they all try to minimize data duplication
and ensure an easy to transform uniform structure that can be used for a wide
variety of purposes – at least in the source data (i.e. database tables or the
published data packages).

	Each column in a table represents a single, homogeneous variable.

	Each row in a table represents a single observation – i.e. all of the
variables reported in that row pertain to the same case/instance of
something.

	Don’t store the same value in more than one pace – each piece of data should
have an authoritative source.

	Don’t store derived values in the archived data sources.

Reading on Tidy Data

	Tidy Data [https://vita.had.co.nz/papers/tidy-data.pdf]
A paper on the benefits of organizing data into single variable,
homogeneously typed columns, and complete single observation records.
Oriented toward the R programming language, but the ideas apply universally
to organizing data. (Hadley Wickham, The Journal of Statistical Software,
2014)

	Good enough practices in scientific computing [https://doi.org/10.1371/journal.pcbi.1005510]
A whitepaper from the organizers of
Software and Data Carpentry [https://carpentries.org/]
on good habits to ensure your work is
reproducible and reusable — both by yourself and others!
(Greg Wilson et al., PLOS Computational Biology, 2017)

	Best practices for scientific computing [https://doi.org/10.1371/journal.pbio.1001745]
An earlier version of the above whitepaper aimed at a more technical,
data-oriented set of scientific users.
(Greg Wilson et al., BLOS Biology, 2014)

	A Simple Guide to Five Normal Forms [http://www.bkent.net/Doc/simple5.htm]
A classic 1983 rundown of database normalization. Concise, informal, and
understandable, with a few good illustrative examples. Bonus points for the
ASCII art.

Use Simple Data Types

The Frictionless Data
TableSchema [https://frictionlessdata.io/specs/table-schema/]
standard includes a modest selection of data types that are meant to be very
widely usable in other contexts. Make sure that whatever data type you’re using
is included within that specification, but also be as specific as possible
within that collection of options.

This is one aspect of a broader “least common denominator” strategy that is
common within the open data. This strategy is also behind our decision to
distribute the processed data as CSV files (with metadata stored as JSON).

Use Consistent Units

Different data sources often use different units to describe the same type of
quantities. Rather than force users to do endless conversions while using the
data, we try to convert similar quantities into the same units during ETL. For
example, we typically convert all electrical generation to MWh, plant
capacities to MW, and heat content to MMBTUs (though, MMBTUs are awful:
seriously M=1000 because Roman numerals? So MM is a million, despite the fact
that M/Mega is a million in SI. And a BTU [https://en.wikipedia.org/wiki/British_thermal_unit] is… the amount of
energy required to raise the temperature of one an avoirdupois pound of water
by 1 degree Farenheit?! What century even is this?).

Silo the ETL Process

It should be possible to run the ETL process on each data source independently
and with any combination of data sources included. This allows users to include
only the data need. In some cases, like the EIA 860 and EIA 923 data, two
data sources may be so intertwined that keeping them separate doesn’t really
make sense. This should be the exception, however, not the rule.

Separate Data from Glue

The glue that relates different data sources to each other should be applied
after or alongside the ETL process and not as a mandatory part of ETL. This
makes it easy to pull individual data sources in and work with them even when
the glue isn’t working or doesn’t yet exist.

Partition Big Data

Our goal is for users to be able to run the ETL process on a decent laptop.
However, some of the utility datasets are hundreds of gigabytes in size (e.g.
EPA CEMS Hourly, FERC EQR). Many users will not
need to use the entire dataset for the work they are doing. Partitioning the data allows
them to pull in only certain years, certain states, or other sensible partitions of the
data so that they don’t run out of memory or disk space or have to wait hours while data
they don’t need is being processed.

Naming Conventions

There are only two hard problems in computer science: caching,
naming things, and off-by-one errors.

Use Consistent Names

If two columns in different tables record the same quantity in the same units,
give them the same name. That way if they end up in the same dataframe for
comparison it’s easy to automatically rename them with suffixes indicating
where they came from. For example, net electricity generation is reported to
both FERC Form 1 and EIA 923, so we’ve named columns net_generation_mwh in
each of those data sources. Similarly, give non-comparable quantities reported
in different data sources different column names. This helps make it clear
that the quantities are actually different.

Follow Existing Conventions

We are trying to use consistent naming conventions for the data tables,
columns, data sources, and functions. Generally speaking PUDL is a collection
of subpackages organized by purpose (extract, transform, load, analysis,
output, datastore…), containing a module for each data source. Each data source
has a short name that is used everywhere throughout the project and is composed of
the reporting agency and the form number or another identifying abbreviation:
ferc1, epacems, eia923, eia861, etc. See the naming
conventions document for more details.

Complete, Continuous Time Series

Most of the data in PUDL are time series’ ranging from hourly to annual in
resolution.

	Assume and provide contiguous time series. Otherwise there are just too
many possible combinations of cases to deal with. E.g. don’t expect things to
work if you pull in data from 2009-2010, and then also from 2016-2018, but
not 2011-2015.

	Assume and provide complete time series. In data that is indexed by date
or time, ensure that it is available as a complete time series even if some
values are missing (and thus NA). Many time series analyses only work when
all the timesteps are present.

Packaging and Dependencies

In order to distribute a ready-to-use package to others via the Python Package
Index and conda-forge, we need to encapsulate it with some metadata and
define its dependencies. When we first packaged up PUDL Python packaging systems, they
were a bit of a mess. Changes to the Python packaging & build system implemented
as a result of PEP 517 [https://www.python.org/dev/peps/pep-0517] and PEP 518 [https://www.python.org/dev/peps/pep-0518] have improved the available options,
and we should look at using a simpler more modern setup. The online
Python Packages [https://py-pkgs.org/] book is a great guide to current
best / better practices.

setup.py

The setup.py script in the top level of the repository coordinates the
packaging process using setuptools, a part of the Python standard
library. setup.py is really just a single function call to
setuptools.setup(), and the parameters of that function are
metadata related to the Python package. Most of them are relatively self
explanatory – like the name of the package, the license it’s being released
under, search keywords, etc. – but a few are more arcane:

	use_scm_version: Instead of having a hard-coded version that’s stored in
the repository somewhere, handed off to the packaging script, and often out
of date, pull the version from the source code management (SCM)
system, in our case git (and Github). To make a release, we will first need
to tag a particular revision [https://help.github.com/en/articles/creating-releases] in git
with a version like v0.1.0.

	python_requires='>=3.8': Specifies what versions of Python the package is
expected to run on. In this case, it’s anything greater than or equal to 3.8.

	setup_requires=['setuptools_scm']: What other packages need to be
installed in order for the packaging script to run? Because we are obtaining
the package version from our SCM (git/Github), we need the special package
that lets us do that magic:
setuptools_scm [https://github.com/pypa/setuptools_scm]. This
automatically generated version number can then be accessed in the package
metadata, as is done our top-level __init__.py file:

__version__ = pkg_resources.get_distribution(__name__).version

This is admittedly convoluted.

	install_requires: lists all the other packages that need to be installed
before pudl can be installed. These are our package dependencies. This
list plays a role similar to the environment.yml file in the main
pudl repository, but it depends on pip not conda – in the
packaging system we do not have access to conda. It turns out this makes
our lives difficult because of the kind of Python packages we depend on. More
on this below.

	extras_require: a dictionary describing optional packages that can
be conditionally installed depending on the expected usage of the install.
For now, this is mostly used in conjunction with Tox to ensure that the
required documentation and testing packages are installed alongside PUDL in
the virtual environment.

	packages=find_packages('src'): The packages parameter takes a list of
all the python packages to be included in the distribution that is being
packaged. The setuptools.find_packages function automatically
searches whatever directories it is given for any packages and all of their
subpackages. All of the code we want to distribute to users lives under the
src directory.

	package_dir={'': 'src'}: this tells the packaging to treat any modules or
packages found in the src directory as part of the root package of
the distribution. This is a vestigial parameter that pertains to the
distutils [https://docs.python.org/3/library/distutils.html#module-distutils] which are the predecessor to setuptools… but the
system still depends on them deep down inside. In our case, we don’t have any
modules that aren’t part of any package – everything is within pudl.

	include_package_data=True: This tells the packaging system to include any
non-python files that it finds in the directories it has been told to
package. In our case, this is all the stuff inside package_data including
example settings files, metadata, glue, etc.

	entry_points: This parameter tells the packaging what executable scripts
should be installed on the user’s system and which modules:functions
implement those scripts.

MANIFEST.in

In addition to generating a version number automatically based on our git
repository, setuptools_scm pulls every single file tracked by the
repository and every other random file sitting in the working repository
directory into the distribution. This is… not what we want. MANIFEST.in
allows us to specify in more detail which files should be included and
excluded. Mostly, we are just including the python package and supporting data that
exist under the src/pudl directory.

pyproject.toml

The adoption of PEP 517 [https://www.python.org/dev/peps/pep-0517] and PEP 518 [https://www.python.org/dev/peps/pep-0518] has opened up the possibility of
using build and packaging systems besides setuptools. The new system
uses pyproject.toml to specify the build system requirements.

The MIT License

Copyright 2017-2019 Catalyst Cooperative and the Climate Policy Initiative

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Catalyst Cooperative Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, gender identity and expression, level of
experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at pudl@catalyst.coop. The project team
will review and investigate all complaints, and will respond in a way that it
deems appropriate to the circumstances. The project team is obligated to
maintain confidentiality with regard to the reporter of an incident. Further
details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant version 1.4,
available at http://contributor-covenant.org/version/1/4/

PUDL Release Notes

0.4.0 (2021-08-16)

This is a ridiculously large update including more than a year and a half’s
worth of work.

New Data Coverage

	EIA Form 860 for 2004-2008 + 2019, plus eia860m through 2020.

	EIA Form 923 for 2001-2008 + 2019

	EPA CEMS Hourly for 2019-2020

	FERC Form 1 for 2019

	US Census Demographic Profile (DP1) for 2010

	FERC Form 714 for 2006-2019 (experimental)

	EIA Form 861 for 2001-2019 (experimental)

Documentation & Data Accessibility

We’ve updated and (hopefully) clarified the documentation, and no longer expect
most users to perform the data processing on their own. Instead, we are offering
several methods of directly accessing already processed data:

	Processed data archives on Zenodo that include a Docker container preserving
the required software environment for working with the data.

	A repository of PUDL example notebooks [https://github.com/catalyst-cooperative/pudl-examples]

	A JupyterHub instance [https://catalyst-cooperative.pilot.2i2c.cloud/]
hosted in collaboration with 2i2c [https://2i2c.org]

	Browsable database access via Datasette [https://datasette.io] at
https://data.catalyst.coop

Users who still want to run the ETL themselves will need to set up the
set up the PUDL development environment

Data Cleaning & Integration

	We now inject placeholder utilities in the cloned FERC Form 1 database when
respondent IDs appear in the data tables, but not in the respondent table.
This addresses a bunch of unsatisfied foreign key constraints in the original
databases published by FERC.

	We’re doing much more software testing and data validation, and so hopefully
we’re catching more issues early on.

Hourly Electricity Demand and Historical Utility Territories

With support from GridLab [https://gridlab.org] and in collaboration with
researchers at Berkeley’s Center for Environmental Public Policy [https://gspp.berkeley.edu/faculty-and-impact/centers/cepp], we did a bunch
of work on spatially attributing hourly historical electricity demand. This work
was largely done by @ezwelty [https://github.com/ezwelty] and @yashkumar1803 [https://github.com/yashkumar1803] and included:

	Semi-programmatic compilation of historical utility and balancing authority
service territory geometries based on the counties associated with utilities,
and the utilities associated with balancing authorities in the EIA 861
(2001-2019). See e.g. #670 [https://github.com/catalyst-cooperative/pudl/pull/670] but also many others.

	A method for spatially allocating hourly electricity demand from FERC 714 to
US states based on the overlapping historical utility service territories
described above. See #741 [https://github.com/catalyst-cooperative/pudl/pull/741]

	A fast timeseries outlier detection routine for cleaning up the FERC 714
hourly data using correlations between the time series reported by all of the
different entities. See #871 [https://github.com/catalyst-cooperative/pudl/pull/871]

Net Generation and Fuel Consumption for All Generators

We have developed an experimental methodology to produce net generation and
fuel consumption for all generators. The process has known issues and is being
actively developed. See #989 [https://github.com/catalyst-cooperative/pudl/pull/989]

Net electricity generation and fuel consumption are reported in multiple ways in
the EIA 923. The generation_fuel_eia923 table reports both generation and
fuel consumption, and breaks them down by plant, prime mover, and fuel. In
parallel, the generation_eia923 table reports generation by generator,
and the boiler_fuel_eia923 table reports fuel consumption by boiler.

The generation_fuel_eia923 table is more complete, but the
generation_eia923 + boiler_fuel_eia923 tables are more granular.
The generation_eia923 table includes only ~55% of the total MWhs reported
in the generation_fuel_eia923 table.

The pudl.analysis.allocate_net_gen module estimates the net electricity
generation and fuel consumption attributable to individual generators based on
the more expansive reporting of the data in the generation_fuel_eia923
table.

Data Management and Archiving

	We now use a series of web scrapers to collect snapshots of the raw input data
that is processed by PUDL. These original data are archived as
Frictionless Data Packages [https://specs.frictionlessdata.io/data-package/]
on Zenodo [https://zenodo.org], so that they can be accessed reproducibly
and programmatically via a REST API. This addresses the problems we were
having with the v0.3.x releases, in which the original data on the agency
websites was liable to be modified long after its “final” release, rendering
it incompatible with our software. These scrapers and the Zenodo archiving
scripts can be found in our
pudl-scrapers [https://github.com/catalyst-cooperative/pudl-scrapers] and
pudl-zenodo-storage [https://github.com/catalyst-cooperative/pudl-zenodo-storage]
repositories. The archives themselves can be found within the
Catalyst Cooperative community on Zenodo [https://zenodo.org/communities/catalyst-cooperative/]

	There’s an experimental caching system that allows these Zenodo archives to
work as long-term “cold storage” for citation and reproducibility, with
cloud object storage acting as a much faster way to access the same data for
day to day non-local use, implemented by @rousik [https://github.com/rousik]

	We’ve decided to shift to producing a combination of relational databases
(SQLite files) and columnar data stores (Apache Parquet files) as the primary
outputs of PUDL. Tabular Data Packages [https://specs.frictionlessdata.io/tabular-data-package/]
didn’t end up serving either database or spreadsheet users very well. The CSV
file were often too large to access via spreadsheets, and users missed out on
the relationships between data tables. Needing to separately load the data
packages into SQLite and Parquet was a hassle and generated a lot of overly
complicated and fragile code.

Known Issues

	The EIA 861 and FERC 714 data are not yet integrated into the SQLite database
outputs, because we need to overhaul our entity resolution process to
accommodate them in the database structure. That work is ongoing, see
#639 [https://github.com/catalyst-cooperative/pudl/issues/639]

	The EIA 860 and EIA 923 data don’t cover exactly the same rage of years. EIA
860 only goes back to 2004, while EIA 923 goes back to 2001. This is because
the pre-2004 EIA 860 data is stored in the DBF file format, and we need to
update our extraction code to deal with the different format. This means some
analyses that require both EIA 860 and EIA 923 data (like the calculation of
heat rates) can only be performed as far back as 2004 at the moment. See
#848 [https://github.com/catalyst-cooperative/pudl/issues/848]

	There are 387 EIA utilities and 228 EIA palnts which appear in the EIA 923,
but which haven’t yet been assigned PUDL IDs and associated with the
corresponding utilities and plants reported in the FERC Form 1. These entities
show up in the 2001-2008 EIA 923 data that was just integrated. These older
plants and utilities can’t yet be used in conjuction with FERC data. When the
EIA 860 data for 2001-2003 has been integrated, we will finish this manual
ID assignment process. See #848 [https://github.com/catalyst-cooperative/pudl/issues/848], #1069 [https://github.com/catalyst-cooperative/pudl/issues/1069]

	52 of the algorithmically assigned plant_id_ferc1 values found in the
plants_steam_ferc1 table are currently associated with more than one
plant_id_pudl value (99 PUDL plant IDs are involved), indicating either
that the algorithm is making poor assignments, or that the manually assigned
plant_id_pudl values are incorrect. This is out of several thousand
distinct plant_id_ferc1 values. See #954 [https://github.com/catalyst-cooperative/pudl/issues/954]

	The county FIPS codes associated with coal mines reported in the Fuel Receipts and
Costs table are being treated inconsistently in terms of their data types, especially
in the output functions, so they are currently being output as floating point numbers
that have been cast to strings, rather than zero-padded integers that are strings. See
#1119 [https://github.com/catalyst-cooperative/pudl/issues/1119]

0.3.2 (2020-02-17)

The primary changes in this release:

	The 2009-2010 data for EIA 860 have been integrated, including updates
to the data validation test cases.

	Output tables are more uniform and less restrictive in what they
include, no longer requiring PUDL Plant & Utility IDs in some tables. This
release was used to compile v1.1.0 of the PUDL Data Release, which is archived
at Zenodo under this DOI: https://doi.org/10.5281/zenodo.3672068

With this release, the EIA 860 & 923 data now (finally!) cover the same span
of time. We do not anticipate integrating any older EIA 860 or 923 data at
this time.

0.3.1 (2020-02-05)

A couple of minor bugs were found in the preparation of the first PUDL data
release:

	No maximum version of Python was being specified in setup.py. PUDL currently
only works on Python 3.7, not 3.8.

	epacems_to_parquet conversion script was erroneously attempting to
verify the availability of raw input data files, despite the fact that it now
relies on the packaged post-ETL epacems data. Didn’t catch this before since
it was always being run in a context where the original data was lying
around… but that’s not the case when someone just downloads the released
data packages and tries to load them.

0.3.0 (2020-01-30)

This release is mostly about getting the infrastructure in place to do regular
data releases via Zenodo, and updating ETL with 2018 data.

Added lots of data validation / quality assurance test cases in anticipation of
archiving data. See the pudl.validate module for more details.

New data since v0.2.0 of PUDL:

	EIA Form 860 for 2018

	EIA Form 923 for 2018

	FERC Form 1 for 1994-2003 and 2018 (select tables)

We removed the FERC Form 1 accumulated depreciation table from PUDL because it
requires detailed row-mapping in order to be accurate across all the years. It
and many other FERC tables will be integrated soon, using new row-mapping
methods.

Lots of new plants and utilities integrated into the PUDL ID mapping process,
for the earlier years (1994-2003). All years of FERC 1 data should be
integrated for all future ferc1 tables.

Command line interfaces of some of the ETL scripts have changed, see their help
messages for details.

0.2.0 (2019-09-17)

This is the first release of PUDL to generate data packages as the canonical
output, rather than loading data into a local PostgreSQL database. The data
packages can then be used to generate a local SQLite database, without relying
on any software being installed outside of the Python requirements specified for
the catalyst.coop package.

This change will enable easier installation of PUDL, as well as archiving and
bulk distribution of the data products in a platform independent format.

0.1.0 (2019-09-12)

This is the only release of PUDL that will be made that makes use of
PostgreSQL as the primary data product. It is provided for reference, in case
there are users relying on this setup who need access to a well defined release.

pudl

	pudl package
	Subpackages
	pudl.analysis package
	Submodules

	Module contents

	pudl.convert package
	Submodules

	Module contents

	pudl.extract package
	Submodules

	Module contents

	pudl.glue package
	Submodules

	Module contents

	pudl.load package
	Submodules

	Module contents

	pudl.output package
	Submodules

	Module contents

	pudl.transform package
	Submodules

	Module contents

	pudl.workspace package
	Submodules

	Module contents

	Submodules
	pudl.cli module

	pudl.constants module

	pudl.dfc module

	pudl.etl module

	pudl.helpers module

	pudl.validate module

	Module contents

pudl package

Subpackages

	pudl.analysis package
	Submodules
	pudl.analysis.allocate_net_gen module

	pudl.analysis.mcoe module

	pudl.analysis.service_territory module

	pudl.analysis.spatial module

	pudl.analysis.state_demand module

	pudl.analysis.timeseries_cleaning module

	Module contents

	pudl.convert package
	Submodules
	pudl.convert.censusdp1tract_to_sqlite module

	pudl.convert.datapkg_to_rst module

	pudl.convert.datapkg_to_sqlite module

	pudl.convert.epacems_to_parquet module

	pudl.convert.ferc1_to_sqlite module

	pudl.convert.merge_datapkgs module

	Module contents

	pudl.extract package
	Submodules
	pudl.extract.eia860 module

	pudl.extract.eia860m module

	pudl.extract.eia861 module

	pudl.extract.eia923 module

	pudl.extract.epacems module

	pudl.extract.epaipm module

	pudl.extract.excel module

	pudl.extract.ferc1 module

	pudl.extract.ferc714 module

	Module contents

	pudl.glue package
	Submodules
	pudl.glue.eia_epacems module

	pudl.glue.ferc1_eia module

	Module contents

	pudl.load package
	Submodules
	pudl.load.csv module

	pudl.load.metadata module

	Module contents

	pudl.output package
	Submodules
	pudl.output.censusdp1tract module

	pudl.output.eia860 module

	pudl.output.eia923 module

	pudl.output.epacems module

	pudl.output.ferc1 module

	pudl.output.ferc714 module

	pudl.output.pudltabl module

	Module contents

	pudl.transform package
	Submodules
	pudl.transform.eia module

	pudl.transform.eia860 module

	pudl.transform.eia861 module

	pudl.transform.eia923 module

	pudl.transform.epacems module

	pudl.transform.epaipm module

	pudl.transform.ferc1 module

	pudl.transform.ferc714 module

	Module contents

	pudl.workspace package
	Submodules
	pudl.workspace.datastore module

	pudl.workspace.resource_cache module

	pudl.workspace.setup module

	pudl.workspace.setup_cli module

	Module contents

Submodules

	pudl.cli module

	pudl.constants module

	pudl.dfc module

	pudl.etl module

	pudl.helpers module

	pudl.validate module

Module contents

The Public Utility Data Liberation (PUDL) Project.

pudl.analysis package

Submodules

	pudl.analysis.allocate_net_gen module

	pudl.analysis.mcoe module

	pudl.analysis.service_territory module

	pudl.analysis.spatial module

	pudl.analysis.state_demand module

	pudl.analysis.timeseries_cleaning module

Module contents

Modules providing programmatic analyses that make use of PUDL data.

The pudl.analysis subpackage is a collection of modules which implement
various systematic analyses using the data compiled by PUDL. Over time this
should grow into a rich library of tools that show how the data can be put to
use. We may also generate post-analysis datapackages for distribution at some
point.

pudl.analysis.allocate_net_gen module

Allocate data from generation_fuel_eia923 table to generator level.

Net electricity generation and fuel consumption are reported in mutiple ways
in the EIA 923. The generation_fuel_eia923 table reports both generation and
fuel consumption, and breaks them down by plant, prime mover, and fuel. In
parallel, the generation_eia923 table reports generation by generator, and the
boiler_fuel_eia923 table reports fuel consumption by boiler.

The generation_fuel_eia923 table is more complete, but the generation_eia923 +
boiler_fuel_eia923 tables are more granular. The generation_eia923 table
includes only ~55% of the total MWhs reported in the generation_fuel_eia923
table.

This module estimates the net electricity generation and fuel consumption
attributable to individual generators based on the more expansive reporting of
the data in the generation_fuel_eia923 table. The main coordinating function
here is pudl.analysis.allocate_net_gen.allocate_gen_fuel_by_gen().

The algorithm we’re using assumes:

	The generation_eia923 table is the authoritative source of information about
how much generation is attributable to an individual generator, if it reports
in that table.

	The generation_fuel_eia923 table is the authoritative source of information
about how much generation and fuel consumption is attributable to an entire
plant.

	The generators_eia860 table provides an exhaustive list of all generators
whose generation is being reported in the generation_fuel_eia923 table.

We allocate the net generation reported in the generation_fuel_eia923 table on
the basis of plant, prime mover, and fuel type among the generators in each
plant that have matching fuel types. Generation is allocated proportional to
reported generation if it’s available, and proportional to each generator’s
capacity if generation is not available.

In more detail: within each year of data, we split the plants into three groups:

	Plants where ALL generators report in the more granular generation_eia923
table.

	Plants where NONE of the generators report in the generation_eia923 table.

	Plants where only SOME of the generators report in the generation_eia923
table.

In plant-years where ALL generators report more granular generation, the total
net generation reported in the generation_fuel_eia923 table is allocated in
proportion to the generation each generator reported in the generation_eia923
table. We do this instead of using net_generation_mwh from generation_eia923
because there are some small discrepancies between the total amounts of
generation reported in these two tables.

In plant-years where NONE of the generators report more granular generation,
we create a generator record for each associated fuel type. Those records are
merged with the generation_fuel_eia923 table on plant, prime mover code, and
fuel type. Each group of plant, prime mover, and fuel will have some amount of
reported net generation associated with it, and one or more generators. The
net generation is allocated among the generators within the group in proportion
to their capacity. Then the allocated net generation is summed up by generator.

In the hybrid case, where only SOME of of a plant’s generators report the more
granular generation data, we use a combination of the two allocation methods
described above. First, the total generation reported across a plant in the
generation_fuel_eia923 table is allocated between the two categories of
generators (those that report fine-grained generation, and those that don’t)
in direct proportion to the fraction of the plant’s generation which is reported
in the generation_eia923 table, relative to the total generation reported in the
generation_fuel_eia923 table.

Note that this methology does not distinguish between primary and secondary
fuel_types for generators. It associates portions of net generation to each
generators in the same plant do not report detailed generation, have the same
prime_mover_code, and use the same fuels, but have very different capacity
factors in reality, this methodology will allocate generation such that they
end up with very similar capacity factors. We imagine this is an uncommon
scenario.

This methodology has several potential flaws and drawbacks. Because there is no
indicator of what portion of the energy_source_codes (ie. fuel_type), we
associate the net generation equally among them. In effect, if a plant had
multiple generators with the same prime_mover_code but opposite primary and
secondary fuels (eg. gen 1 has a primary fuel of ‘NG’ and secondary fuel of
‘DFO’, while gen 2 has a primary fuel of ‘DFO’ and a secondary fuel of ‘NG’),
the methodology associates the generation_fuel_eia923 records similarly across
these two generators. However, the allocated net generation will still be
porporational to each generator’s net generation (if it’s reported) or capacity
(if generation is not reported).

	
pudl.analysis.allocate_net_gen.DATA_COLS = ['net_generation_mwh', 'fuel_consumed_mmbtu']

	Data columns from generation_fuel_eia923 that are being allocated.

	
pudl.analysis.allocate_net_gen.IDX_GENS = ['plant_id_eia', 'generator_id', 'report_date']

	Id columns for generators.

	
pudl.analysis.allocate_net_gen.IDX_PM_FUEL = ['plant_id_eia', 'prime_mover_code', 'fuel_type', 'report_date']

	Id columns for plant, prime mover & fuel type records.

	
pudl.analysis.allocate_net_gen.agg_by_generator(gen_pm_fuel)

	Aggreate the allocated gen fuel data to the generator level.

	Parameters

	gen_pm_fuel (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – result of
allocate_gen_fuel_by_gen_pm_fuel()

	
pudl.analysis.allocate_net_gen.allocate_gen_fuel_by_gen(pudl_out)

	Allocate gen fuel data columns to generators.

The generation_fuel_eia923 table includes net generation and fuel
consumption data at the plant/fuel type/prime mover level. The most
granular level of plants that PUDL typically uses is at the plant/generator
level. This method converts the generation_fuel_eia923 table to the level
of plant/generators.

	Parameters

	pudl_out (pudl.output.pudltabl.PudlTabl) – An object used to create
the tables for EIA and FERC Form 1 analysis.

	Returns

	table with columns IDX_GENS and DATA_COLS.
The DATA_COLS will be scaled to the level of the IDX_GENS.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.analysis.allocate_net_gen.allocate_gen_fuel_by_gen_pm_fuel(gf, gen, gens, drop_interim_cols=True)

	Proportionally allocate net gen from gen_fuel table to generators.

	Two main steps here:
	
	associate generation_fuel_eia923 table data w/ generators

	allocate generation_fuel_eia923 table data proportionally

The association process happens via associate_generator_tables().

The allocation process (via calc_allocation_fraction()) entails
generating a fraction for each record within a IDX_PM_FUEL group. We
have two data points for generating this ratio: the net generation in the
generation_eia923 table and the capacity from the generators_eia860 table.
The end result is a frac column which is unique for each
generator/prime_mover/fuel record and is used to allocate the associated
net generation from the generation_fuel_eia923 table.

	Args:
	
	gf (pandas.DataFrame): generator_fuel_eia923 table with columns:
	IDX_PM_FUEL and net_generation_mwh and fuel_consumed_mmbtu.

	gen (pandas.DataFrame): generation_eia923 table with columns:
	IDX_GENS and net_generation_mwh.

	gens (pandas.DataFrame): generators_eia860 table with cols:
	IDX_GENS, capacity_mw, prime_mover_code,
and all of the energy_source_code columns

	drop_interim_cols (boolean): True/False flag for dropping interim
	columns which are used to generate the net_generation_mwh column
(they are mostly the frac column and net generataion reported in
the original generation_eia923 and generation_fuel_eia923 tables)
that are useful for debugging. Default is False, which will drop
the columns.

	Returns

	pandas.DataFrame

	
pudl.analysis.allocate_net_gen.associate_generator_tables(gf, gen, gens)

	Associate the three tables needed to assign net gen to generators.

	Parameters

	
	gf (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – generator_fuel_eia923 table with columns:
IDX_PM_FUEL and net_generation_mwh and fuel_consumed_mmbtu.

	gen (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – generation_eia923 table with columns:
IDX_GENS and net_generation_mwh.

	gens (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – generators_eia860 table with cols: IDX_GENS
and all of the energy_source_code columns

TODO: Convert these groupby/merges into transforms.

	
pudl.analysis.allocate_net_gen.calc_allocation_fraction(gen_pm_fuel, drop_interim_cols=True)

	Make frac column to allocate net gen from the generation fuel table.

	There are three main types of generators:
	
	“all gen”: generators of plants which fully report to the
generators_eia860 table.

	“some gen”: generators of plants which partially report to the
generators_eia860 table.

	“gf only”: generators of plants which do not report at all to the
generators_eia860 table.

	“no pm”: generators that have missing prime movers.

Each different type of generator needs to be treated slightly differently,
but all will end up with a frac column that can be used to allocate
the net_generation_mwh_gf_tbl.

	Parameters

	
	gen_pm_fuel (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – output of prep_alloction_fraction().

	drop_interim_cols (boolean) – True/False flag for dropping interim
columns which are used to generate the frac column (they are
mostly interim frac columns and totals of net generataion from
various groupings of generators) that are useful for debugging.
Default is False.

	
pudl.analysis.allocate_net_gen.prep_alloction_fraction(gen_assoc)

	Make flags and aggregations to prepare for the calc_allocation_ratios().

In calc_allocation_ratios(), we will break the generators out into four
types - see calc_allocation_ratios() docs for details. This function adds
flags for splitting the generators. It also adds

	
pudl.analysis.allocate_net_gen.remove_retired_generators(gen_assoc)

	Remove the retired generators.

We don’t want to associate net generation to generators that are retired
(or proposed! or any other operational_status besides existing).

We do want to keep the generators that retire mid-year and have generator
specific data from the generation_eia923 table. Removing the generators
that retire mid-report year and don’t report to the generation_eia923 table
is not exactly a great assumption. For now, we are removing them. We should
employ a strategy that allocates only a portion of the generation to them
based on their operational months (or by doing the allocation on a monthly
basis).

	Parameters

	gen_assoc (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – table of generators with stacked fuel
types and broadcasted net generation data from the
generation_eia923 and generation_fuel_eia923 tables. Output of
associate_generator_tables().

	
pudl.analysis.allocate_net_gen.stack_generators(gens, cat_col='energy_source_code_num', stacked_col='fuel_type')

	Stack the generator table with a set of columns.

	Parameters

	
	gens (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – generators_eia860 table with cols: IDX_GENS
and all of the energy_source_code columns

	cat_col (string) – name of category column which will end up having the
column names of cols_to_stack

	stacked_col (string) – name of column which will end up with the stacked
data from cols_to_stack

	Returns

	a dataframe with these columns: idx_stack, cat_col,
stacked_col

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.analysis.mcoe module

A module with functions to aid generating MCOE.

	
pudl.analysis.mcoe.capacity_factor(pudl_out, min_cap_fact=0, max_cap_fact=1.5)

	Calculate the capacity factor for each generator.

Capacity Factor is calculated by using the net generation from eia923 and
the nameplate capacity from eia860. The net gen and capacity are pulled
into one dataframe, then the dates from that dataframe are pulled out to
determine the hours in each period based on the frequency. The number of
hours is used in calculating the capacity factor. Then records with
capacity factors outside the range specified by min_cap_fact and
max_cap_fact are dropped.

	
pudl.analysis.mcoe.fuel_cost(pudl_out)

	Calculate fuel costs per MWh on a per generator basis for MCOE.

Fuel costs are reported on a per-plant basis, but we want to estimate them
at the generator level. This is complicated by the fact that some plants
have several different types of generators, using different fuels. We have
fuel costs broken out by type of fuel (coal, oil, gas), and we know which
generators use which fuel based on their energy_source_code and reported
prime_mover. Coal plants use a little bit of natural gas or diesel to get
started, but based on our analysis of the “pure” coal plants, this amounts
to only a fraction of a percent of their overal fuel consumption on a
heat content basis, so we’re ignoring it for now.

For plants whose generators all rely on the same fuel source, we simply
attribute the fuel costs proportional to the fuel heat content consumption
associated with each generator.

For plants with more than one type of generator energy source, we need to
split out the fuel costs according to fuel type – so the gas fuel costs
are associated with generators that have energy_source_code gas, and the
coal fuel costs are associated with the generators that have
energy_source_code coal.

	
pudl.analysis.mcoe.heat_rate_by_gen(pudl_out)

	Convert per-unit heat rate to by-generator, adding fuel type & count.

Heat rates really only make sense at the unit level, since input fuel and
output electricity are comingled at the unit level, but it is useful in
many contexts to have that per-unit heat rate associated with each of the
underlying generators, as much more information is available about the
generators.

To combine the (potentially) more granular temporal information from the
per-unit heat rates with annual generator level attributes, we have to do
a many-to-many merge. This can’t be done easily with merge_asof(), so we
treat the year and month fields as categorial variables, and do a normal
inner merge that broadcasts monthly dates in one direction, and generator
IDs in the other.

	Returns

	with columns report_date, plant_id_eia, unit_id_pudl,
generator_id, heat_rate_mmbtu_mwh, fuel_type_code_pudl, fuel_type_count.
The output will have a time frequency corresponding to that of the
input pudl_out. Output data types are set to their canonical values
before returning.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	ValueError if pudl_out.freq is None. –

	
pudl.analysis.mcoe.heat_rate_by_unit(pudl_out)

	Calculate heat rates (mmBTU/MWh) within separable generation units.

Assumes a “good” Boiler Generator Association (bga) i.e. one that only
contains boilers and generators which have been completely associated at
some point in the past.

The BGA dataframe needs to have the following columns:

	report_date (annual)

	plant_id_eia

	unit_id_pudl

	generator_id

	boiler_id

The unit_id is associated with generation records based on report_date,
plant_id_eia, and generator_id. Analogously, the unit_id is associated
with boiler fuel consumption records based on report_date, plant_id_eia,
and boiler_id.

Then the total net generation and fuel consumption per unit per time period
are calculated, allowing the calculation of a per unit heat rate. That
per unit heat rate is returned in a dataframe containing:

	report_date

	plant_id_eia

	unit_id_pudl

	net_generation_mwh

	fuel_consumed_mmbtu

	heat_rate_mmbtu_mwh

	
pudl.analysis.mcoe.mcoe(pudl_out, min_heat_rate=5.5, min_fuel_cost_per_mwh=0.0, min_cap_fact=0.0, max_cap_fact=1.5, all_gens=True)

	Compile marginal cost of electricity (MCOE) at the generator level.

Use data from EIA 923, EIA 860, and (someday) FERC Form 1 to estimate
the MCOE of individual generating units. The calculation is performed over
the range of times and at the time resolution of the input pudl_out object.

	Parameters

	
	pudl_out (pudl.output.pudltable.PudlTabl) – a PUDL output object
specifying the time resolution and date range for which the
calculations should be performed.

	min_heat_rate (float [https://docs.python.org/3/library/functions.html#float]) – lowest plausible heat rate, in mmBTU/MWh. Any
MCOE records with lower heat rates are presumed to be invalid, and
are discarded before returning.

	min_cap_fact (float [https://docs.python.org/3/library/functions.html#float]) – minimum & maximum generator capacity
factor. Generator records with a lower capacity factor will be
filtered out before returning. This allows the user to exclude
generators that aren’t being used enough to have valid.

	max_cap_fact (float [https://docs.python.org/3/library/functions.html#float]) – minimum & maximum generator capacity
factor. Generator records with a lower capacity factor will be
filtered out before returning. This allows the user to exclude
generators that aren’t being used enough to have valid.

	min_fuel_cost_per_mwh (float [https://docs.python.org/3/library/functions.html#float]) – minimum fuel cost on a per MWh basis that
is required for a generator record to be considered valid. For some
reason there are now a large number of $0 fuel cost records, which
previously would have been NaN.

	all_gens (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, include attributes of all generators in the
generators_eia860 table, rather than just the generators
which have records in the derived MCOE values. True by default.

	Returns

	a dataframe organized by date and generator,
with lots of juicy information about the generators – including fuel
cost on a per MWh and MMBTU basis, heat rates, and net generation.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.analysis.service_territory module

Compile historical utility and balancing area territories.

Use the mapping of utilities to counties, and balancing areas to utilities, available
within the EIA 861, in conjunction with the US Census geometries for counties, to
infer the historical spatial extent of utility and balancing area territories. Output
the resulting geometries for use in other applications.

	
pudl.analysis.service_territory.add_geometries(df, census_gdf, dissolve=False, dissolve_by=None)

	Merge census geometries into dataframe on county_id_fips, optionally dissolving.

Merge the US Census county-level geospatial information into the DataFrame df
based on the the column county_id_fips (in df), which corresponds to the column
GEOID10 in census_gdf. Also bring in the population and area of the counties,
summing as necessary in the case of dissolved geometries.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A DataFrame containing a county_id_fips column.

	census_gdf (geopandas.GeoDataFrame [https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame]) – A GeoDataFrame based on the US Census
demographic profile (DP1) data at county resolution, with the original
column names as published by US Census.

	dissolve (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, dissolve individual county geometries into larger
service territories.

	dissolve_by (list [https://docs.python.org/3/library/stdtypes.html#list]) – The columns to group by in the dissolve. For example,
dissolve_by=[“report_date”, “utility_id_eia”] might provide annual utility
service territories, while [“report_date”, “balancing_authority_id_eia”]
would provide annual balancing authority territories.

	Returns

	geopandas.GeoDataFrame

	
pudl.analysis.service_territory.compile_geoms(pudl_out, census_counties, entity_type, dissolve=False, limit_by_state=True, save=True)

	Compile all available utility or balancing authority geometries.

	Parameters

	
	pudl_out (pudl.output.pudltabl.PudlTabl) – A PUDL output object, which will
be used to extract and cache the EIA 861 tables.

	census_counties (geopandas.GeoDataFrame [https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame]) – A GeoDataFrame containing the county
level US Census DP1 data and county geometries.

	entity_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of service territory geometry to compile. Must be
either “ba” (balancing authority) or “util” (utility).

	dissolve (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to dissolve the compiled geometries to the
utility/balancing authority level, or leave them as counties.

	limit_by_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to limit included counties to those with
observed EIA 861 data in association with the state and utility/balancing
authority.

	save (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, save the compiled GeoDataFrame as a GeoParquet file before
returning. Especially useful in the case of dissolved geometries, as they
are computationally expensive.

	Returns

	geopandas.GeoDataFrame

	
pudl.analysis.service_territory.get_all_utils(pudl_out)

	Compile IDs and Names of all known EIA Utilities.

Grab all EIA utility names and IDs from both the EIA 861 Service Territory table and
the EIA 860 Utility entity table. This is a temporary function that’s only needed
because we haven’t integrated the EIA 861 information into the entity harvesting
process and PUDL database yet.

	Parameters

	pudl_out (pudl.output.pudltabl.PudlTabl) – The PUDL output object which should be
used to obtain PUDL data.

	Returns

	Having 2 columns utility_id_eia and utility_name_eia.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.analysis.service_territory.get_territory_fips(ids, assn, assn_col, st_eia861, limit_by_state=True)

	Compile county FIPS codes associated with an entity’s service territory.

For each entity identified by ids, look up the set of counties associated
with that entity on an annual basis. Optionally limit the set of counties
to those within states where the selected entities reported activity elsewhere
within the EIA 861 data.

	Parameters

	
	ids (iterable of ints) – A collection of EIA utility or balancing authority IDs.

	assn (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Association table, relating report_date,

	state – column indicated by assn_col – if it’s not utility_id_eia.

	utility_id_eia to each other (and) – column indicated by assn_col – if it’s not utility_id_eia.

	well as the (as) – column indicated by assn_col – if it’s not utility_id_eia.

	assn_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Label of the dataframe column in assn that contains
the ID of the entities of interest. Should probably be either
balancing_authority_id_eia or utility_id_eia.

	st_eia861 (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The EIA 861 Service Territory table.

	limit_by_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to require that the counties associated
with the balancing authority are inside a state that has also been
seen in association with the balancing authority and the utility
whose service territory contians the county.

	Returns

	A table associating the entity IDs with a collection of
counties annually, identifying counties both by name and county_id_fips
(both state and state_id_fips are included for clarity).

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.analysis.service_territory.get_territory_geometries(ids, assn, assn_col, st_eia861, census_gdf, limit_by_state=True, dissolve=False)

	Compile service territory geometries based on county_id_fips.

Calls get_territory_fips to generate the list of counties associated with
each entity identified by ids, and then merges in the corresponding county
geometries from the US Census DP1 data passed in via census_gdf.

Optionally dissolve all of the county level geometries into a single geometry for
each combination of entity and year.

Note

Dissolving geometires is a costly operation, and may take half an hour or more
if you are processing all entities for all years. Dissolving also means that all
the per-county information will be lost, rendering the output inappropriate for
use in many analyses. Dissolving is mostly useful for generating visualizations.

	Parameters

	
	ids (iterable of ints) – A collection of EIA balancing authority IDs.

	assn (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Association table, relating report_date,

	state – column indicated by assn_col – if it’s not utility_id_eia.

	utility_id_eia to each other (and) – column indicated by assn_col – if it’s not utility_id_eia.

	well as the (as) – column indicated by assn_col – if it’s not utility_id_eia.

	assn_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Label of the dataframe column in assn that contains
the ID of the entities of interest. Should probably be either
balancing_authority_id_eia or utility_id_eia.

	st_eia861 (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The EIA 861 Service Territory table.

	census_gdf (geopandas.GeoDataFrame [https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame]) – The US Census DP1 county-level geometries
as returned by pudl.output.censusdp1tract.get_layer(“county”).

	limit_by_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to require that the counties associated
with the balancing authority are inside a state that has also been
seen in association with the balancing authority and the utility
whose service territory contians the county.

	dissolve (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, each record in the compiled territory will correspond
to a single county, with a county-level geometry, and there will be many
records enumerating all the counties associated with a given
balancing_authority_id_eia in each year. If dissolve=True, all of the
county-level geometries for each utility in each year will be merged
together (“dissolved”) resulting in a single geometry and record for each
balancing_authority-year.

	Returns

	geopandas.GeoDataFrame

	
pudl.analysis.service_territory.main()

	Compile historical utility and balancing area territories.

	
pudl.analysis.service_territory.parse_command_line(argv)

	Parse script command line arguments. See the -h option.

	Parameters

	argv (list [https://docs.python.org/3/library/stdtypes.html#list]) – command line arguments including caller file name.

	Returns

	A dictionary mapping command line arguments to their values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.analysis.service_territory.plot_all_territories(gdf, report_date, respondent_type=('balancing_authority', 'utility'), color='black', alpha=0.25, basemap=True)

	Plot all of the planning areas of a given type for a given report date.

Todo

This function needs to be made more general purpose, and less
entangled with the FERC 714 data.

	Parameters

	
	gdf (geopandas.GeoDataFrame [https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame]) – GeoDataFrame containing planning area
geometries, organized by respondent_id_ferc714 and report_date.

	report_date (datetime) – A Datetime indicating what year’s planning
areas should be displayed.

	respondent_type (str [https://docs.python.org/3/library/stdtypes.html#str] or iterable) – Type of respondent whose planning
areas should be displayed. Either “utility” or
“balancing_authority” or an iterable collection containing both.

	color (str [https://docs.python.org/3/library/stdtypes.html#str]) – Color to use for the planning areas.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – Transparency to use for the planning areas.

	basemap (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, use the OpenStreetMap tiles for context.

	Returns

	matplotlib.axes.Axes

	
pudl.analysis.service_territory.plot_historical_territory(gdf, id_col, id_val)

	Plot all the historical geometries defined for the specified entity.

This is useful for exploring how a particular entity’s service territory has evolved
over time, or for identifying individual missing or inaccurate territories.

	Parameters

	
	gdf (geopandas.GeoDataFrame [https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame]) – A geodataframe containing geometries pertaining
electricity planning areas. Can be broken down by county FIPS code, or
have a single record containing a geometry for each combination of
report_date and the column being used to select planning areas (see
below).

	id_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The label of a column in gdf that identifies the planning area
to be visualized, like utility_id_eia, balancing_authority_id_eia, or
balancing_authority_code_eia.

	id_val (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – The value identifying the

	Returns

	None

pudl.analysis.spatial module

Spatial operations for demand allocation.

	
pudl.analysis.spatial.check_gdf(gdf: geopandas.geodataframe.GeoDataFrame) → None [https://docs.python.org/3/library/constants.html#None]

	Check that GeoDataFrame contains (Multi)Polygon geometries with non-zero area.

	Parameters

	gdf – GeoDataFrame.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Object is not a GeoDataFrame.

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – GeoDataFrame has no geometry.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Geometry is not a GeoSeries.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Geometry contains null geometries.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Geometry contains non-(Multi)Polygon geometries.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Geometry contains (Multi)Polygon geometries with zero area.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – MultiPolygon contains Polygon geometries with zero area.

	
pudl.analysis.spatial.dissolve(gdf: geopandas.geodataframe.GeoDataFrame, by: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], func: Union[Callable, str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]], how: Union[Literal[union, first], Callable[[geopandas.geoseries.GeoSeries], shapely.geometry.base.BaseGeometry]] = 'union') → geopandas.geodataframe.GeoDataFrame

	Dissolve layer by aggregating features based on common attributes.

	Parameters

	
	gdf – GeoDataFrame with non-empty (Multi)Polygon geometries.

	by – Names of columns to group features by.

	func – Aggregation function for data columns (see pd.DataFrame.groupby()).

	how – Aggregation function for geometry column.
Either ‘union’ (gpd.GeoSeries.unary_union()),
‘first’ (first geometry in group),
or a function aggregating multiple geometries into one.

	Returns

	GeoDataFrame with dissolved geometry and data columns,
and grouping columns set as the index.

	
pudl.analysis.spatial.explode(gdf: geopandas.geodataframe.GeoDataFrame, ratios: Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → geopandas.geodataframe.GeoDataFrame

	Explode MultiPolygon to multiple Polygon geometries.

	Parameters

	
	gdf – GeoDataFrame with non-zero-area (Multi)Polygon geometries.

	ratios – Names of columns to rescale by the area fraction of the Polygon
relative to the MultiPolygon.
If provided, MultiPolygon cannot self-intersect.
By default, the original value is used unchanged.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Geometry contains self-intersecting MultiPolygon.

	Returns

	GeoDataFrame with each Polygon as a separate row in the GeoDataFrame.
The index is the number of the source row in the input GeoDataFrame.

	
pudl.analysis.spatial.get_data_columns(df: pandas.core.frame.DataFrame) → list [https://docs.python.org/3/library/stdtypes.html#list]

	Return list of columns, ignoring geometry.

	
pudl.analysis.spatial.overlay(*gdfs: geopandas.geodataframe.GeoDataFrame, how: Literal[intersection, union, identity, symmetric_difference, difference] = 'intersection', ratios: Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → geopandas.geodataframe.GeoDataFrame

	Overlay multiple layers incrementally.

When a feature from one layer overlaps the feature of another layer,
the area of overlap is split into two geometrically-identical features:
one for each of the original overlapping features.
Each split feature contains the attributes of the original feature.

TODO: To identify the source of output features, the user can ensure that each
layer contains a column to index by.
Alternatively, tuples of indices of the overlapping
feature from each layer (null if none) could be returned as the index.

	Parameters

	
	gdfs – GeoDataFrames with non-empty (Multi)Polygon geometries
assumed to contain no self-overlaps (see self_union()).
Names of (non-geometry) columns cannot be used more than once.
Any index colums are ignored.

	how – Spatial overlay method (see gpd.overlay()).

	ratios – Names of columns to rescale by the area fraction of the split feature
relative to the original. By default, the original value is used unchanged.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Duplicate column names in layers.

	Returns

	GeoDataFrame with the geometries and attributes resulting from the overlay.

	
pudl.analysis.spatial.polygonize(geom: shapely.geometry.base.BaseGeometry) → Union[shapely.geometry.polygon.Polygon, shapely.geometry.multipolygon.MultiPolygon]

	Convert geometry to (Multi)Polygon.

	Parameters

	geom – Geometry to convert to (Multi)Polygon.

	Returns

	Geometry converted to (Multi)Polygon, with all zero-area components removed.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Geometry has zero area.

	
pudl.analysis.spatial.self_union(gdf: geopandas.geodataframe.GeoDataFrame, ratios: Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → geopandas.geodataframe.GeoDataFrame

	Calculate the geometric union of a feature layer with itself.

Areas of overlap are split into two or more geometrically-identical features:
one for each of the original overlapping features.
Each split feature contains the attributes of the original feature.

	Parameters

	
	gdf – GeoDataFrame with non-zero-area MultiPolygon geometries.

	ratios – Names of columns to rescale by the area fraction of the split feature
relative to the original. By default, the original value is used unchanged.

	Returns

	GeoDataFrame representing the union of the input features with themselves.
Its index contains tuples of the index of the original overlapping features.

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – MultiPolygon geometries are not yet supported.

pudl.analysis.state_demand module

Predict state-level electricity demand.

	
pudl.analysis.state_demand.STANDARD_UTC_OFFSETS: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] = {'America/Anchorage': -9, 'America/Chicago': -6, 'America/Denver': -7, 'America/Halifax': -4, 'America/Los_Angeles': -8, 'America/New_York': -5, 'Pacific/Honolulu': -10}

	Hour offset from Coordinated Universal Time (UTC) by time zone.

Time zones are canonical names (e.g. ‘America/Denver’) from tzdata
(https://www.iana.org/time-zones) mapped to their standard-time UTC offset.

	
pudl.analysis.state_demand.STATES: List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]]] = [{'name': 'Alabama', 'code': 'AL', 'fips': '01'}, {'name': 'Alaska', 'code': 'AK', 'fips': '02'}, {'name': 'Arizona', 'code': 'AZ', 'fips': '04'}, {'name': 'Arkansas', 'code': 'AR', 'fips': '05'}, {'name': 'California', 'code': 'CA', 'fips': '06'}, {'name': 'Colorado', 'code': 'CO', 'fips': '08'}, {'name': 'Connecticut', 'code': 'CT', 'fips': '09'}, {'name': 'Delaware', 'code': 'DE', 'fips': '10'}, {'name': 'District of Columbia', 'code': 'DC', 'fips': '11'}, {'name': 'Florida', 'code': 'FL', 'fips': '12'}, {'name': 'Georgia', 'code': 'GA', 'fips': '13'}, {'name': 'Hawaii', 'code': 'HI', 'fips': '15'}, {'name': 'Idaho', 'code': 'ID', 'fips': '16'}, {'name': 'Illinois', 'code': 'IL', 'fips': '17'}, {'name': 'Indiana', 'code': 'IN', 'fips': '18'}, {'name': 'Iowa', 'code': 'IA', 'fips': '19'}, {'name': 'Kansas', 'code': 'KS', 'fips': '20'}, {'name': 'Kentucky', 'code': 'KY', 'fips': '21'}, {'name': 'Louisiana', 'code': 'LA', 'fips': '22'}, {'name': 'Maine', 'code': 'ME', 'fips': '23'}, {'name': 'Maryland', 'code': 'MD', 'fips': '24'}, {'name': 'Massachusetts', 'code': 'MA', 'fips': '25'}, {'name': 'Michigan', 'code': 'MI', 'fips': '26'}, {'name': 'Minnesota', 'code': 'MN', 'fips': '27'}, {'name': 'Mississippi', 'code': 'MS', 'fips': '28'}, {'name': 'Missouri', 'code': 'MO', 'fips': '29'}, {'name': 'Montana', 'code': 'MT', 'fips': '30'}, {'name': 'Nebraska', 'code': 'NE', 'fips': '31'}, {'name': 'Nevada', 'code': 'NV', 'fips': '32'}, {'name': 'New Hampshire', 'code': 'NH', 'fips': '33'}, {'name': 'New Jersey', 'code': 'NJ', 'fips': '34'}, {'name': 'New Mexico', 'code': 'NM', 'fips': '35'}, {'name': 'New York', 'code': 'NY', 'fips': '36'}, {'name': 'North Carolina', 'code': 'NC', 'fips': '37'}, {'name': 'North Dakota', 'code': 'ND', 'fips': '38'}, {'name': 'Ohio', 'code': 'OH', 'fips': '39'}, {'name': 'Oklahoma', 'code': 'OK', 'fips': '40'}, {'name': 'Oregon', 'code': 'OR', 'fips': '41'}, {'name': 'Pennsylvania', 'code': 'PA', 'fips': '42'}, {'name': 'Rhode Island', 'code': 'RI', 'fips': '44'}, {'name': 'South Carolina', 'code': 'SC', 'fips': '45'}, {'name': 'South Dakota', 'code': 'SD', 'fips': '46'}, {'name': 'Tennessee', 'code': 'TN', 'fips': '47'}, {'name': 'Texas', 'code': 'TX', 'fips': '48'}, {'name': 'Utah', 'code': 'UT', 'fips': '49'}, {'name': 'Vermont', 'code': 'VT', 'fips': '50'}, {'name': 'Virginia', 'code': 'VA', 'fips': '51'}, {'name': 'Washington', 'code': 'WA', 'fips': '53'}, {'name': 'West Virginia', 'code': 'WV', 'fips': '54'}, {'name': 'Wisconsin', 'code': 'WI', 'fips': '55'}, {'name': 'Wyoming', 'code': 'WY', 'fips': '56'}, {'name': 'American Samoa', 'code': 'AS', 'fips': '60'}, {'name': 'Guam', 'code': 'GU', 'fips': '66'}, {'name': 'Northern Mariana Islands', 'code': 'MP', 'fips': '69'}, {'name': 'Puerto Rico', 'code': 'PR', 'fips': '72'}, {'name': 'Virgin Islands', 'code': 'VI', 'fips': '78'}]

	Attributes of US states and territories.

	name (str): Full name.

	code (str): US Postal Service (USPS) two-letter alphabetic code.

	fips (int): Federal Information Processing Standard (FIPS) code.

	
pudl.analysis.state_demand.UTC_OFFSETS: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]] = {'ADT': -3, 'AKDT': -8, 'AKST': -9, 'AST': -4, 'CDT': -5, 'CST': -6, 'EDT': -4, 'EST': -5, 'HST': -10, 'MDT': -6, 'MST': -7, 'PDT': -7, 'PST': -8}

	Hour offset from Coordinated Universal Time (UTC) by time zone.

Time zones are either standard or daylight-savings time zone abbreviations (e.g. ‘MST’).

	
pudl.analysis.state_demand.clean_ferc714_hourly_demand_matrix(df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame

	Detect and null anomalous values in FERC 714 hourly demand matrix.

Note

Takes about 10 minutes.

	Parameters

	df – FERC 714 hourly demand matrix,
as described in load_ferc714_hourly_demand_matrix().

	Returns

	Copy of df with nulled anomalous values.

	
pudl.analysis.state_demand.compare_state_demand(a: pandas.core.frame.DataFrame, b: pandas.core.frame.DataFrame, scaled: bool [https://docs.python.org/3/library/functions.html#bool] = True) → pandas.core.frame.DataFrame

	Compute statistics comparing predicted and reference demand.

Statistics are computed for each year.

	Parameters

	
	a – Predicted demand with columns utc_datetime and either
demand_mwh (if scaled=False) or `scaled_demand_mwh (if scaled=True).

	b – Reference demand with columns utc_datetime and demand_mwh.
Every element in utc_datetime must match the one in a.

	Returns

	Dataframe with columns year,
rmse (root mean square error), and mae (mean absolute error).

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Datetime columns do not match.

	
pudl.analysis.state_demand.filter_ferc714_hourly_demand_matrix(df: pandas.core.frame.DataFrame, min_data: int [https://docs.python.org/3/library/functions.html#int] = 100, min_data_fraction: float [https://docs.python.org/3/library/functions.html#float] = 0.9) → pandas.core.frame.DataFrame

	Filter incomplete years from FERC 714 hourly demand matrix.

Nulls respondent-years with too few data and
drops respondents with no data across all years.

	Parameters

	
	df – FERC 714 hourly demand matrix,
as described in load_ferc714_hourly_demand_matrix().

	min_data – Minimum number of non-null hours in a year.

	min_data_fraction – Minimum fraction of non-null hours between the first and last
non-null hour in a year.

	Returns

	Hourly demand matrix df modified in-place.

	
pudl.analysis.state_demand.impute_ferc714_hourly_demand_matrix(df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame

	Impute null values in FERC 714 hourly demand matrix.

Imputation is performed separately for each year,
with only the respondents reporting data in that year.

Note

Takes about 15 minutes.

	Parameters

	df – FERC 714 hourly demand matrix,
as described in load_ferc714_hourly_demand_matrix().

	Returns

	Copy of df with imputed values.

	
pudl.analysis.state_demand.load_counties(pudl_out: pudl.output.pudltabl.PudlTabl, pudl_settings: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → pandas.core.frame.DataFrame

	Load county attributes.

	Parameters

	
	pudl_out – PUDL database extractor.

	pudl_settings – PUDL settings.

	Returns

	Dataframe with columns county_id_fips and population.

	
pudl.analysis.state_demand.load_eia861_state_total_sales(pudl_out: pudl.output.pudltabl.PudlTabl) → pandas.core.frame.DataFrame

	Read and format EIA 861 sales by state and year.

	Parameters

	pudl_out – Used to access
pudl.output.pudltabl.PudlTabl.sales_eia861().

	Returns

	Dataframe with columns state_id_fips, year, demand_mwh.

	
pudl.analysis.state_demand.load_ferc714_county_assignments(pudl_out: pudl.output.pudltabl.PudlTabl) → pandas.core.frame.DataFrame

	Load FERC 714 county assignments.

	Parameters

	pudl_out – PUDL database extractor.

	Returns

	Dataframe with columns
respondent_id_ferc714, report year (int), and county_id_fips.

	
pudl.analysis.state_demand.load_ferc714_hourly_demand_matrix(pudl_out: pudl.output.pudltabl.PudlTabl) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]

	Read and format FERC 714 hourly demand into matrix form.

	Parameters

	pudl_out – Used to access
pudl.output.pudltabl.PudlTabl.demand_hourly_pa_ferc714().

	Returns

	Hourly demand as a matrix with a datetime row index
(e.g. ‘2006-01-01 00:00:00’, …, ‘2019-12-31 23:00:00’)
in local time ignoring daylight-savings,
and a respondent_id_ferc714 column index (e.g. 101, …, 329).
A second Dataframe lists the UTC offset in hours
of each respondent_id_ferc714 and reporting year (int).

	
pudl.analysis.state_demand.load_ventyx_hourly_state_demand(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → pandas.core.frame.DataFrame

	Read and format Ventyx hourly state-level demand.

After manual corrections of the listed time zone, ambiguous time zone issues remain.
Below is a list of transmission zones (by Transmission Zone ID)
with one or more missing timestamps at transitions to or from daylight-savings:

	615253 (Indiana)

	615261 (Michigan)

	615352 (Wisconsin)

	615357 (Missouri)

	615377 (Saskatchewan)

	615401 (Minnesota, Wisconsin)

	615516 (Missouri)

	615529 (Oklahoma)

	615603 (Idaho, Washington)

	1836089 (California)

	Parameters

	path – Path to the data file (published as ‘state_level_load_2007_2018.csv’).

	Returns

	Dataframe with hourly state-level demand.
* state_id_fips: FIPS code of US state.
* utc_datetime: UTC time of the start of each hour.
* demand_mwh: Hourly demand in MWh.

	
pudl.analysis.state_demand.local_to_utc(local: pandas.core.series.Series, tz: Iterable, **kwargs: Any) → pandas.core.series.Series

	Convert local times to UTC.

	Parameters

	
	local – Local times (tz-naive datetime64[ns]).

	tz – For each time, a timezone (see DatetimeIndex.tz_localize())
or UTC offset in hours (int or float).

	kwargs – Optional arguments to DatetimeIndex.tz_localize().

	Returns

	UTC times (tz-naive datetime64[ns]).

Examples

>>> s = pd.Series([pd.Timestamp(2020, 1, 1), pd.Timestamp(2020, 1, 1)])
>>> local_to_utc(s, [-7, -6])
0 2020-01-01 07:00:00
1 2020-01-01 06:00:00
dtype: datetime64[ns]
>>> local_to_utc(s, ['America/Denver', 'America/Chicago'])
0 2020-01-01 07:00:00
1 2020-01-01 06:00:00
dtype: datetime64[ns]

	
pudl.analysis.state_demand.lookup_state(state: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Lookup US state by state identifier.

	Parameters

	state – State name, two-letter abbreviation, or FIPS code.
String matching is case-insensitive.

	Returns

	State identifers.

Examples

>>> lookup_state('alabama')
{'name': 'Alabama', 'code': 'AL', 'fips': '01'}
>>> lookup_state('AL')
{'name': 'Alabama', 'code': 'AL', 'fips': '01'}
>>> lookup_state(1)
{'name': 'Alabama', 'code': 'AL', 'fips': '01'}

	
pudl.analysis.state_demand.main()

	Predict state demand.

	
pudl.analysis.state_demand.melt_ferc714_hourly_demand_matrix(df: pandas.core.frame.DataFrame, tz: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame

	Melt FERC 714 hourly demand matrix to long format.

	Parameters

	
	df – FERC 714 hourly demand matrix,
as described in load_ferc714_hourly_demand_matrix().

	tz – FERC 714 respondent time zones,
as described in load_ferc714_hourly_demand_matrix().

	Returns

	Long-format hourly demand with columns
respondent_id_ferc714, report year (int), utc_datetime, and demand_mwh.

	
pudl.analysis.state_demand.plot_demand_scatter(a: pandas.core.frame.DataFrame, b: pandas.core.frame.DataFrame, title: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, path: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Make a scatter plot comparing predicted and reference demand.

	Parameters

	
	a – Predicted demand with columns utc_datetime and any of
demand_mwh (in grey) and scaled_demand_mwh (in orange).

	b – Reference demand with columns utc_datetime and demand_mwh.
Every element in utc_datetime must match the one in a.

	title – Plot title.

	path – Plot path. If provided, the figure is saved to file and closed.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Datetime columns do not match.

	
pudl.analysis.state_demand.plot_demand_timeseries(a: pandas.core.frame.DataFrame, b: Optional[pandas.core.frame.DataFrame] = None, window: int [https://docs.python.org/3/library/functions.html#int] = 168, title: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, path: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Make a timeseries plot of predicted and reference demand.

	Parameters

	
	a – Predicted demand with columns utc_datetime and any of
demand_mwh (in grey) and scaled_demand_mwh (in orange).

	b – Reference demand with columns utc_datetime and demand_mwh (in red).

	window – Width of window (in rows) to use to compute rolling means,
or None to plot raw values.

	title – Plot title.

	path – Plot path. If provided, the figure is saved to file and closed.

	
pudl.analysis.state_demand.predict_state_hourly_demand(demand: pandas.core.frame.DataFrame, counties: pandas.core.frame.DataFrame, assignments: pandas.core.frame.DataFrame, state_totals: Optional[pandas.core.frame.DataFrame] = None, mean_overlaps: bool [https://docs.python.org/3/library/functions.html#bool] = False) → pandas.core.frame.DataFrame

	Predict state hourly demand.

	Parameters

	
	demand – Hourly demand timeseries, with columns
respondent_id_ferc714, report year, utc_datetime, and demand_mwh.

	counties – Counties, with columns county_id_fips and population.

	assignments – County assignments for demand respondents,
with columns respondent_id_ferc714, year, and county_id_fips.

	state_totals – Total annual demand by state,
with columns state_id_fips, year, and demand_mwh.
If provided, the predicted hourly demand is scaled to match these totals.

	mean_overlaps – Whether to mean the demands predicted for a county
in cases when a county is assigned to multiple respondents.
By default, demands are summed.

	Returns

	Dataframe with columns
state_id_fips, utc_datetime, demand_mwh, and
(if state_totals was provided) scaled_demand_mwh.

	
pudl.analysis.state_demand.utc_to_local(utc: pandas.core.series.Series, tz: Iterable) → pandas.core.series.Series

	Convert UTC times to local.

	Parameters

	
	utc – UTC times (tz-naive datetime64[ns] or datetime64[ns, UTC]).

	tz – For each time, a timezone (see DatetimeIndex.tz_localize())
or UTC offset in hours (int or float).

	Returns

	Local times (tz-naive datetime64[ns]).

Examples

>>> s = pd.Series([pd.Timestamp(2020, 1, 1), pd.Timestamp(2020, 1, 1)])
>>> utc_to_local(s, [-7, -6])
0 2019-12-31 17:00:00
1 2019-12-31 18:00:00
dtype: datetime64[ns]
>>> utc_to_local(s, ['America/Denver', 'America/Chicago'])
0 2019-12-31 17:00:00
1 2019-12-31 18:00:00
dtype: datetime64[ns]

pudl.analysis.timeseries_cleaning module

Screen timeseries for anomalies and impute missing and anomalous values.

The screening methods were originally designed to identify unrealistic data in the
electricity demand timeseries reported to EIA on Form 930, and have also been
applied to the FERC Form 714, and various historical demand timeseries
published by regional grid operators like MISO, PJM, ERCOT, and SPP.

They are adapted from code published and modified by:

	Tyler Ruggles <truggles@carnegiescience.edu>

	Greg Schivley <greg@carbonimpact.co>

And described at:

	https://doi.org/10.1038/s41597-020-0483-x

	https://zenodo.org/record/3737085

	https://github.com/truggles/EIA_Cleaned_Hourly_Electricity_Demand_Code

The imputation methods were designed for multivariate time series forecasting.

They are adapted from code published by:

	Xinyu Chen <chenxy346@gmail.com>

And described at:

	https://arxiv.org/abs/2006.10436

	https://arxiv.org/abs/2008.03194

	https://github.com/xinychen/tensor-learning

	
class pudl.analysis.timeseries_cleaning.Timeseries(x: Union[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], pandas.core.frame.DataFrame])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Multivariate timeseries for anomalies detection and imputation.

	
xi

	Reference to the original values (can be null).
Many methods assume that these represent chronological, regular timeseries.

	
x

	Copy of xi with any flagged values replaced with null.

	
flags

	Flag label for each value, or null if not flagged.

	
flagged

	Running list of flags that have been checked so far.

	
index

	Row index.

	
columns

	Column names.

	
diff(shift: int [https://docs.python.org/3/library/functions.html#int] = 1) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Values minus the value of their neighbor.

	Parameters

	shift – Positions to shift for calculating the difference.
Positive values select a preceding (left) neighbor.

	
flag(mask: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], flag: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Flag values.

Flags values (if not already flagged) and nulls flagged values.

	Parameters

	
	mask – Boolean mask of the values to flag.

	flag – Flag name.

	
flag_anomalous_region(window: int [https://docs.python.org/3/library/functions.html#int] = 48, threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.15) → None [https://docs.python.org/3/library/constants.html#None]

	Flag values surrounded by flagged values (ANOMALOUS_REGION).

Original null values are not considered flagged values.

	Parameters

	
	width – Width of regions.

	threshold – Fraction of flagged values required for a region to be flagged.

	
flag_double_delta(iqr_window: int [https://docs.python.org/3/library/functions.html#int] = 240, multiplier: float [https://docs.python.org/3/library/functions.html#float] = 2) → None [https://docs.python.org/3/library/constants.html#None]

	Flag values very different from their neighbors on either side (DOUBLE_DELTA).

Flags values whose differences to both neighbors on either side exceeds a
multiplier times the rolling interquartile range (IQR) of neighbor difference.

	Parameters

	
	iqr_window – Number of values in the moving window for the rolling IQR
of neighbor difference.

	multiplier – Number of times the rolling IQR of neighbor difference
the value’s difference to its neighbors must exceed
for the value to be flagged.

	
flag_global_outlier(medians: float [https://docs.python.org/3/library/functions.html#float] = 9) → None [https://docs.python.org/3/library/constants.html#None]

	Flag values greater or less than n times the global median (GLOBAL_OUTLIER).

	Parameters

	medians – Number of times the median the value must exceed the median.

	
flag_global_outlier_neighbor(neighbors: int [https://docs.python.org/3/library/functions.html#int] = 1) → None [https://docs.python.org/3/library/constants.html#None]

	Flag values neighboring global outliers (GLOBAL_OUTLIER_NEIGHBOR).

	Parameters

	neighbors – Number of neighbors to flag on either side of each outlier.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Global outliers must be flagged first.

	
flag_identical_run(length: int [https://docs.python.org/3/library/functions.html#int] = 3) → None [https://docs.python.org/3/library/constants.html#None]

	Flag the last values in identical runs (IDENTICAL_RUN).

	Parameters

	length – Run length to flag.
If 3, the third (and subsequent) identical values are flagged.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Run length must be 2 or greater.

	
flag_local_outlier(window: int [https://docs.python.org/3/library/functions.html#int] = 48, shifts: Sequence[int [https://docs.python.org/3/library/functions.html#int]] = range(- 240, 241, 24), long_window: int [https://docs.python.org/3/library/functions.html#int] = 480, iqr_window: int [https://docs.python.org/3/library/functions.html#int] = 240, multiplier: Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]] = (3.5, 2.5)) → None [https://docs.python.org/3/library/constants.html#None]

	Flag local outliers (LOCAL_OUTLIER_HIGH, LOCAL_OUTLIER_LOW).

Flags values which are above or below the median_prediction() by more than
a multiplier times the rolling_iqr_of_rolling_median_offset().

	Parameters

	
	window – Number of values in the moving window for the local rolling median.

	shifts – Positions to shift the local rolling median offset by,
for computing its median.

	long_window – Number of values in the moving window
for the regional (long) rolling median.

	iqr_window – Number of values in the moving window
for the rolling interquartile range (IQR).

	multiplier – Number of times the rolling_iqr_of_rolling_median_offset()
the value must be above (HIGH) and below (LOW)
the median_prediction() to be flagged.

	
flag_negative_or_zero() → None [https://docs.python.org/3/library/constants.html#None]

	Flag negative or zero values (NEGATIVE_OR_ZERO).

	
flag_ruggles() → None [https://docs.python.org/3/library/constants.html#None]

	Flag values following the method of Ruggles and others (2020).

Assumes values are hourly electricity demand.

	description: https://doi.org/10.1038/s41597-020-0483-x

	code: https://github.com/truggles/EIA_Cleaned_Hourly_Electricity_Demand_Code

	
flag_single_delta(window: int [https://docs.python.org/3/library/functions.html#int] = 48, shifts: Sequence[int [https://docs.python.org/3/library/functions.html#int]] = range(- 240, 241, 24), long_window: int [https://docs.python.org/3/library/functions.html#int] = 480, iqr_window: int [https://docs.python.org/3/library/functions.html#int] = 240, multiplier: float [https://docs.python.org/3/library/functions.html#float] = 5, rel_multiplier: float [https://docs.python.org/3/library/functions.html#float] = 15) → None [https://docs.python.org/3/library/constants.html#None]

	Flag values very different from the nearest unflagged value (SINGLE_DELTA).

Flags values whose difference to the nearest unflagged value,
with respect to value and relative median prediction,
differ by less than a multiplier times the rolling interquartile range (IQR)
of the difference -
multiplier times rolling_iqr_of_diff() and
rel_multiplier times iqr_of_diff_of_relative_mean_prediction(),
respectively.

	Parameters

	
	window – Number of values in the moving window for the rolling median
(for the relative median prediction).

	shifts – Positions to shift the local rolling median offset by,
for computing its median (for the relative median prediction).

	long_window – Number of values in the moving window for the long rolling
median (for the relative median prediction).

	iqr_window – Number of values in the moving window for the rolling IQR
of neighbor difference.

	multiplier – Number of times the rolling IQR of neighbor difference
the value’s difference to its neighbor must exceed
for the value to be flagged.

	rel_multiplier – Number of times the rolling IQR of relative median
prediction the value’s prediction difference to its neighbor must exceed
for the value to be flagged.

	
fold_tensor(x: Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]] = None, periods: int [https://docs.python.org/3/library/functions.html#int] = 24) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Fold into a 3-dimensional tensor representation.

Folds the series x (number of observations, number of series)
into a 3-d tensor (number of series, number of groups, number of periods),
splitting observations into groups of length periods.
For example, each group may represent a day and each period the hour of the day.

	Parameters

	
	x – Series array to fold. Uses x by default.

	periods – Number of consecutive values in each series to fold into a group.

	Returns

	>>> x = np.column_stack([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]])
>>> s = Timeseries(x)
>>> tensor = s.fold_tensor(periods=3)
>>> tensor[0]
array([[1, 2, 3],
 [4, 5, 6]])
>>> np.all(x == s.unfold_tensor(tensor))
True

	
impute(mask: Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]] = None, periods: int [https://docs.python.org/3/library/functions.html#int] = 24, blocks: int [https://docs.python.org/3/library/functions.html#int] = 1, method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'tubal', **kwargs: Any) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Impute null values.

Note

The imputation method requires that nulls be replaced by zeros,
so the series cannot already contain zeros.

	Parameters

	
	mask – Boolean mask of values to impute in addition to
any null values in x.

	periods – Number of consecutive values in each series to fold into a group.
See fold_tensor().

	blocks – Number of blocks into which to split the series for imputation.
This has been found to reduce processing time for method=’tnn’.

	method – Imputation method to use
(‘tubal’: impute_latc_tubal(), ‘tnn’: impute_latc_tnn()).

	kwargs – Optional arguments to method.

	Returns

	Array of same shape as x with all null values
(and those selected by mask) replaced with imputed values.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Zero values present. Replace with very small value.

	
iqr_of_diff_of_relative_median_prediction(shift: int [https://docs.python.org/3/library/functions.html#int] = 1, **kwargs: Any) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Interquartile range of the running difference of the relative median prediction.

	Parameters

	
	shift – Positions to shift for calculating the difference.
Positive values select a preceding (left) neighbor.

	kwargs – Arguments to relative_median_prediction().

	
median_of_rolling_median_offset(window: int [https://docs.python.org/3/library/functions.html#int] = 48, shifts: Sequence[int [https://docs.python.org/3/library/functions.html#int]] = range(- 240, 241, 24)) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Median of the offset from the rolling median.

Calculated by shifting the rolling median offset (rolling_median_offset())
by different numbers of values, then taking the median at each position.
Estimates the typical local cycle in cyclical data.

	Parameters

	
	window – Number of values in the moving window for the rolling median.

	shifts – Number of values to shift the rolling median offset by.

	
median_prediction(window: int [https://docs.python.org/3/library/functions.html#int] = 48, shifts: Sequence[int [https://docs.python.org/3/library/functions.html#int]] = range(- 240, 241, 24), long_window: int [https://docs.python.org/3/library/functions.html#int] = 480) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Values predicted from local and regional rolling medians.

Calculated as { local median } +
{ median of local median offset } * { local median } / { regional median }.

	Parameters

	
	window – Number of values in the moving window for the local rolling median.

	shifts – Positions to shift the local rolling median offset by,
for computing its median.

	long_window – Number of values in the moving window
for the regional (long) rolling median.

	
plot_flags(name: Any = 0) → None [https://docs.python.org/3/library/constants.html#None]

	Plot cleaned series and anomalous values colored by flag.

	Parameters

	name – Series to plot, as either an integer index or name in columns.

	
relative_median_prediction(**kwargs: Any) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Values divided by their value predicted from medians.

	Parameters

	kwargs – Arguments to median_prediction().

	
rolling_iqr_of_diff(shift: int [https://docs.python.org/3/library/functions.html#int] = 1, window: int [https://docs.python.org/3/library/functions.html#int] = 240) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Rolling interquartile range (IQR) of the difference between neighboring values.

	Parameters

	
	shift – Positions to shift for calculating the difference.

	window – Number of values in the moving window for the rolling IQR.

	
rolling_iqr_of_rolling_median_offset(window: int [https://docs.python.org/3/library/functions.html#int] = 48, iqr_window: int [https://docs.python.org/3/library/functions.html#int] = 240) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Rolling interquartile range (IQR) of rolling median offset.

Estimates the spread of the local cycles in cyclical data.

	Parameters

	
	window – Number of values in the moving window for the rolling median.

	iqr_window – Number of values in the moving window for the rolling IQR.

	
rolling_median(window: int [https://docs.python.org/3/library/functions.html#int] = 48) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Rolling median of values.

	Parameters

	window – Number of values in the moving window.

	
rolling_median_offset(window: int [https://docs.python.org/3/library/functions.html#int] = 48) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Values minus the rolling median.

Estimates the local cycle in cyclical data by removing longterm trends.

	Parameters

	window – Number of values in the moving window.

	
simulate_nulls(lengths: Optional[Sequence[int [https://docs.python.org/3/library/functions.html#int]]] = None, padding: int [https://docs.python.org/3/library/functions.html#int] = 1, intersect: bool [https://docs.python.org/3/library/functions.html#bool] = False, overlap: bool [https://docs.python.org/3/library/functions.html#bool] = False) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Find non-null values to null to match a run-length distribution.

	Parameters

	
	length – Length of null runs to simulate for each series.
By default, uses the run lengths of null values in each series.

	padding – Minimum number of non-null values between simulated null runs
and between simulated and existing null runs.

	intersect – Whether simulated null runs can intersect each other.

	overlap – Whether simulated null runs can overlap existing null runs.
If True, padding is ignored.

	Returns

	Boolean mask of current non-null values to set to null.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Cound not find space for run of length {length}.

Examples

>>> x = np.column_stack([[1, 2, np.nan, 4, 5, 6, 7, np.nan, np.nan]])
>>> s = Timeseries(x)
>>> s.simulate_nulls().ravel()
array([True, False, False, False, True, True, False, False, False])
>>> s.simulate_nulls(lengths=[4], padding=0).ravel()
array([False, False, False, True, True, True, True, False, False])

	
summarize_flags() → pandas.core.frame.DataFrame

	Summarize flagged values by flag, count and median.

	
summarize_imputed(imputed: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], mask: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → pandas.core.frame.DataFrame

	Summarize the fit of imputed values to actual values.

Summarizes the agreement between actual and imputed values with the
following statistics:

	mpe: Mean percent error, (actual - imputed) / actual.

	mape: Mean absolute percent error, abs(mpe).

	Parameters

	
	imputed – Series of same shape as x with imputed values.
See impute().

	mask – Boolean mask of imputed values that were not null in x.
See simulate_nulls().

	Returns

	Table of imputed value statistics for each series.

	
to_dataframe(array: Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]] = None, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True) → pandas.core.frame.DataFrame

	Return multivariate timeseries as a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame].

	Parameters

	
	array – Two-dimensional array to use. If None, uses x.

	copy – Whether to use a copy of array.

	
unflag(flags: Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Unflag values.

Unflags values by restoring their original values and removing their flag.

	Parameters

	flags – Flag names. If None, all flags are removed.

	
unfold_tensor(tensor: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Unfold a 3-dimensional tensor representation.

Performs the reverse of fold_tensor().

	
pudl.analysis.timeseries_cleaning.array_diff(x: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], periods: int [https://docs.python.org/3/library/functions.html#int] = 1, axis: int [https://docs.python.org/3/library/functions.html#int] = 0, fill: Any = nan) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	First discrete difference of array elements.

This is a fast numpy implementation of pd.DataFrame.diff().

	Parameters

	
	periods – Periods to shift for calculating difference, accepts negative values.

	axis – Array axis along which to calculate the difference.

	fill – Value to use at the margins where a difference cannot be calculated.

	Returns

	Array of same shape and type as x with discrete element differences.

Examples

>>> x = np.random.random((4, 2))
>>> np.all(array_diff(x, 1)[1:] == pd.DataFrame(x).diff(1).values[1:])
True
>>> np.all(array_diff(x, 2)[2:] == pd.DataFrame(x).diff(2).values[2:])
True
>>> np.all(array_diff(x, -1)[:-1] == pd.DataFrame(x).diff(-1).values[:-1])
True

	
pudl.analysis.timeseries_cleaning.encode_run_length(x: Union[Sequence, numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) → Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Encode vector with run-length encoding.

	Parameters

	x – Vector to encode.

	Returns

	Values and their run lengths.

Examples

>>> x = np.array([0, 1, 1, 0, 1])
>>> encode_run_length(x)
(array([0, 1, 0, 1]), array([1, 2, 1, 1]))
>>> encode_run_length(x.astype('bool'))
(array([False, True, False, True]), array([1, 2, 1, 1]))
>>> encode_run_length(x.astype('<U1'))
(array(['0', '1', '0', '1'], dtype='<U1'), array([1, 2, 1, 1]))
>>> encode_run_length(np.where(x == 0, np.nan, x))
(array([nan, 1., nan, 1.]), array([1, 2, 1, 1]))

	
pudl.analysis.timeseries_cleaning.impute_latc_tnn(tensor: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], lags: Sequence[int [https://docs.python.org/3/library/functions.html#int]] = [1], alpha: Sequence[float [https://docs.python.org/3/library/functions.html#float]] = [0.3333333333333333, 0.3333333333333333, 0.3333333333333333], rho0: float [https://docs.python.org/3/library/functions.html#float] = 1e-07, lambda0: float [https://docs.python.org/3/library/functions.html#float] = 2e-07, theta: int [https://docs.python.org/3/library/functions.html#int] = 20, epsilon: float [https://docs.python.org/3/library/functions.html#float] = 1e-07, maxiter: int [https://docs.python.org/3/library/functions.html#int] = 300) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Impute tensor values with LATC-TNN method by Chen and Sun (2020).

Uses low-rank autoregressive tensor completion (LATC) with
truncated nuclear norm (TNN) minimization.

	description: https://arxiv.org/abs/2006.10436

	code: https://github.com/xinychen/tensor-learning/blob/master/mats

	Parameters

	
	tensor – Observational series in the form (series, groups, periods).
Null values are replaced with zeros, so any zeros will be treated as null.

	lags –

	alpha –

	rho0 –

	lambda0 –

	theta –

	epsilon – Convergence criterion. A smaller number will result in more iterations.

	maxiter – Maximum number of iterations.

	Returns

	Tensor with missing values in tensor replaced by imputed values.

	
pudl.analysis.timeseries_cleaning.impute_latc_tubal(tensor: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], lags: Sequence[int [https://docs.python.org/3/library/functions.html#int]] = [1], rho0: float [https://docs.python.org/3/library/functions.html#float] = 1e-07, lambda0: float [https://docs.python.org/3/library/functions.html#float] = 2e-07, epsilon: float [https://docs.python.org/3/library/functions.html#float] = 1e-07, maxiter: int [https://docs.python.org/3/library/functions.html#int] = 300) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Impute tensor values with LATC-Tubal method by Chen, Chen and Sun (2020).

Uses low-tubal-rank autoregressive tensor completion (LATC-Tubal).
It is much faster than impute_latc_tnn() for very large datasets,
with comparable accuracy.

	description: https://arxiv.org/abs/2008.03194

	code: https://github.com/xinychen/tensor-learning/blob/master/mats

	Parameters

	
	tensor – Observational series in the form (series, groups, periods).
Null values are replaced with zeros, so any zeros will be treated as null.

	lags –

	rho0 –

	lambda0 –

	epsilon – Convergence criterion. A smaller number will result in more iterations.

	maxiter – Maximum number of iterations.

	Returns

	Tensor with missing values in tensor replaced by imputed values.

	
pudl.analysis.timeseries_cleaning.insert_run_length(x: Union[Sequence, numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], values: Union[Sequence, numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], lengths: Sequence[int [https://docs.python.org/3/library/functions.html#int]], mask: Optional[Sequence[bool [https://docs.python.org/3/library/functions.html#bool]]] = None, padding: int [https://docs.python.org/3/library/functions.html#int] = 0, intersect: bool [https://docs.python.org/3/library/functions.html#bool] = False) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Insert run-length encoded values into a vector.

	Parameters

	
	x – Vector to insert values into.

	values – Values to insert.

	lengths – Length of run to insert for each value in values.

	mask – Boolean mask, of the same length as x, where values can be inserted.
By default, values can be inserted anywhere in x.

	padding – Minimum space between inserted runs and,
if mask is provided, the edges of masked-out areas.

	intersect – Whether to allow inserted runs to intersect each other.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Padding must zero or greater.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Run length must be greater than zero.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Cound not find space for run of length {length}.

	Returns

	Copy of array x with values inserted.

Example

>>> x = [0, 0, 0, 0]
>>> mask = [True, False, True, True]
>>> insert_run_length(x, values=[1, 2], lengths=[1, 2], mask=mask)
array([1, 0, 2, 2])

If we use unique values for the background and each inserted run,
the run length encoding of the result (ignoring the background)
is the same as the inserted run, albeit in a different order.

>>> x = np.zeros(10, dtype=int)
>>> values = [1, 2, 3]
>>> lengths = [1, 2, 3]
>>> x = insert_run_length(x, values=values, lengths=lengths)
>>> rvalues, rlengths = encode_run_length(x[x != 0])
>>> order = np.argsort(rvalues)
>>> all(rvalues[order] == values) and all(rlengths[order] == lengths)
True

Null values can be inserted into a vector such that the new null runs
match the run length encoding of the existing null runs.

>>> x = [1, 2, np.nan, np.nan, 5, 6, 7, 8, np.nan]
>>> is_nan = np.isnan(x)
>>> rvalues, rlengths = encode_run_length(is_nan)
>>> xi = insert_run_length(
... x,
... values=[np.nan] * rvalues.sum(),
... lengths=rlengths[rvalues],
... mask=~is_nan
...)
>>> np.isnan(xi).sum() == 2 * is_nan.sum()
True

The same as above, with non-zero padding, yields a unique solution:

>>> insert_run_length(
... x,
... values=[np.nan] * rvalues.sum(),
... lengths=rlengths[rvalues],
... mask=~is_nan,
... padding=1
...)
array([nan, 2., nan, nan, 5., nan, nan, 8., nan])

	
pudl.analysis.timeseries_cleaning.slice_axis(x: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], start: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, end: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, step: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, axis: int [https://docs.python.org/3/library/functions.html#int] = 0) → Tuple

	Return an index that slices an array along an axis.

	Parameters

	
	x – Array to slice.

	start – Start index of slice.

	end – End index of slice.

	step – Step size of slice.

	axis – Axis along which to slice.

	Returns

	Tuple of slice [https://docs.python.org/3/library/functions.html#slice] that slices array x along axis axis
(x[…, start:stop:step]).

Examples

>>> x = np.random.random((3, 4, 5))
>>> np.all(x[1:] == x[slice_axis(x, start=1, axis=0)])
True
>>> np.all(x[:, 1:] == x[slice_axis(x, start=1, axis=1)])
True
>>> np.all(x[:, :, 1:] == x[slice_axis(x, start=1, axis=2)])
True

pudl.convert package

Submodules

	pudl.convert.censusdp1tract_to_sqlite module

	pudl.convert.datapkg_to_rst module

	pudl.convert.datapkg_to_sqlite module

	pudl.convert.epacems_to_parquet module

	pudl.convert.ferc1_to_sqlite module

	pudl.convert.merge_datapkgs module

Module contents

Tools for converting datasets between various formats in bulk.

It’s often useful to be able to convert entire datasets in bulk from one format
to another, both independent of and within the context of the ETL pipeline.
This subpackage collects those tools together in one place.

Currently the tools use a mix of idioms, referring either to a particular
dataset and a particular format, or two formats. Some of them read from the
original raw data as organized by the pudl.workspace package (e.g.
pudl.convert.ferc1_to_sqlite or pudl.convert.epacems_to_parquet),
and others convert the entire collection of data from an output datapackage
into another format (e.g. pudl.convert.datapkg_to_sqlite).

pudl.convert.censusdp1tract_to_sqlite module

Convert the US Census DP1 ESRI GeoDatabase into an SQLite Database.

This is a thin wrapper around the GDAL ogr2ogr command line tool. We use it
to convert the Census DP1 data which is distributed as an ESRI GeoDB into an
SQLite DB. The module provides ogr2ogr with the Census DP 1 data from the
PUDL datastore, and directs it to be output into the user’s SQLite directory
alongside our other SQLite Databases (ferc1.sqlite and pudl.sqlite)

Note that the ogr2ogr command line utility must be available on the user’s
system for this to work. This tool is part of the pudl-dev conda
environment, but if you are using PUDL outside of the conda environment, you
will need to install ogr2ogr separately. On Debian Linux based systems such
as Ubuntu it can be installed with sudo apt-get install gdal-bin (which
is what we do in our CI setup and Docker images.)

	
pudl.convert.censusdp1tract_to_sqlite.censusdp1tract_to_sqlite(pudl_settings=None, year=2010)

	Use GDAL’s ogr2ogr utility to convert the Census DP1 GeoDB to an SQLite DB.

The Census DP1 GeoDB is read from the datastore, where it is stored as a
zipped archive. This archive is unzipped into a temporary directory so
that ogr2ogr can operate on the ESRI GeoDB, and convert it to SQLite. The
resulting SQLite DB file is put in the PUDL output directory alongside the
ferc1 and pudl SQLite databases.

	Parameters

	
	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A PUDL settings dictionary.

	year (int [https://docs.python.org/3/library/functions.html#int]) – Year of Census data to extract (currently must be 2010)

	Returns

	None

	
pudl.convert.censusdp1tract_to_sqlite.main()

	Convert the Census DP1 GeoDatabase into an SQLite Database.

	
pudl.convert.censusdp1tract_to_sqlite.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.convert.datapkg_to_rst module

Module to convert json metadata into rst files.

All of the information about the transformed pudl tables, namely their fields
types and descriptions, resides in the datapackage metadata. This module makes
that information available to users, without duplicating any data, by converting
json metadata files into documentation-compatible rst files. The functions
serve to extract the field names, field data types, and field descriptions of
each pudl table and outputs them in a manner that automatically updates the
read-the-docs.

	
pudl.convert.datapkg_to_rst.RST_TEMPLATE = '\n===\nPUDL Data Dictionary\n===\n\nThe following data tables have been cleaned and transformed by our ETL process.\n\n{% for resource in resources %}\n.. _{{ resource.name }}:\n\n---\n{{ resource.name }}\n---\n\n{{ resource.description | wordwrap(78)}}\n`Browse or query this table in Datasette. <https://data.catalyst.coop/pudl/{{ resource.name }}>`__\n\n.. list-table::\n :widths: auto\n :header-rows: 1\n\n * - **Field Name**\n - **Type**\n - **Description**{% for field in resource.schema.fields %}\n * - {{ field.name }}\n - {{ field.type }}{% if field.description %}\n - {{ field.description }}{% else %}\n - N/A{% endif %}{% endfor %}\n{% endfor %}\n'

	A template to map data from a json dictionary into one rst file. Contains
multiple tables seperated by headers.

	
pudl.convert.datapkg_to_rst.datapkg2rst(meta_json, meta_rst, ignore=None)

	Convert json metadata to a single rst file.

	
pudl.convert.datapkg_to_rst.logger = <Logger pudl.convert.datapkg_to_rst (WARNING)>

	The following templates map json data into one long rst file seperated by table
titles and document links (RST_TEMPLATE)

It’s important for the templates that the json data do not contain excess
white space either at the beginning or the end of each value.

	
pudl.convert.datapkg_to_rst.main()

	Run conversion from json to rst.

	
pudl.convert.datapkg_to_rst.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.convert.datapkg_to_sqlite module

Merge compatible PUDL datapackages and load the result into an SQLite DB.

This script merges a set of compatible PUDL datapackages into a single
tabular datapackage, and then loads that package into the PUDL SQLite DB

The input datapackages must all have been produced in the same ETL run, and
share the same datapkg-bundle-uuid value. Any data sources (e.g. ferc1,
eia923) that appear in more than one of the datapackages to be merged must
also share identical ETL parameters (years, tables, states, etc.), allowing
easy deduplication of resources.

Having the ability to load only a subset of the datapackages resulting from an
ETL run into the SQLite database is helpful because larger datasets are much
easier to work with via columnar datastores like Apache Parquet – loading all
of EPA CEMS into SQLite can take more than 24 hours. PUDL also provides a
separate epacems_to_parquet script that can be used to generate a Parquet
dataset that is partitioned by state and year, which can be read directly into
pandas or dask dataframes, for use in conjunction with the other PUDL data that
is stored in the SQLite DB.

	
pudl.convert.datapkg_to_sqlite.datapkg_to_sqlite(sqlite_url, out_path, clobber=False, fkeys=False)

	Load a PUDL datapackage into a sqlite database.

	Parameters

	
	sqlite_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – An SQLite database connection URL.

	out_path (path-like) – Path to the base directory of the datapackage
to be loaded into SQLite. Must contain the datapackage.json file.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replace an existing PUDL DB if it exists. If
False (the default), fail if an existing PUDL DB is found.

	fkeys (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, tell SQLite to check foreign key constraints
for the records that are being loaded. Left off by default.

	Returns

	None

	
pudl.convert.datapkg_to_sqlite.main()

	Merge PUDL datapackages and save them into an SQLite database.

	
pudl.convert.datapkg_to_sqlite.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.convert.epacems_to_parquet module

A script for converting the EPA CEMS dataset from gzip to Apache Parquet.

The original EPA CEMS data is available as ~12,000 gzipped CSV files, one for
each month for each state, from 1995 to the present. On disk they take up
about 7.3 GB of space, compressed. Uncompressed it is closer to 100 GB. That’s
too much data to work with in memory.

Apache Parquet is a compressed, columnar datastore format, widely used in Big
Data applications. It’s an open standard, and is very fast to read from disk.
It works especially well with both Dask dataframes [https://dask.org/] (a
parallel / distributed computing extension of pandas) and Apache Spark (a cloud
based Big Data processing pipeline system.)

Since pulling 100 GB of data into SQLite takes a long time, and working with
that data en masse isn’t particularly pleasant on a laptop, this script can be
used to convert the original EPA CEMS data to the more widely usable Apache
Parquet format for use with Dask, either on a multi-core workstation or in an
interactive cloud computing environment like Pangeo [https://pangeo.io].

	
pudl.convert.epacems_to_parquet.create_cems_schema()

	Make an explicit Arrow schema for the EPA CEMS data.

Make changes in the types of the generated parquet files by editing this
function.

Note that parquet’s internal representation doesn’t use unsigned numbers or
16-bit ints, so just keep things simple here and always use int32 and
float32.

	Returns

	An Arrow schema for the EPA CEMS data.

	Return type

	pyarrow.schema

	
pudl.convert.epacems_to_parquet.create_in_dtypes()

	Create a dictionary of input data types.

This specifies the dtypes of the input columns, which is necessary for some
cases where, e.g., a column is always NaN.

	Returns

	mapping columns names to pandas [https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas] data types.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.convert.epacems_to_parquet.epacems_to_parquet(datapkg_path, epacems_years, epacems_states, out_dir, compression='snappy', partition_cols=('year', 'state'), clobber=False)

	Take transformed EPA CEMS dataframes and output them as Parquet files.

We need to do a few additional manipulations of the dataframes after they
have been transformed by PUDL to get them ready for output to the Apache
Parquet format. Mostly this has to do with ensuring homogeneous data types
across all of the dataframes, and downcasting to the most efficient data
type possible for each of them. We also add a ‘year’ column so that we can
partition the datset on disk by year as well as state.
(Year partitions follow the CEMS input data, based on local plant time.
The operating_datetime_utc identifies time in UTC, so there’s a mismatch
of a few hours on December 31 / January 1.)

	Parameters

	
	datapkg_path (path-like) – Path to the datapackage.json file describing
the datapackage contaning the EPA CEMS data to be converted.

	epacems_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of years from which we are trying to read
CEMS data

	epacems_states (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of years from which we are trying to read
CEMS data

	out_dir (path-like) – The directory in which to output the Parquet files

	compression (string) –

	partition_cols (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) –

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and there is already a directory with out_dirs
name, the existing parquet files will be deleted and new ones will
be generated in their place.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Raised if an output directory is not specified.

Todo

Return to

	
pudl.convert.epacems_to_parquet.main()

	Convert zipped EPA CEMS Hourly data to Apache Parquet format.

	
pudl.convert.epacems_to_parquet.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.convert.ferc1_to_sqlite module

A script for cloning the FERC Form 1 database into SQLite.

This script generates a SQLite database that is a clone/mirror of the original
FERC Form1 database. We use this cloned database as the starting point for the
main PUDL ETL process. The underlying work in the script is being done in
pudl.extract.ferc1.

	
pudl.convert.ferc1_to_sqlite.main()

	Clone the FERC Form 1 FoxPro database into SQLite.

	
pudl.convert.ferc1_to_sqlite.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.convert.merge_datapkgs module

Functions for merging compatible PUDL datapackges together.

	
pudl.convert.merge_datapkgs.check_etl_params(dps)

	Verify that datapackages to be merged have compatible ETL params.

Given that all of the input data packages come from the same ETL run, which
means they will have used the same input data, the only way they should
potentially differ is in the ETL parameters which were used to generate
them. This function pulls the data source specific ETL params which we
store in each datapackage descriptor and checks that within a given data
source (e.g. eia923, ferc1) all of the ETL parameters are identical (e.g.
the years, states, and tables loaded).

	Parameters

	dps (iterable) – A list of datapackage.Package objects, representing the
datapackages to be merged.

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the PUDL ETL parameters associated with any given data
 source are not identical across all instances of that data source
 within the datapackages to be merged. Also if the ETL UUIDs for all
 of the datapackages to be merged are not identical.

	
pudl.convert.merge_datapkgs.check_identical_vals(dps, required_vals, optional_vals=())

	Verify that datapackages to be merged have required identical values.

This only works for elements with simple (hashable) datatypes, which can be
added to a set.

	Parameters

	
	dps (iterable) – a list of tabular datapackage objects, output by PUDL.

	required_vals (iterable) – A list of strings indicating which top level
metadata elements should be compared between the datapackages. All
must be present in every datapackage.

	optional_vals (iterable) – A list of strings indicating top level
metadata elements to be compared between the datapackages. They do
not need to appear in all datapackages, but if they do appear,
they must be identical.

	Returns

	None

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if any of the required or optional metadata elements have
 different values in the different data packages.

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if a required metadata element is not found in any of the
 datapackages.

	
pudl.convert.merge_datapkgs.merge_data(dps, out_path)

	Copy the CSV files into the merged datapackage’s data directory.

Iterates through all of the resources in the input datapackages and copies
the files they refer to into the data directory associated with the merged
datapackage (a directory named “data” inside the out_path directory).

Function assumes that a fresh (empty) data directory has been created. If a
file with the same name already exists, it is not overwritten, in order to
prevent unnecessary copying of resources which appear in multiple input
packages.

	Parameters

	
	dps (iterable) – A list of datapackage.Package objects, representing the
datapackages to be merged.

	out_path (path like) – Base directory for the newly created datapackage.
The final path element will also be used as the name of the merged
data package.

	Returns

	None

	
pudl.convert.merge_datapkgs.merge_datapkgs(dps, out_path, clobber=False)

	Merge several compatible datapackages into one larger datapackage.

	Parameters

	
	dps (iterable) – A collection of tabular data package objects that were
output by PUDL, to be merged into a single deduplicated datapackage
for loading into a database or other storage medium.

	out_path (path-like) – Base directory for the newly created
datapackage. The final path element will also be used as the name
of the merged data package.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If the location of the output datapackage already
exists, should it be overwritten? If True, yes. If False, no.

	Returns

	A report containing information about the validity of the
merged datapackage.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If any of the input datapackage paths do not exist.

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – If the output directory exists and clobber is False.

	
pudl.convert.merge_datapkgs.merge_meta(dps, datapkg_name)

	Merge the JSON descriptors of datapackages into one big descriptor.

This function builds up a new tabular datapackage JSON descriptor as a
python dictionary, containing the merged metadata from all of the input
datapackages.

The process is complex for two reasons. First, there are several different
datatypes in the descriptor that need to be merged, and the processes for
each of them are different. Second, what constitutes a “merge” may vary
depending on the semantic content of the metadata. E.g. the created
timestamp is a simple string, but we need to choose one of the several
values (the earliest one) for inclusion in the merged datapackage, while
many other simple string fields are required to be identical across all
of the input data packages (e.g. datapkg-bundle-uuid):

	Parameters

	
	dps (iterable) – A collection of datapackage objects, whose metadata
will be merged to create a single datapackage descriptor
representing the union of all the data in the input datapackages.

	datapkg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name associated with the newly merged
datapackage. This should be the same as the name of the directory
in which the datapackage is found.

	Returns

	a Python dictionary representing a tabular datapackage JSON
descriptor, encoded as a python dictionary, containing the merged
metadata of the input datapackages.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.extract package

Submodules

	pudl.extract.eia860 module

	pudl.extract.eia860m module

	pudl.extract.eia861 module

	pudl.extract.eia923 module

	pudl.extract.epacems module

	pudl.extract.epaipm module

	pudl.extract.excel module

	pudl.extract.ferc1 module

	pudl.extract.ferc714 module

Module contents

Modules implementing the “Extract” step of the PUDL ETL pipeline.

Each module in this subpackage implements data extraction for a single data
source from the PUDL Data Sources. This process begins with
the original data as retrieved by the pudl.workspace subpackage, and
ends with a dictionary of “raw” pandas.DataFrame`s, that have been
minimally altered from the original data, and are ready for normalization and
data cleaning by the data source specific modules in the :mod:`pudl.transform
subpackage.

pudl.extract.eia860 module

Retrieve data from EIA Form 860 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 860 data.

	
class pudl.extract.eia860.Extractor(*args, **kwargs)

	Bases: pudl.extract.excel.GenericExtractor

Extractor for the excel dataset EIA860.

	
static get_dtypes(page, **partition)

	Returns dtypes for plant id columns.

	
process_raw(df, page, **partition)

	Apply necessary pre-processing to the dataframe.

	Rename columns based on our compiled spreadsheet metadata

	Add report_year if it is missing

	Add a flag indicating if record came from EIA 860, or EIA 860M

	Fix any generator_id values with leading zeroes.

pudl.extract.eia860m module

Retrieve data from EIA Form 860M spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 860M data. EIA 860M is only used in
conjunction with EIA 860. This module boths extracts EIA 860M and appends
the extracted EIA 860M dataframes to the extracted EIA 860 dataframes. Example
setup with pre-genrated eia860_raw_dfs and datastore as ds:

	eia860m_raw_dfs = pudl.extract.eia860m.Extractor(ds).extract(
	pc.working_partitions[‘eia860m’][‘year_month’])

	eia860_raw_dfs = pudl.extract.eia860m.append_eia860m(
	eia860_raw_dfs=eia860_raw_dfs, eia860m_raw_dfs=eia860m_raw_dfs)

	
class pudl.extract.eia860m.Extractor(*args, **kwargs)

	Bases: pudl.extract.excel.GenericExtractor

Extractor for the excel dataset EIA860M.

	
static get_dtypes(page, **partition)

	Returns dtypes for plant id columns.

	
process_raw(df, page, **partition)

	Adds source column and report_year column if missing.

	
pudl.extract.eia860m.append_eia860m(eia860_raw_dfs, eia860m_raw_dfs)

	Append EIA 860M to the pages to.

	Parameters

	
	eia860_raw_dfs (dictionary) – dictionary of pandas.Dataframe’s from EIA
860 raw tables. Restult of
pudl.extract.eia860.Extractor().extract()

	eia860m_raw_dfs (dictionary) – dictionary of pandas.Dataframe’s from EIA
860M raw tables. Restult of
pudl.extract.eia860m.Extractor().extract()

	Returns

	augumented eia860_raw_dfs dictionary of pandas.DataFrame’s.
Each raw page stored in eia860m_raw_dfs appened to its eia860_raw_dfs
counterpart.

	Return type

	dictionary

pudl.extract.eia861 module

Retrieve data from EIA Form 861 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 861 data.

	
class pudl.extract.eia861.Extractor(*args, **kwargs)

	Bases: pudl.extract.excel.GenericExtractor

Extractor for the excel dataset EIA861.

	
static get_dtypes(page, **partition)

	Returns dtypes for plant id columns.

	
process_raw(df, page, **partition)

	Rename columns with location.

	
static process_renamed(df, page, **partition)

	Adds report_year column if missing.

pudl.extract.eia923 module

Retrieves data from EIA Form 923 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 923 data. Currenly only
years 2009-2016 work, as they share nearly identical file formatting.

	
class pudl.extract.eia923.Extractor(*args, **kwargs)

	Bases: pudl.extract.excel.GenericExtractor

Extractor for EIA form 923.

	
static get_dtypes(page, **partition)

	Returns dtypes for plant id columns.

	
static process_final_page(df, page)

	Removes reserved columns from the final dataframe.

	
process_raw(df, page, **partition)

	Drops reserved columns.

	
static process_renamed(df, page, **partition)

	Cleans up unnamed_0 column in stocks page, drops invalid plan_id_eia rows.

pudl.extract.epacems module

Retrieve data from EPA CEMS hourly zipped CSVs.

This modules pulls data from EPA’s published CSV files.

	
pudl.extract.epacems.CSV_DTYPES = {'CO2_MASS': <class 'float'>, 'CO2_MASS (tons)': <class 'float'>, 'CO2_MASS_MEASURE_FLG': StringDtype, 'FAC_ID': Int64Dtype(), 'GLOAD': <class 'float'>, 'GLOAD (MW)': <class 'float'>, 'HEAT_INPUT': <class 'float'>, 'HEAT_INPUT (mmBtu)': <class 'float'>, 'NOX_MASS': <class 'float'>, 'NOX_MASS (lbs)': <class 'float'>, 'NOX_MASS_MEASURE_FLG': StringDtype, 'NOX_RATE': <class 'float'>, 'NOX_RATE (lbs/mmBtu)': <class 'float'>, 'NOX_RATE_MEASURE_FLG': StringDtype, 'OP_DATE': StringDtype, 'OP_HOUR': Int64Dtype(), 'OP_TIME': <class 'float'>, 'ORISPL_CODE': Int64Dtype(), 'SLOAD': <class 'float'>, 'SLOAD (1000 lbs)': <class 'float'>, 'SLOAD (1000lb/hr)': <class 'float'>, 'SO2_MASS': <class 'float'>, 'SO2_MASS (lbs)': <class 'float'>, 'SO2_MASS_MEASURE_FLG': StringDtype, 'STATE': StringDtype, 'UNITID': StringDtype, 'UNIT_ID': Int64Dtype()}

	A dictionary containing column names (keys) and data types (values)
for EPA CEMS.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class pudl.extract.epacems.EpaCemsDatastore(datastore: pudl.workspace.datastore.Datastore)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper class to extract EpaCems resources from datastore.

EpaCems resources are identified by a year and a state. Each of these zip files
contain monthly zip files that in turn contain csv files. This class implements
get_data_frame method that will concatenate tables for a given state and month
across all months.

	
get_data_frame(partition: pudl.extract.epacems.EpaCemsPartition) → pandas.core.frame.DataFrame

	Constructs dataframe holding data for a given (year, state) partition.

	
class pudl.extract.epacems.EpaCemsPartition(year: str [https://docs.python.org/3/library/stdtypes.html#str], state: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Represents EpaCems partition identifying unique resource file.

	
get_filters()

	Returns filters for retrieving given partition resource from Datastore.

	
get_key()

	Returns hashable key for use with EpaCemsDatastore.

	
get_monthly_file(month: int [https://docs.python.org/3/library/functions.html#int]) → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns the filename (without suffix) that contains the monthly data.

	
state: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 1

	
year: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 0

	
pudl.extract.epacems.IGNORE_COLS = {'CO2_RATE', 'CO2_RATE (tons/mmBtu)', 'CO2_RATE_MEASURE_FLG', 'FACILITY_NAME', 'SO2_RATE', 'SO2_RATE (lbs/mmBtu)', 'SO2_RATE_MEASURE_FLG'}

	The set of EPA CEMS columns to ignore when reading data.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.extract.epacems.RENAME_DICT = {'CO2_MASS': 'co2_mass_tons', 'CO2_MASS (tons)': 'co2_mass_tons', 'CO2_MASS_MEASURE_FLG': 'co2_mass_measurement_code', 'FAC_ID': 'facility_id', 'GLOAD': 'gross_load_mw', 'GLOAD (MW)': 'gross_load_mw', 'HEAT_INPUT': 'heat_content_mmbtu', 'HEAT_INPUT (mmBtu)': 'heat_content_mmbtu', 'NOX_MASS': 'nox_mass_lbs', 'NOX_MASS (lbs)': 'nox_mass_lbs', 'NOX_MASS_MEASURE_FLG': 'nox_mass_measurement_code', 'NOX_RATE': 'nox_rate_lbs_mmbtu', 'NOX_RATE (lbs/mmBtu)': 'nox_rate_lbs_mmbtu', 'NOX_RATE_MEASURE_FLG': 'nox_rate_measurement_code', 'OP_DATE': 'op_date', 'OP_HOUR': 'op_hour', 'OP_TIME': 'operating_time_hours', 'ORISPL_CODE': 'plant_id_eia', 'SLOAD': 'steam_load_1000_lbs', 'SLOAD (1000 lbs)': 'steam_load_1000_lbs', 'SLOAD (1000lb/hr)': 'steam_load_1000_lbs', 'SO2_MASS': 'so2_mass_lbs', 'SO2_MASS (lbs)': 'so2_mass_lbs', 'SO2_MASS_MEASURE_FLG': 'so2_mass_measurement_code', 'STATE': 'state', 'UNITID': 'unitid', 'UNIT_ID': 'unit_id_epa'}

	A dictionary containing EPA CEMS column names (keys) and replacement
names to use when reading those columns into PUDL (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.epacems.extract(epacems_years, states, ds: pudl.workspace.datastore.Datastore)

	Coordinate the extraction of EPA CEMS hourly DataFrames.

	Parameters

	
	epacems_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The years of CEMS data to extract, as 4-digit
integers.

	states (list [https://docs.python.org/3/library/stdtypes.html#list]) – The states whose CEMS data we want to extract, indicated
by 2-letter US state codes.

	ds (Datastore) – Initialized datastore

	Yields

	dict – a dictionary with a single EPA CEMS tabular data resource name as
the key, having the form “hourly_emissions_epacems_YEAR_STATE” where
YEAR is a 4 digit number and STATE is a lower case 2-letter code for a
US state. The value is a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing all the
raw EPA CEMS hourly emissions data for the indicated state and year.

pudl.extract.epaipm module

Retrieve data from EPA’s Integrated Planning Model (IPM) v6.

Unlike most of the PUDL data sources, IPM is not an annual timeseries. This
file assumes that only v6 will be used as an input, so there are a limited
number of files.

This module was written by @gschivley [https://github.com/gschivley]

	
class pudl.extract.epaipm.EpaIpmDatastore(datastore: pudl.workspace.datastore.Datastore)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper for extracting EpaIpm dataframes from Datastore.

	
SETTINGS = (TableSettings(table_name='transmission_single_epaipm', file='table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx', excel_settings={'skiprows': 3, 'usecols': 'B:F', 'index_col': [0, 1]}), TableSettings(table_name='transmission_joint_epaipm', file='table_3-5_transmission_joint_ipm.csv', excel_settings={}), TableSettings(table_name='load_curves_epaipm', file='table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', excel_settings={'skiprows': 3, 'usecols': 'B:AB'}), TableSettings(table_name='plant_region_map_epaipm_active', file='needs_v6_november_2018_reference_case_0.xlsx', excel_settings={'sheet_name': 'NEEDS v6_Active', 'usecols': 'C,I'}), TableSettings(table_name='plant_region_map_epaipm_retired', file='needs_v6_november_2018_reference_case_0.xlsx', excel_settings={'sheet_name': 'NEEDS v6_Retired_Through2021', 'usecols': 'C,I'}))

	

	
get_dataframe(table_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → pandas.core.frame.DataFrame

	Retrieve the specified file from the epaipm archive.

	Parameters

	
	table_name – table name, from self.table_filename

	pandas_args – pandas arguments for parsing the file

	Returns

	Pandas dataframe of EPA IPM data.

	
get_table_settings(table_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → pudl.extract.epaipm.TableSettings

	Returns TableSettings for a given table_name.

	
class pudl.extract.epaipm.TableSettings(table_name: str [https://docs.python.org/3/library/stdtypes.html#str], file: str [https://docs.python.org/3/library/stdtypes.html#str], excel_settings: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any] = {})

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Contains information for how to access and load EpaIpm dataframes.

	
excel_settings: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Alias for field number 2

	
file: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 1

	
table_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 0

	
pudl.extract.epaipm.extract(epaipm_tables: List[str [https://docs.python.org/3/library/stdtypes.html#str]], ds: pudl.workspace.datastore.Datastore) → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], pandas.core.frame.DataFrame]

	Extracts data from IPM files.

	Parameters

	
	epaipm_tables (iterable) – A tuple or list of table names to extract

	ds (EpaIpmDatastore) – Initialized datastore

	Returns

	dictionary of DataFrames with extracted (but not yet transformed)
data from each file.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.extract.excel module

Load excel metadata CSV files form a python data package.

	
class pudl.extract.excel.GenericExtractor(ds)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Contains logic for extracting panda.DataFrames from excel spreadsheets.

This class implements the generic dataset agnostic logic to load data
from excel spreadsheet simply by using excel Metadata for given dataset.

It is expected that individual datasets wil subclass this code and add
custom business logic by overriding necessary methods.

When implementing custom business logic, the following should be modified:

	DATASET class attribute controls which excel metadata should be loaded.

2. BLACKLISTED_PAGES class attribute specifies which pages should not
be loaded from the underlying excel files even if the metadata is
available. This can be used for experimental/new code that should not be
run yet.

3. dtypes() should return dict with {column_name: pandas_datatype} if you
need to specify which datatypes should be uded upon loading.

4. If data cleanup is necessary, you can apply custom logic by overriding
one of the following functions (they all return the modified dataframe):

	process_raw() is applied right after loading the excel DataFrame
from the disk.

	process_renamed() is applied after input columns were renamed to
standardized pudl columns.

	process_final_page() is applied when data from all available years
is merged into single DataFrame for a given page.

5. get_datapackage_resources() if partition is anything other than a year,
this method should be overwritten in the dataset-specific extractor.

	
BLACKLISTED_PAGES = []

	List of supported pages that should not be extracted.

	
METADATA = None

	Instance of metadata object to use with this extractor.

	
excel_filename(page, **partition)

	Produce the xlsx document file name as it will appear in the archive.

	Parameters

	
	page – pudl name for the dataset contents, eg
“boiler_generator_assn” or “coal_stocks”

	partition – partition to load. (ex: 2009 for year partition or
“2020-08” for year_month partition)

	Returns

	string name of the xlsx file

	
extract(**partitions)

	Extracts dataframes.

Returns dict where keys are page names and values are
DataFrames containing data across given years.

	Parameters

	partitions (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or string) – list of partitions to
extract. (Ex: [2009, 2010] if dataset is partitioned by years
or ‘2020-08’ if dataset is partitioned by year_month)

	
static get_dtypes(page, **partition)

	Provide custom dtypes for given page and partition.

	
load_excel_file(page, **partition)

	Produce the ExcelFile object for the given (partition, page).

	Parameters

	
	page (str [https://docs.python.org/3/library/stdtypes.html#str]) – pudl name for the dataset contents, eg
“boiler_generator_assn” or “coal_stocks”

	partition – partition to load. (ex: 2009 for year partition or
“2020-08” for year_month partition)

	Returns

	pd.ExcelFile instance with the parsed excel spreadsheet frame

	
static process_final_page(df, page)

	Final processing stage applied to a page DataFrame.

	
process_raw(df, page, **partition)

	Transforms raw dataframe and rename columns.

	
static process_renamed(df, page, **partition)

	Transforms dataframe after columns are renamed.

	
class pudl.extract.excel.Metadata(dataset_name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Load Excel metadata from Python package data.

Excel sheet files may contain many different tables. When we load those
into dataframes, metadata tells us how to do this. Metadata generally informs
us about the position of a given page in the file (which sheet and which row)
and it informs us how to translate excel column names into standardized
column names.

When metadata object is instantiated, it is given ${dataset} name and it
will attempt to load csv files from pudl.package_data.meta.xlsx_maps.${dataset}
package.

It expects the following kinds of files:

	skiprows.csv tells us how many initial rows should be skipped when loading
data for given (partition, page).

	skipfooter.csv tells us how many bottom rows should be skipped when
loading data for given partition (partition, page).

	tab_map.csv tells us what is the excel sheet name that should be read
when loading data for given (partition, page)

	column_map/${page}.csv currently informs us how to translate input column
names to standardized pudl names for given (partition, input_col_name).
Relevant page is encoded in the filename.

	
get_all_columns(page)

	Returns list of all pudl (standardized) columns for a given page (across all partition).

	
get_all_pages()

	Returns list of all known pages.

	
get_column_map(page, **partition)

	Returns the dictionary mapping input columns to pudl columns for given partition and page.

	
get_dataset_name()

	Returns the name of the dataset described by this metadata.

	
get_file_name(page, **partition)

	Returns file name of given partition and page.

	
get_sheet_name(page, **partition)

	Returns name of the excel sheet that contains the data for given partition and page.

	
get_skipfooter(page, **partition)

	Returns number of bottom rows to skip when loading given partition and page.

	
get_skiprows(page, **partition)

	Returns number of initial rows to skip when loading given partition and page.

pudl.extract.ferc1 module

Tools for extracting data from the FERC Form 1 FoxPro database for use in PUDL.

FERC distributes the annual responses to Form 1 as binary FoxPro database
files. This format is no longer widely supported, and so our first challenge in
accessing the Form 1 data is to convert it into a modern format. In addition,
FERC distributes one database for each year, and these databases are not
explicitly linked together. Over time the structure has changed as new tables
and fields have been added. In order to be able to use the data to do analyses
across many years, we need to bring all of it into a unified structure. However
it appears that these changes are only entirely additive – the most recent
versions of the DB contain all the tables and fields that existed in earlier
versions.

PUDL uses the most recently released year of data as a template, and infers the
structure of the FERC Form 1 database based on the strings embedded within the
binary files, pulling out the names of tables and their constituent columns.
The structure of the database is also informed by information we found on the
FERC website, including a mapping between the table names, DBF file names,
and the pages of the Form 1 (add link to file, which should distributed with
the docs) that the data was gathered from, as well as a diagram of the
structure of the database as it existed in 2015 (add link/embed image).

Using this inferred structure PUDL creates an SQLite database mirroring the
FERC database using sqlalchemy. Then we use a python package called
dbfread [https://dbfread.readthedocs.io/en/latest/] to extract the data from
the DBF tables, and insert it virtually unchanged into the SQLite database.
However, we do compile a master table of the all the respondent IDs and
respondent names, which all the other tables refer to. Unlike the other tables,
this table has no report_year and so it represents a merge of all the years
of data. In the event that the name associated with a given respondent ID has
changed over time, we retain the most recently reported name.

Ths SQLite based compilation of the original FERC Form 1 databases can
accommodate all 116 tables from all the published years of data (beginning in
1994). Including all the data through 2018, the database takes up more than
7GB of disk space. However, almost 90% of that “data” is embeded binary files
in two tables. If those tables are excluded, the database is less than 800MB
in size.

The process of cloning the FERC Form 1 database(s) is coordinated by a script
called ferc1_to_sqlite implemented in pudl.convert.ferc1_to_sqlite
which is controlled by a YAML file. See the example file distributed with the
package.

Once the cloned SQLite database has been created, we use it as an input into
the PUDL ETL pipeline, and we extract a small subset of the available tables
for further processing and integration with other data sources like the EIA 860
and EIA 923.

	
class pudl.extract.ferc1.FERC1FieldParser(table, memofile=None)

	Bases: dbfread.field_parser.FieldParser

A custom DBF parser to deal with bad FERC Form 1 data types.

	
parseN(field, data)

	Augments the Numeric DBF parser to account for bad FERC data.

There are a small number of bad entries in the backlog of FERC Form 1
data. They take the form of leading/trailing zeroes or null characters
in supposedly numeric fields, and occasionally a naked ‘.’

Accordingly, this custom parser strips leading and trailing zeros and
null characters, and replaces a bare ‘.’ character with zero, allowing
all these fields to be cast to numeric values.

	Parameters

	
	() (data) –

	() –

	() –

	
class pudl.extract.ferc1.Ferc1Datastore(datastore: pudl.workspace.datastore.Datastore)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple datastore wrapper for accessing ferc1 resources.

	
PACKAGE_PATH = 'pudl.package_data.meta.ferc1_row_maps'

	

	
get_dir(year: int [https://docs.python.org/3/library/functions.html#int]) → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns the path where individual ferc1 files are stored inside the yearly archive.

	
get_file(year: int [https://docs.python.org/3/library/functions.html#int], filename: str [https://docs.python.org/3/library/stdtypes.html#str])

	Opens given ferc1 file from the corresponding archive.

	
pudl.extract.ferc1.PUDL_RIDS = {514: 'AEP Texas', 519: 'Upper Michigan Energy Resources Company', 522: 'Luning Energy Holdings LLC, Invenergy Investments', 529: 'Tri-State Generation and Transmission Association', 531: 'Basin Electric Power Cooperative'}

	Missing FERC 1 Respondent IDs for which we have identified the respondent.

	
pudl.extract.ferc1.accumulated_depreciation(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of the fields of accumulated_depreciation_ferc1.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the accumulated_depreciation_ferc1.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing all
accumulated_depreciation_ferc1 records.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.add_sqlite_table(table_name, sqlite_meta, dbc_map, ds, refyear=2019, testing=False, bad_cols=())

	Adds a new Table to the FERC Form 1 database schema.

Creates a new sa.Table object named table_name and add it to the
database schema contained in sqlite_meta. Use the information in the
dictionary dbc_map to translate between the DBF filenames in the
datastore (e.g. F1_31.DBF), and the full name of the table in the
FoxPro database (e.g. f1_fuel) and also between truncated column
names extracted from that DBF file, and the full column names extracted
from the DBC file. Read the column datatypes out of each DBF file and use
them to define the columns in the new Table object.

	Parameters

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new table to be added to the
database schema.

	sqlite_meta (sqlalchemy.schema.MetaData [https://docs.sqlalchemy.org/en/14/core/metadata.html#sqlalchemy.schema.MetaData]) – The database schema
to which the newly defined sqlalchemy.Table will be added.

	dbc_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of dictionaries

	ds (Ferc1Datastore) – Initialized datastore

	testing (bool [https://docs.python.org/3/library/functions.html#bool]) – Assume this is a test run, use sandboxes

	bad_cols (iterable of 2-tuples) – A list or other iterable containing
pairs of strings of the form (table_name, column_name), indicating
columns (and their parent tables) which should not be cloned
into the SQLite database for some reason.

	Returns

	None

	
pudl.extract.ferc1.check_ferc1_tables(refyear)

	Test each FERC 1 data year for compatibility with reference year schema.

	Parameters

	refyear (int [https://docs.python.org/3/library/functions.html#int]) – The reference year for testing compatibility of the
database schema with a FERC Form 1 table and year.

	Returns

	A dictionary having database table names as keys, and lists of
which years that table was compatible with the reference year as
values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.ferc1.dbf2sqlite(tables, years, refyear, pudl_settings, bad_cols=(), clobber=False, datastore=None)

	Clone the FERC Form 1 Databsae to SQLite.

	Parameters

	
	tables (iterable) – What tables should be cloned?

	years (iterable) – Which years of data should be cloned?

	refyear (int [https://docs.python.org/3/library/functions.html#int]) – Which database year to use as a template.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing paths and database URLs
used by PUDL.

	bad_cols (iterable of tuples) – A list of (table, column) pairs
indicating columns that should be skipped during the cloning
process. Both table and column are strings in this case, the
names of their respective entities within the database metadata.

	datastore (Datastore) – instance of a datastore to access the resources.

	Returns

	None

	
pudl.extract.ferc1.define_sqlite_db(sqlite_meta, dbc_map, ds, tables={'f1_106_2009': 'F1_106_2009', 'f1_106a_2009': 'F1_106A_2009', 'f1_106b_2009': 'F1_106B_2009', 'f1_208_elc_dep': 'F1_208_ELC_DEP', 'f1_231_trn_stdycst': 'F1_231_TRN_STDYCST', 'f1_324_elc_expns': 'F1_324_ELC_EXPNS', 'f1_325_elc_cust': 'F1_325_ELC_CUST', 'f1_331_transiso': 'F1_331_TRANSISO', 'f1_338_dep_depl': 'F1_338_DEP_DEPL', 'f1_397_isorto_stl': 'F1_397_ISORTO_STL', 'f1_398_ancl_ps': 'F1_398_ANCL_PS', 'f1_399_mth_peak': 'F1_399_MTH_PEAK', 'f1_400_sys_peak': 'F1_400_SYS_PEAK', 'f1_400a_iso_peak': 'F1_400A_ISO_PEAK', 'f1_429_trans_aff': 'F1_429_TRANS_AFF', 'f1_acb_epda': 'F1_2', 'f1_accumdepr_prvsn': 'F1_3', 'f1_accumdfrrdtaxcr': 'F1_4', 'f1_adit_190_detail': 'F1_5', 'f1_adit_190_notes': 'F1_6', 'f1_adit_amrt_prop': 'F1_7', 'f1_adit_other': 'F1_8', 'f1_adit_other_prop': 'F1_9', 'f1_allowances': 'F1_10', 'f1_allowances_nox': 'F1_ALLOWANCES_NOX', 'f1_audit_log': 'F1_78', 'f1_bal_sheet_cr': 'F1_11', 'f1_capital_stock': 'F1_12', 'f1_cash_flow': 'F1_13', 'f1_cmmn_utlty_p_e': 'F1_14', 'f1_cmpinc_hedge': 'F1_CMPINC_HEDGE', 'f1_cmpinc_hedge_a': 'F1_CMPINC_HEDGE_A', 'f1_co_directors': 'F1_18', 'f1_codes_val': 'F1_76', 'f1_col_lit_tbl': 'F1_79', 'f1_comp_balance_db': 'F1_15', 'f1_construction': 'F1_16', 'f1_control_respdnt': 'F1_17', 'f1_cptl_stk_expns': 'F1_19', 'f1_csscslc_pcsircs': 'F1_20', 'f1_dacs_epda': 'F1_21', 'f1_dscnt_cptl_stk': 'F1_22', 'f1_edcfu_epda': 'F1_23', 'f1_elc_op_mnt_expn': 'F1_27', 'f1_elc_oper_rev_nb': 'F1_26', 'f1_elctrc_erg_acct': 'F1_24', 'f1_elctrc_oper_rev': 'F1_25', 'f1_electric': 'F1_28', 'f1_email': 'F1_EMAIL', 'f1_envrnmntl_expns': 'F1_29', 'f1_envrnmntl_fclty': 'F1_30', 'f1_footnote_data': 'F1_85', 'f1_footnote_tbl': 'F1_87', 'f1_fuel': 'F1_31', 'f1_general_info': 'F1_32', 'f1_gnrt_plant': 'F1_33', 'f1_hydro': 'F1_86', 'f1_ident_attsttn': 'F1_88', 'f1_important_chg': 'F1_34', 'f1_incm_stmnt_2': 'F1_35', 'f1_income_stmnt': 'F1_36', 'f1_leased': 'F1_90', 'f1_load_file_names': 'F1_80', 'f1_long_term_debt': 'F1_93', 'f1_misc_dfrrd_dr': 'F1_38', 'f1_miscgen_expnelc': 'F1_37', 'f1_mthly_peak_otpt': 'F1_39', 'f1_mtrl_spply': 'F1_40', 'f1_nbr_elc_deptemp': 'F1_41', 'f1_nonutility_prop': 'F1_42', 'f1_note_fin_stmnt': 'F1_43', 'f1_nuclear_fuel': 'F1_44', 'f1_officers_co': 'F1_45', 'f1_othr_dfrrd_cr': 'F1_46', 'f1_othr_pd_in_cptl': 'F1_47', 'f1_othr_reg_assets': 'F1_48', 'f1_othr_reg_liab': 'F1_49', 'f1_overhead': 'F1_50', 'f1_pccidica': 'F1_51', 'f1_plant': 'F1_92', 'f1_plant_in_srvce': 'F1_52', 'f1_privilege': 'F1_81', 'f1_pumped_storage': 'F1_53', 'f1_purchased_pwr': 'F1_54', 'f1_r_d_demo_actvty': 'F1_59', 'f1_reconrpt_netinc': 'F1_55', 'f1_reg_comm_expn': 'F1_56', 'f1_respdnt_control': 'F1_57', 'f1_respondent_id': 'F1_1', 'f1_retained_erng': 'F1_58', 'f1_rg_trn_srv_rev': 'F1_RG_TRN_SRV_REV', 'f1_row_lit_tbl': 'F1_84', 'f1_s0_checks': 'F1_S0_CHECKS', 'f1_s0_filing_log': 'F1_S0_FILING_LOG', 'f1_sale_for_resale': 'F1_61', 'f1_sales_by_sched': 'F1_60', 'f1_sbsdry_detail': 'F1_91', 'f1_sbsdry_totals': 'F1_62', 'f1_sched_lit_tbl': 'F1_77', 'f1_schedules_list': 'F1_63', 'f1_security': 'F1_SECURITY', 'f1_security_holder': 'F1_64', 'f1_slry_wg_dstrbtn': 'F1_65', 'f1_steam': 'F1_89', 'f1_substations': 'F1_66', 'f1_sys_error_log': 'F1_82', 'f1_taxacc_ppchrgyr': 'F1_67', 'f1_unique_num_val': 'F1_83', 'f1_unrcvrd_cost': 'F1_68', 'f1_utltyplnt_smmry': 'F1_69', 'f1_work': 'F1_70', 'f1_xmssn_adds': 'F1_71', 'f1_xmssn_elc_bothr': 'F1_72', 'f1_xmssn_elc_fothr': 'F1_73', 'f1_xmssn_line': 'F1_74', 'f1_xtraordnry_loss': 'F1_75'}, refyear=2019, bad_cols=())

	Defines a FERC Form 1 DB structure in a given SQLAlchemy MetaData object.

Given a template from an existing year of FERC data, and a list of target
tables to be cloned, convert that information into table and column names,
and data types, stored within a SQLAlchemy MetaData object. Use that
MetaData object (which is bound to the SQLite database) to create all the
tables to be populated later.

	Parameters

	
	sqlite_meta (sa.MetaData) – A SQLAlchemy MetaData object which is bound
to the FERC Form 1 SQLite database.

	dbc_map (dict of dicts) – A dictionary of dictionaries, of the kind
returned by get_dbc_map(), describing the table and column names
stored within the FERC Form 1 FoxPro database files.

	ds (Ferc1Datastore) – Initialized Ferc1Datastore

	tables (iterable of strings) – List or other iterable of FERC database
table names that should be included in the database being defined.
e.g. ‘f1_fuel’ and ‘f1_steam’

	refyear (integer) – The year of the FERC Form 1 DB to use as a template
for creating the overall multi-year database schema.

	bad_cols (iterable of 2-tuples) – A list or other iterable containing
pairs of strings of the form (table_name, column_name), indicating
columns (and their parent tables) which should not be cloned
into the SQLite database for some reason.

	Returns

	the effects of the function are stored inside sqlite_meta

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
pudl.extract.ferc1.drop_tables(engine)

	Drop all FERC Form 1 tables from the SQLite database.

Creates an sa.schema.MetaData object reflecting the structure of the
database that the passed in engine refers to, and uses that schema to
drop all existing tables.

Todo

Treat DB connection as a context manager (with/as).

	Parameters

	engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – A DB Engine pointing at an
exising SQLite database to be deleted.

	Returns

	None

	
pudl.extract.ferc1.extract(ferc1_tables=('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'purchased_power_ferc1', 'plant_in_service_ferc1'), ferc1_years=(1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), pudl_settings=None)

	Coordinates the extraction of all FERC Form 1 tables into PUDL.

	Parameters

	
	ferc1_tables (iterable of strings) – List of the FERC 1 database tables
to be loaded into PUDL. These are the names of the tables in the
PUDL database, not the FERC Form 1 database.

	ferc1_years (iterable of ints) – List of years for which FERC Form 1
data should be loaded into PUDL. Note that not all years for which
FERC data is available may have been integrated into PUDL yet.

	Returns

	A dictionary of pandas DataFrames, with the names of PUDL
database tables as the keys. These are the raw unprocessed dataframes,
reflecting the data as it is in the FERC Form 1 DB, for passing off to
the data tidying and cleaning fuctions found in the
pudl.transform.ferc1 module.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the year is not in the list of years for which FERC data
 is available

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the year is not in the list of working FERC years

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the FERC table requested is not integrated into PUDL

	
pudl.extract.ferc1.fuel(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_fuel table records with plant names, >0 fuel.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_fuel table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_fuel records that
have plant_names and non-zero fuel amounts.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.get_dbc_map(ds, year, min_length=4)

	Extract names of all tables and fields from a FERC Form 1 DBC file.

Read the DBC file associated with the FERC Form 1 database for the given
year, and extract all printable strings longer than min_lengh.
Select those strings that appear to be database table names, and their
associated field for use in re-naming the truncated column names extracted
from the corresponding DBF files (those names are limited to having only 10
characters in their names.)

	Parameters

	
	ds (Ferc1Datastore) – Initialized datastore

	year – The year of data from which the database table and column
names are to be extracted. Typically this is expected to be the
most recently available year of FERC Form 1 data.

	Returns

	a dictionary whose keys are the long table names extracted
from the DBC file, and whose values are lists of pairs of values,
the first of which is the full name of each field in the table with
the same name as the key, and the second of which is the truncated
(<=10 character) long name of that field as found in the DBF file.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.ferc1.get_ferc1_meta(ferc1_engine)

	Grab the FERC Form 1 DB metadata and check that tables exist.

Connects to the FERC Form 1 SQLite database and reads in its metadata
(table schemas, types, etc.) by reflecting the database. Checks to make
sure the DB is not empty, and returns the metadata object.

	Parameters

	ferc1_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQL Alchemy database
connection engine for the PUDL FERC 1 DB.

	Returns

	sqlalchemy.Metadata A SQL Alchemy metadata object, containing
the definition of the DB structure.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If there are no tables in the SQLite Database.

	
pudl.extract.ferc1.get_fields(filedata)

	Produce the expected table names and fields from a DBC file.

	Parameters

	filedata – Contents of the DBC file from which to extract.

	Returns

	[fields]

	Return type

	dict of table_name

	
pudl.extract.ferc1.get_raw_df(ds, table, dbc_map, years=(1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019))

	Combine several years of a given FERC Form 1 DBF table into a dataframe.

	Parameters

	
	ds (Ferc1Datastore) – Initialized datastore

	table (string) – The name of the FERC Form 1 table from which data is
read.

	dbc_map (dict of dicts) – A dictionary of dictionaries, of the kind
returned by get_dbc_map(), describing the table and column names
stored within the FERC Form 1 FoxPro database files.

	min_length (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of consecutive printable

	years (list [https://docs.python.org/3/library/stdtypes.html#list]) – Range of years to be combined into a single DataFrame.

	Returns

	A DataFrame containing several years of FERC
Form 1 data for the given table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.missing_respondents(reported, observed, identified)

	Fill in missing respondents for the f1_respondent_id table.

	Parameters

	
	reported (iterable) – Respondent IDs appearing in f1_respondent_id.

	observed (iterable) – Respondent IDs appearing anywhere in the ferc1 DB.

	identified (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A {respondent_id: respondent_name} mapping for those
observed but not reported respondent IDs which we have been able to
identify based on circumstantial evidence. See also:
pudl.extract.ferc1.PUDL_RIDS

	Returns

	A list of dictionaries representing minimal f1_respondent_id table
records, of the form {“respondent_id”: ID, “respondent_name”: NAME}. These
records are generated only for unreported respondents. Identified respondents
get the values passed in through identified and the other observed but
unidentified respondents are named “Missing Respondent ID”

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.extract.ferc1.observed_respondents(ferc1_engine)

	Compile the set of all observed respondent IDs found in the FERC 1 database.

A significant number of FERC 1 respondent IDs appear in the data tables, but not
in the f1_respondent_id table. In order to construct a self-consisten database with
we need to find all of those missing respondent IDs and inject them into the table
when we clone the database.

	Parameters

	ferc1_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – An engine for connecting to the FERC 1
database.

	Returns

	Every respondent ID reported in any of the FERC 1 DB tables.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.extract.ferc1.plant_in_service(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of the fields of plant_in_service_ferc1.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the plant_in_service_ferc1 table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing all plant_in_service_ferc1
records.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_hydro(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_hydro for records that have plant names.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_hydro table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_hydro records that have
plant names.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_pumped_storage(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_plants_pumped_storage records with plant names.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_plants_pumped_storage table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_plants_pumped_storage
records that have plant names.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_small(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_small for records with minimum data criteria.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_small table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_small records that have
plant names and non zero demand, generation, operations,
maintenance, and fuel costs.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_steam(ferc1_meta, ferc1_table, ferc1_years)

	Create a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing valid raw f1_steam records.

Selected records must indicate a plant capacity greater than 0, and include
a non-null plant name.

	Parameters

	
	ferc1_meta (sqlalchemy.MetaData) – a MetaData object describing
the cloned FERC Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_steam table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_steam records that have
plant names and non-zero capacities.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.purchased_power(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame the fields of purchased_power_ferc1.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the purchased_power_ferc1 table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing all purchased_power_ferc1
records.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.show_dupes(table, dbc_map, data_dir, years=(1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), pk=('respondent_id', 'report_year', 'report_prd', 'row_number', 'spplmnt_num'))

	Identify duplicate primary keys by year within a given FERC Form 1 table.

	Parameters

	
	table (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the original FERC Form 1 table to identify
duplicate records in.

	years (iterable) – a list or other iterable containing the years that
should be searched for duplicate records. By default it is all
available years of FERC Form 1 data.

	pk (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of strings identifying the columns in the FERC Form 1
table that should be treated as a composite primary key. By default
this includes: respondent_id, report_year, report_prd, row_number,
and spplmnt_num.

	Returns

	None

pudl.extract.ferc714 module

Routines used for extracting the raw FERC 714 data.

	
pudl.extract.ferc714.TABLE_ENCODING = {'adjacency_ba_ferc714': 'iso-8859-1', 'demand_forecast_pa_ferc714': None, 'demand_hourly_pa_ferc714': None, 'demand_monthly_ba_ferc714': None, 'description_pa_ferc714': 'iso-8859-1', 'gen_plants_ba_ferc714': 'iso-8859-1', 'id_certification_ferc714': 'iso-8859-1', 'interchange_ba_ferc714': 'iso-8859-1', 'lambda_description_ferc714': 'iso-8859-1', 'lambda_hourly_ba_ferc714': None, 'net_energy_load_ba_ferc714': None, 'respondent_id_ferc714': None}

	Dictionary describing the character encodings of the FERC 714 CSV files.

	
pudl.extract.ferc714.TABLE_FNAME = {'adjacency_ba_ferc714': 'Part 2 Schedule 4 - Adjacent Balancing Authorities.csv', 'demand_forecast_pa_ferc714': 'Part 3 Schedule 3 - Planning Area Forecast Demand.csv', 'demand_hourly_pa_ferc714': 'Part 3 Schedule 2 - Planning Area Hourly Demand.csv', 'demand_monthly_ba_ferc714': 'Part 2 Schedule 2 - Balancing Authority Monthly Demand.csv', 'description_pa_ferc714': 'Part 3 Schedule 1 - Planning Area Description.csv', 'gen_plants_ba_ferc714': 'Part 2 Schedule 1 - Balancing Authority Generating Plants.csv', 'id_certification_ferc714': 'Part 1 Schedule 1 - Identification Certification.csv', 'interchange_ba_ferc714': 'Part 2 Schedule 5 - Balancing Authority Interchange.csv', 'lambda_description_ferc714': 'Part 2 Schedule 6 - System Lambda Description.csv', 'lambda_hourly_ba_ferc714': 'Part 2 Schedule 6 - Balancing Authority Hourly System Lambda.csv', 'net_energy_load_ba_ferc714': 'Part 2 Schedule 3 - Balancing Authority Net Energy For Load.csv', 'respondent_id_ferc714': 'Respondent IDs.csv'}

	Dictionary mapping PUDL tables to filenames within the FERC 714 zipfile.

	
pudl.extract.ferc714.extract(tables=('respondent_id_ferc714', 'id_certification_ferc714', 'gen_plants_ba_ferc714', 'demand_monthly_ba_ferc714', 'net_energy_load_ba_ferc714', 'adjacency_ba_ferc714', 'interchange_ba_ferc714', 'lambda_hourly_ba_ferc714', 'lambda_description_ferc714', 'description_pa_ferc714', 'demand_forecast_pa_ferc714', 'demand_hourly_pa_ferc714'), pudl_settings=None, ds=None)

	Extract the raw FERC Form 714 dataframes from their original CSV files.

	Parameters

	
	ferc714_tables (iterable) – The set of tables to be extracted.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A PUDL settings dictionary.

	ds (Datastore) – instance of the datastore

	Returns

	A dictionary of dataframes, with raw FERC 714 table names as the
keys, and minimally processed pandas.DataFrame instances as the values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.glue package

Submodules

	pudl.glue.eia_epacems module

	pudl.glue.ferc1_eia module

Module contents

Tools for integrating & reconciling different PUDL datasets with each other.

Many of the datasets integrated by PUDL report related information, but it’s
often not easy to programmatically relate the datasets to each other. The glue
subpackage provides tools for doing so, making all of the individual datasets
more useful, and enabling richer analyses.

In this subpackage there are two basic types of modules:

	those that implement general tools for connecting datasets together (like the
pudl.glue.zipper module which two tabular datasets based on a set of
mutually reported variables with no common IDs), and

	those that implement a connection between two specific datasets (like the
pudl.glue.ferc1_eia module).

In general we try to enable each dataset to be processed independently, and
optionally apply the glue to connect them to each other when both datasets for
which glue exists are being processed together.

pudl.glue.eia_epacems module

Extract, clean, and normalize the EPA-EIA crosswalk.

This module defines functions that read the raw EPA-EIA crosswalk file, clean
up the column names, and separate it into three distinctive normalize tables
for integration in the database. There are many gaps in the mapping of EIA
plant and generator ids to EPA plant and unit ids, so, for the time being these
tables are sparse.

The EPA, in conjunction with the EIA, plans to relase an crosswalk with fewer
gaps at the beginning of 2021. Until then, this module reads and cleans the
currently available crosswalk.

The raw crosswalk file was obtained from Greg Schivley. His methods for filling
in some of the gaps are not included in this version of the module.
https://github.com/grgmiller/EPA-EIA-Unit-Crosswalk

	
pudl.glue.eia_epacems.grab_clean_split()

	Clean raw crosswalk data, drop nans, and return split tables.

	Returns

	a dictionary of three normalized DataFrames comprised of the data
in the original crosswalk file. EPA plant id to EPA unit id; EPA plant
id to EIA plant id; and EIA plant id to EIA generator id to EPA unit
id.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.glue.eia_epacems.grab_n_clean_epa_orignal()

	Retrieve and clean column names for the original EPA-EIA crosswalk file.

	Returns

	
	a version of the EPA-EIA crosswalk containing only
	relevant columns. Columns names are clear and programatically
accessible.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.glue.eia_epacems.split_tables(df)

	Split the cleaned EIA-EPA crosswalk table into three normalized tables.

	Parameters

	pandas.DataFrame – a DataFrame of relevant, readible columns from the
EIA-EPA crosswalk. Output of grab_n_clean_epa_original().

	Returns

	a dictionary of three normalized DataFrames comprised of the data
in the original crosswalk file. EPA plant id to EPA unit id; EPA plant
id to EIA plant id; and EIA plant id to EIA generator id to EPA unit
id. Includes no nan values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.glue.ferc1_eia module

Extract and transform glue tables between FERC Form 1 and EIA 860/923.

FERC1 and EIA report on many of the same plants and utilities, but have no
embedded connection. We have combed through the FERC and EIA plants and
utilities to generate id’s which can connect these datasets. The resulting
fields in the PUDL tables are plant_id_pudl and utility_id_pudl,
respectively. This was done by hand in a spreadsheet which is in the
package_data/glue directory. When mapping plants, we considered a plant a
co-located collection of electricity generation equipment. If a coal plant was
converted to a natural gas unit, our aim was to consider this the same plant.
This module simply reads in the mapping spreadsheet and converts it to a
dictionary of dataframes.

Because these mappings were done by hand and for every one of FERC Form 1’s
thousands of reported plants, we know there are probably some incorrect or
incomplete mappings. If you see a plant_id_pudl or utility_id_pudl mapping
that you think is incorrect, please open an issue on our Github!

Note that the PUDL IDs may change over time. They are not guaranteed to be
stable. If you need to find a particular plant or utility reliably, you should
use its plant_id_eia, utility_id_eia, or utility_id_ferc1.

Another note about these id’s: these id’s map our definition of plants, which
is not the most granular level of plant unit. The generators are typically the
smaller, more interesting unit. FERC does not typically report in units
(although it sometimes does), but it does often break up gas units from coal
units. EIA reports on the generator and boiler level. When trying to use these
PUDL id’s, consider the granularity that you desire and the potential
implications of using a co-located set of plant infrastructure as an id.

	
pudl.glue.ferc1_eia.get_db_plants_eia(pudl_engine)

	Get a list of all EIA plants appearing in the PUDL DB.

This list of plants is used to determine which plants need to be added to
the FERC 1 / EIA plant mappings, where we assign PUDL Plant IDs. Unless a
new year’s worth of data has been added to the PUDL DB, but the plants
have not yet been mapped, all plants in the PUDL DB should also appear in
the plant mappings. It only makes sense to run this with a connection to a
PUDL DB that has all the EIA data in it.

	Parameters

	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – A database connection
engine for connecting to a PUDL SQLite database.

	Returns

	A DataFrame with plant_id_eia, plant_name_eia, and
state columns, for addition to the FERC 1 / EIA plant mappings.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.glue.ferc1_eia.get_db_plants_ferc1(pudl_settings, years)

	Pull a dataframe of all plants in the FERC Form 1 DB for the given years.

This function looks in the f1_steam, f1_gnrt_plant, f1_hydro and
f1_pumped_storage tables, and generates a dataframe containing every unique
combination of respondent_id (utility_id_ferc1) and plant_name is finds.
Also included is the capacity of the plant in MW (as reported in the
raw FERC Form 1 DB), the respondent_name (utility_name_ferc1) and a column
indicating which of the plant tables the record came from. Plant and
utility names are translated to lowercase, with leading and trailing
whitespace stripped and repeating internal whitespace compacted to a single
space.

This function is primarily meant for use generating inputs into the manual
mapping of FERC to EIA plants with PUDL IDs.

	Parameters

	
	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing various paths and database
URLs used by PUDL.

	years (iterable) – Years for which plants should be compiled.

	Returns

	A dataframe containing columns
utility_id_ferc1, utility_name_ferc1, plant_name, capacity_mw, and
plant_table. Each row is a unique combination of utility_id_ferc1 and
plant_name.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.glue.ferc1_eia.get_db_utils_eia(pudl_engine)

	Get a list of all EIA Utilities appearing in the PUDL DB.

	
pudl.glue.ferc1_eia.get_lost_plants_eia(pudl_engine)

	Identify any EIA plants which were mapped, but then lost from the DB.

	
pudl.glue.ferc1_eia.get_lost_utils_eia(pudl_engine)

	Get a list of all mapped EIA Utilites not found in the PUDL DB.

	
pudl.glue.ferc1_eia.get_mapped_plants_eia()

	Get a list of all EIA plants that have been assigned PUDL Plant IDs.

Read in the list of already mapped EIA plants from the FERC 1 / EIA plant
and utility mapping spreadsheet kept in the package_data.

	Parameters

	None –

	Returns

	A DataFrame listing the plant_id_eia and
plant_name_eia values for every EIA plant which has already been
assigned a PUDL Plant ID.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.glue.ferc1_eia.get_mapped_plants_ferc1()

	Generate a dataframe containing all previously mapped FERC 1 plants.

Many plants are reported in FERC Form 1 with different versions of the same
name in different years. Because FERC provides no unique ID for plants,
these names must be used as part of their identifier. We manually curate a
list of all the versions of plant names which map to the same actual plant.
In order to identify new plants each year, we have to compare the new plant
names and respondent IDs against this raw mapping, not the contents of the
PUDL data, since within PUDL we use one canonical name for the plant. This
function pulls that list of various plant names and their corresponding
utilities (both name and ID) for use in identifying which plants have yet
to be mapped when we are integrating new data.

	Parameters

	None –

	Returns

	plant_name,
utility_id_ferc1, and utility_name_ferc1. Each row represents a unique
combination of utility_id_ferc1 and plant_name.

	Return type

	pandas.DataFrame A DataFrame with three columns

	
pudl.glue.ferc1_eia.get_mapped_utils_eia()

	Get a list of all the EIA Utilities that have PUDL IDs.

	
pudl.glue.ferc1_eia.get_mapped_utils_ferc1()

	Read in the list of manually mapped utilities for FERC Form 1.

Unless a new utility has appeared in the database, this should be identical
to the full list of utilities available in the FERC Form 1 database.

	Parameters

	None –

	Returns

	pandas.DataFrame

	
pudl.glue.ferc1_eia.get_plant_map()

	Read in the manual FERC to EIA plant mapping data.

	
pudl.glue.ferc1_eia.get_unmapped_plants_eia(pudl_engine)

	Identify any as-of-yet unmapped EIA Plants.

	
pudl.glue.ferc1_eia.get_unmapped_plants_ferc1(pudl_settings, years)

	Generate a DataFrame of all unmapped FERC plants in the given years.

Pulls all plants from the FERC Form 1 DB for the given years, and compares
that list against the already mapped plants. Any plants found in the
database but not in the list of mapped plants are returned.

	Parameters

	
	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing various paths and database
URLs used by PUDL.

	years (iterable) – Years for which plants should be compiled from the
raw FERC Form 1 DB.

	Returns

	A dataframe containing five columns:
utility_id_ferc1, utility_name_ferc1, plant_name, capacity_mw, and
plant_table. Each row is a unique combination of utility_id_ferc1 and
plant_name, which appears in the FERC Form 1 DB, but not in the list of
manually mapped plants.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.glue.ferc1_eia.get_unmapped_utils_eia(pudl_engine)

	Get a list of all the EIA Utilities in the PUDL DB without PUDL IDs.

	
pudl.glue.ferc1_eia.get_unmapped_utils_ferc1(ferc1_engine)

	Generate a list of as-of-yet unmapped utilities from the FERC Form 1 DB.

Find any utilities which do exist in the cloned FERC Form 1 DB,
but which do not show up in the already mapped FERC respondents.

	Parameters

	ferc1_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – A database connection engine
for the cloned FERC Form 1 DB.

	Returns

	with columns “utility_id_ferc1” and “utility_name_ferc1”

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.glue.ferc1_eia.get_unmapped_utils_with_plants_eia(pudl_engine)

	Get all EIA Utilities that lack PUDL IDs but have plants/ownership.

	
pudl.glue.ferc1_eia.get_utility_map()

	Read in the manual FERC to EIA utility mapping data.

	
pudl.glue.ferc1_eia.glue(ferc1=False, eia=False)

	Generates a dictionary of dataframes for glue tables between FERC1, EIA.

That data is primarily stored in the plant_output and
utility_output tabs of package_data/glue/mapping_eia923_ferc1.xlsx in the
repository. There are a total of seven relations described in this data:

	utilities: Unique id and name for each utility for use across the
PUDL DB.

	plants: Unique id and name for each plant for use across the PUDL DB.

	utilities_eia: EIA operator ids and names attached to a PUDL
utility id.

	plants_eia: EIA plant ids and names attached to a PUDL plant id.

	utilities_ferc: FERC respondent ids & names attached to a PUDL
utility id.

	plants_ferc: A combination of FERC plant names and respondent ids,
associated with a PUDL plant ID. This is necessary because FERC does
not provide plant ids, so the unique plant identifier is a
combination of the respondent id and plant name.

	utility_plant_assn: An association table which describes which plants
have relationships with what utilities. If a record exists in this
table then combination of PUDL utility id & PUDL plant id does have
an association of some kind. The nature of that association is
somewhat fluid, and more scrutiny will likely be required for use in
analysis.

Presently, the ‘glue’ tables are a very basic piece of infrastructure for
the PUDL DB, because they contain the primary key fields for utilities and
plants in FERC1.

	Parameters

	
	ferc1 (bool [https://docs.python.org/3/library/functions.html#bool]) – Are we ingesting FERC Form 1 data?

	eia (bool [https://docs.python.org/3/library/functions.html#bool]) – Are we ingesting EIA data?

	Returns

	a dictionary of glue table DataFrames

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.load package

Submodules

	pudl.load.csv module

	pudl.load.metadata module

Module contents

Tools for handling the load set in pudl ETL.

pudl.load.csv module

Functions for loading processed PUDL data tables into CSV files.

Once each set of tables pertaining to a data source have been transformed, we
need to output them into CSV files which will become the data underlying
tabular data resources. Most of these resources contain an entire table. In the
case of larger tables (like EPA CEMS) the data may be partitioned into a
collection of gzipped CSV files which are all part of a single resource group.

These functions are designed to pick up where the transform step leaves off,
taking a dictionary of dataframes and applying a few last alterations that are
necessary only in the context of outputting the data as text based files. These
include converting floatified integer columns into strings with null values,
and appropriately indexing the dataframes as needed.

	
pudl.load.csv.clean_columns_dump(df, resource_name, datapkg_dir)

	Output cleaned data columns to a CSV file.

Ensures that the id column is set appropriately depending on whether the
table has a natural primary key or an autoincremnted pseudo-key. Ensures
that the set of columns in the dataframe to be output are identical to
those in the corresponding metadata definition. Transforms integer columns
with NA values into strings for dumping, as appropriate.

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exact name of the tabular resource which the
DataFrame df is going to be used to populate. This will be used
to name the output CSV file, and must match the corresponding
stored metadata template.

	datapkg_dir (path-like) – Path to the datapackage directory that the
CSV will be part of. Assumes CSV files get put in a “data”
directory within this directory.

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe containing the data to be written
out into CSV for inclusion in a tabular datapackage.

	Returns

	None

	
pudl.load.csv.csv_dump(df, resource_name, keep_index, datapkg_dir)

	Write a dataframe to CSV.

Set pandas.DataFrame.to_csv() arguments appropriately depending on
what data source we’re writing out, and then write it out. In practice
this means adding a .csv to the end of the resource name, and then, if it’s
part of epacems, adding a .gz after that.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame to be dumped to CSV.

	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exact name of the tabular resource which the
DataFrame df is going to be used to populate. This will be used
to name the output CSV file, and must match the corresponding
stored metadata template.

	keep_index (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, use the “id” column of df as the index
and output it.

	datapkg_dir (path-like) – Path to the top level datapackage directory.

	Returns

	None

	
pudl.load.csv.dict_dump(transformed_dfs, data_source, datapkg_dir)

	Wrapper for clean_columns_dump that takes a dictionary of DataFrames.

	Parameters

	
	transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which
tables from datasets (keys) correspond to normalized DataFrames of
values from that table (values)

	data_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the data source we are working with
(eia923, ferc1, etc.)

	datapkg_dir (path-like) – Path to the top level directory for the
datapackage these CSV files are part of. Will contain a “data”
directory and a datapackage.json file.

	Returns

	None

pudl.load.metadata module

Routines for generating PUDL tabular data package and resource metadata.

This module enables the generation and use of the metadata for tabular data
packages. It also saves and validates the datapackage once the
metadata is compiled. In general the routines in this module can only be used
after the referenced CSV’s have been generated by the top level PUDL ETL
module, and written out to the datapackage data directory by the
pudl.load.csv module.

The metadata comes from three basic sources: the datapkg_settings that are read
in from the YAML file specifying the datapackage or bundle of datapackages to
be generated, the CSV files themselves (their names, sizes, and hash values)
and the stored metadata template which ultimately determines the structure of
the relational database that these output tabular data packages represent, and
encodes field specific table schemas. See the “megadata” which is stored in
src/pudl/package_data/meta/datapkg/datapackage.json.

For unpartitioned tables which are contained in a single tabular data resource
this is a relatively straightforward process. However, larger tables that have
been partitioned into smaller tabular data resources that are part of a
resource group (e.g. EPA CEMS) have additional complexities. We have tried to
say “resource” when referring to an individual output CSV that has its own
metadata entry, and “table” when referring to whole tables which typically
contain only a single resource, but may be composed of hundreds or even
thousands of individual resources.

See https://frictionlessdata.io for more details on the tabular data package
standards.

In addition, we have included PUDL specific metadata fields that document the
ETL parameters which were used to process the data, temporal and spatial
coverage for each resource, Zenodo DOIs if appropriate, UUIDs to identify the
individual data packages as well as co-generated bundles of data packages that
can be used together to instantiate a single database, etc.

	
pudl.load.metadata.compile_keywords(data_sources)

	Compile the set of all keywords associated with given data sources.

The list of keywords we associate with each data source is stored in
the pudl.constants.keywords_by_data_source dictionary.

	Parameters

	data_sources (iterable) – List of data source codes (eia923, ferc1,
etc.) from which to gather keywords.

	Returns

	the set of all unique keywords associated with any of the input
data sources.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.load.metadata.compile_partitions(datapkg_settings)

	Given a datapackage settings dictionary, extract dataset partitions.

Iterates through all the datasets enumerated in the datapackage settings,
and compiles a dictionary indicating which datasets should be partitioned
and on what basis when they are output as tabular data resources. Currently
this only applies to the epacems dataset. Datapackage settings must be
validated because currently we inject EPA CEMS partitioning variables
(epacems_years, epacems_states) during the validation process.

	Parameters

	datapkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary containing validated datapackage
settings, mostly read in from a PUDL ETL settings file.

	Returns

	Uses table name (e.g. hourly_emissions_epacems) as keys, and
lists of partition variables (e.g. [“epacems_years”, “epacems_states”])
as the values. If no datasets within the datapackage are being
partitioned, this is an empty dictionary.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.data_sources_from_tables(table_names)

	Look up data sources used by the given list of PUDL database tables.

	Parameters

	tables_names (iterable) – a list of names of ‘seed’ tables, whose
dependencies we are seeking to find.

	Returns

	The set of data sources for the list of PUDL table names.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.load.metadata.generate_metadata(datapkg_settings, datapkg_resources, datapkg_dir, datapkg_bundle_uuid=None, datapkg_bundle_doi=None)

	Generate metadata for package tables and validate package.

The metadata for this package is compiled from the pkg_settings and from
the “megadata”, which is a json file containing the schema for all of the
possible pudl tables. Given a set of tables, this function compiles
metadata and validates the metadata and the package. This function assumes
datapackage CSVs have already been generated.

See Frictionless Data for the tabular data package specification:
http://frictionlessdata.io/specs/tabular-data-package/

	Parameters

	
	datapkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary containing package settings
containing top level elements of the data package JSON descriptor
specific to the data package including:
* name: short, unique package name e.g. pudl-eia923, ferc1-test
* title: One line human readable description.
* description: A paragraph long description.
* version: the version of the data package being published.
* keywords: For search purposes.

	datapkg_resources (list [https://docs.python.org/3/library/stdtypes.html#list]) – The names of tabular data resources that are
included in this data package.

	datapkg_dir (path-like) – The location of the directory for this
package. The data package directory will be a subdirectory in the
datapkg_dir directory, with the name of the package as the
name of the subdirectory.

	datapkg_bundle_uuid – A type 4 UUID identifying the ETL run which
which generated the data package – this indicates that the data
packages are compatible with each other

	datapkg_bundle_doi – A digital object identifier (DOI) that will be used
to archive the bundle of mutually compatible data packages. Needs
to be provided by an archiving service like Zenodo. This field may
also be added after the data package has been generated.

	Returns

	a Python dictionary representing a valid tabular data package
descriptor.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.get_autoincrement_columns(unpartitioned_tables)

	Grab the autoincrement columns for pkg tables.

	
pudl.load.metadata.get_datapkg_fks(datapkg_json)

	Get a dictionary of foreign key relationships from datapackage metadata.

	Parameters

	datapkg_json (path-like) – Path to the datapackage.json
containing the schema from which the foreign key relationships
will be read.

	Returns

	
	table names (keys) with lists of table names (values) which the
	key table has forgien key relationships with.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.get_dependent_tables(table_name, fk_relash)

	For a given table, get the list of all the other tables it depends on.

	Parameters

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The table whose dependencies we are looking for.

	fk_relash (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – table names (keys) with lists of table names (values)
which the key table has forgien key relationships with.

	Returns

	the set of all the tables the specified table depends upon.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.load.metadata.get_dependent_tables_from_list(table_names)

	Given a list of tables, find all the other tables they depend on.

Iterate over a list of input tables, adding them and all of their dependent
tables to a set, and return that set. Useful for determining which tables
need to be exported together to yield a self-contained subset of the PUDL
database.

	Parameters

	table_names (iterable) – a list of names of ‘seed’ tables, whose
dependencies we are seeking to find.

	Returns

	All tables with which any of the input tables have ForeignKey
relations.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.load.metadata.get_tabular_data_resource(resource_name, datapkg_dir, datapkg_settings, partitions=False)

	Create a Tabular Data Resource descriptor for a PUDL table.

Based on the information in the database, and some additional metadata this
function will generate a valid Tabular Data Resource descriptor, according
to the Frictionless Data specification, which can be found here:
https://frictionlessdata.io/specs/tabular-data-resource/

	Parameters

	
	resource_name (string) – name of the tabular data resource for which you
want to generate a Tabular Data Resource descriptor. This is the
resource name, rather than the database table name, because we
partition large tables into resource groups consisting of many
files.

	datapkg_dir (path-like) – The location of the directory for this
package. The data package directory will be a subdirectory in the
datapkg_dir directory, with the name of the package as the name
of the subdirectory.

	datapkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Python dictionary represeting the ETL
parameters read in from the settings file, pertaining to the
tabular datapackage this resource is part of.

	partitions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary with PUDL database table names as the
keys (e.g. hourly_emissions_epacems), and lists of partition
variables (e.g. [“epacems_years”, “epacems_states”]) as the keys.

	Returns

	A Python dictionary representing a tabular data resource
descriptor that complies with the Frictionless Data specification.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.get_unpartitioned_tables(resources, datapkg_settings)

	Generate a list of database table names from a list of data resources.

In the case of EPA CEMS and potentially other large datasets, we are
partitioning a single table into many tabular data resources that are
part of a resource group. However in some contexts we want to refer to the
list of corresponding databse tables, rather than the list of resources.

The partition key in the datapackage settings is the name of the table
without the partition elements, and so in the case of partitioned tables
we use that key as the name of the table. Otherwise we just use the name
of the resource.

	Parameters

	
	resources (iterable) – A list of tabular data resource names. They must
be expected to appear in the datapackage specified by
datapkg_settings.

	datapkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary containing validated datapackage
settings, mostly read in from a PUDL ETL settings file.

	Returns

	
	The names of the database tables corresponding to the tabular
	datapackage resource names that were passed in.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.load.metadata.hash_csv(csv_path)

	Calculates a SHA-256 hash of the CSV file for data integrity checking.

	Parameters

	csv_path (path-like) – Path the CSV file to hash.

	Returns

	the hexdigest of the hash, with a ‘sha256:’ prefix.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pudl.load.metadata.pull_resource_from_megadata(resource_name)

	Read metadata for a given data resource from the stored PUDL megadata.

	Parameters

	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the tabular data resource whose JSON
descriptor we are reading.

	Returns

	A Python dictionary containing the resource descriptor portion of
a data package descriptor, not expected to be valid or complete.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If table_name is not found exactly one time in the PUDL
 metadata library.

	
pudl.load.metadata.spatial_coverage(resource_name)

	Extract spatial coverage (country and state) for a given source.

	Parameters

	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the (potentially partitioned) resource
for which we are enumerating the spatial coverage. Currently this
is the only place we are able to access the partitioned spatial
coverage after the ETL process has completed.

	Returns

	A dictionary containing country and potentially state level
spatial coverage elements. Country keys are “country” for the full name
of country, “iso_3166-1_alpha-2” for the 2-letter ISO code, and
“iso_3166-1_alpha-3” for the 3-letter ISO code. State level elements
are “state” (a two letter ISO code for sub-national jurisdiction) and
“iso_3166-2” for the combined country-state code conforming to that
standard.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.temporal_coverage(resource_name, datapkg_settings)

	Extract start and end dates from ETL parameters for a given source.

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the (potentially partitioned) resource
for which we are enumerating the spatial coverage. Currently this
is the only place we are able to access the partitioned spatial
coverage after the ETL process has completed.

	datapkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Python dictionary represeting the ETL
parameters read in from the settings file, pertaining to the
tabular datapackage this resource is part of.

	Returns

	A dictionary of two items, keys “start_date” and “end_date” with
values in ISO 8601 YYYY-MM-DD format, indicating the extent of the
time series data contained within the resource. If the resource does
not contain time series data, the dates are null.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.validate_save_datapkg(datapkg_descriptor, datapkg_dir)

	Validate datapackage descriptor, save it, and validate some sample data.

	Parameters

	
	datapkg_descriptor (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A Python dictionary representation of a
(hopefully valid) tabular datapackage descriptor.

	datapkg_dir (path-like) – Directory into which the datapackage.json
file containing the tabular datapackage descriptor should be
written.

	Returns

	A dictionary containing the goodtables datapackage validation
report. Note that this will only be returned if there are no errors,
otherwise it is output as an error message.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the datapackage descriptor passed in is invalid, or if
 any of the tables has a data validation error.

pudl.output package

Submodules

	pudl.output.censusdp1tract module

	pudl.output.eia860 module

	pudl.output.eia923 module

	pudl.output.epacems module

	pudl.output.ferc1 module

	pudl.output.ferc714 module

	pudl.output.pudltabl module

Module contents

Useful post-processing and denormalized outputs based on PUDL.

The datapackages which are output by the PUDL ETL pipeline are well normalized
and suitable for use as relational database tables. This minimizes data
duplication and helps avoid many kinds of data corruption and the potential for
internal inconsistency. However, that’s not always the easiest kind of data to
work with. Sometimes we want all the names and IDs in a single dataframe or
table, for human readability. Sometimes you want the useful derived values.

This subpackage compiles a bunch of outputs we found we were commonly
generating, so that they can be done automatically and uniformly. They are
encapsulated within the pudl.output.pudltabl.PudlTabl class.

pudl.output.censusdp1tract module

Functions for reading data out of the Census DP1 SQLite Database.

	
pudl.output.censusdp1tract.get_layer(layer: Literal[state, county, tract], pudl_settings=None) → geopandas.geodataframe.GeoDataFrame

	Select one layer from the Census DP1 database.

Uses information within the Census DP1 database to set the coordinate
reference system and to identify the column containing the geometry. The
geometry column is renamed to “geom” as that’s the default withing
Geopandas. No other column names or types are altered.

	Parameters

	
	layer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which set of geometries to read, must be one of “state”,
“county”, or “tract”.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – A dictionary of PUDL settings, including
paths to various resources like the Census DP1 SQLite database. If
None, the user defaults are used.

	Returns

	geopandas.GeoDataFrame

pudl.output.eia860 module

Functions for pulling data primarily from the EIA’s Form 860.

	
pudl.output.eia860.assign_cc_unit_ids(gens_df)

	Assign PUDL Unit IDs for combined cycle generation units.

This applies only to combined cycle units reported as a combination of CT
and CA prime movers. All CT and CA generators within a plant that do not
already have a unit_id_pudl assigned will be given the same unit ID. The
bga_source column is set to one of several flags indicating what type
of arrangement was found:

	orphan_ct (zero CA gens, 1+ CT gens)

	orphan_ca (zero CT gens, 1+ CA gens)

	one_ct_one_ca_inferred (1 CT, 1 CA)

	one_ct_many_ca_inferred (1 CT, 1+ CA)

	many_ct_one_ca_inferred (1+ CT, 1 CA)

	many_ct_many_ca_inferred (1+ CT, 1+ CA)

Orphaned generators are still assigned a unit_id_pudl so that they can
potentially be associated with other generators in the same unit across
years. It’s likely that these orphans are a result of mislabled or missing
generators. Note that as generators are added or removed over time, the
flags associated with each generator may change, even though it remains
part of the same inferred unit.

	Returns

	pandas.DataFrame

	
pudl.output.eia860.assign_prime_fuel_unit_ids(gens_df, prime_mover_code, fuel_type_code_pudl)

	Assign a PUDL Unit ID to all generators with a given prime mover and fuel.

Within each plant, assign a Unit ID to all generators that don’t have one,
and that share the same fuel_type_code_pudl and prime_mover_code. This
is especially useful for differentiating between different types of steam
turbine generators, as there are so many different kinds of steam turbines,
and the only characteristic we have to differentiate between them in this
context is the fuel they consume. E.g. nuclear, geothermal, solar thermal,
natural gas, diesel, and coal can all run steam turbines, but it doesn’t
make sense to lump those turbines together into a single unit just because
they are located at the same plant.

This routine only assigns a PUDL Unit ID to generators that have a
consistently reported value of fuel_type_code_pudl across all of the years
of data in gens_df. This consistency is important because otherwise the
prime-fuel based unit assignment could put the same generator into different
units in different years, which is currently not compatible with our concept
of “units.”

	Parameters

	
	gens_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A collection of EIA generator records.
Must include the plant_id_eia, generator_id and
prime_mover_code and unit_id_pudl columns.

	prime_mover_code (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of prime mover codes for which we are
attempting to assign simple Unit IDs.

	fuel_type_code_pudl (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, then limit the records
assigned a unit_id to those that have the specified
fuel_type_code_pudl (e.g. “coal”, “gas”, “oil”, “nuclear”)

	Returns

	

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.assign_single_gen_unit_ids(gens_df, prime_mover_codes, fuel_type_code_pudl=None, label_prefix='single')

	Assign a unique PUDL Unit ID to each generator of a given prime mover type.

Calculate the maximum pre-existing PUDL Unit ID within each plant, and
assign each as of yet unidentified distinct generator within each plant
with an incrementing integer unit_id_pudl, beginning with 1 + the previous
maximum unit_id_pudl found in that plant. Mark that generator with a label
in the bga_source column consisting of label_prefix + the prime mover code.

If fuel_type_code_pudl is not None, then only assign new Unit IDs to those
generators having the specified fuel type code, and use that fuel type code
as the label prefix, e.g. “coal_st” for a coal-fired steam turbine.

Only generators having NA unit_id_pudl will be assigned a new ID.

	Parameters

	
	gens_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A collection of EIA generator records.
Must include the plant_id_eia, generator_id and
prime_mover_code and unit_id_pudl columns.

	prime_mover_codes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of prime mover codes for which we are
attempting to assign simple Unit IDs.

	fuel_type_code_pudl (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – If not None, then limit the records
assigned a unit_id to those that have the specified
fuel_type_code_pudl (e.g. “coal”, “gas”, “oil”, “nuclear”)

	label_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to use in labeling records as to how their
unit_id_pudl was set. Will be concatenated with the prime mover
code.

	Returns

	A new dataframe with the same rows and columns as
were passed in, but with the unit_id_pudl and bga_source columns updated
to reflect the newly assigned Unit IDs.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.assign_unit_ids(gens_df)

	Group generators into operational units using various heuristics.

Splits a few columns off from the big generator dataframe and uses several
heuristic functions to fill in missing unit_id_pudl values beyond those that
are generated in the boiler generator association process. Then merges the
new unit ID values back in to the generators dataframe.

	Parameters

	gens_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – An EIA generator table. Must contain at
least the columns: report_date, plant_id_eia, generator_id,
unit_id_pudl, bga_source, fuel_type_code_pudl, prime_mover_code,

	Returns

	Returned dataframe should only vary from the input in
that some NA values in the unit_id_pudl and bga_source columns
have been filled in with real values.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the input dataframe is missing required columns.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any generator is associated with more than one unit_id_pudl.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If row or column indices are changed.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If pre-existing unit_id_pudl or bga_source values are altered.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If contents of any other columns are altered at all.

	
pudl.output.eia860.boiler_generator_assn_eia860(pudl_engine, start_date=None, end_date=None)

	Pull all fields from the EIA 860 boiler generator association table.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all the fields from the EIA
860 boiler generator association table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.fill_unit_ids(gens_df)

	Back and forward fill Unit IDs for each plant / gen combination.

This routine assumes that the mapping of generators to units is constant
over time, and extends those mappings into years where no boilers have
been reported – since in the BGA we can only connect generators to each
other if they are both connected to a boiler.

Prior to 2014, combined cycle units didn’t report any “boilers” but in
latter years, they have been given “boilers” that correspond to their
generators, so that all of their fuel consumption is recorded alongside
that of other types of generators.

The bga_source field is set to “bfill_units” for those that were backfilled,
and “ffill_units” for those that were forward filled.

Note: We could back/forward fill the boiler IDs prior to the BGA process and
we ought to get consistent units across all the years that are the same as
what we fill in here. We could also back/forward fill boiler IDs and Unit
IDs after the fact, and we should get the same result. this will address
many currently “boilerless” CCNG units that use generator ID as boiler ID in
the latter years. We could try and apply this more generally, but in cases
of generator IDs that haven’t been used as boiler IDs, it would break the
foreign key relationship with the boiler table, unless we added them there
too, which seems like too much deep muddling.

	Parameters

	gens_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – An generators_eia860 dataframe, which must
contain columns: report_date, plant_id_eia, generator_id,
unit_id_pudl, bga_source.

	Returns

	with the same columns as the input dataframe, but
having some NA values filled in for both the unit_id_pudl and bga_source
columns.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.generators_eia860(pudl_engine, start_date=None, end_date=None, unit_ids=False)

	Pull all fields reported in the generators_eia860 table.

Merge in other useful fields including the latitude & longitude of the
plant that the generators are part of, canonical plant & operator names and
the PUDL IDs of the plant and operator, for merging with other PUDL data
sources.

Fill in data for adjacent years if requested, but never fill in earlier
than the earliest working year of data for EIA923, and never add more than
one year on after the reported data (since there should at most be a one
year lag between EIA923 and EIA860 reporting)

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	pudl_unit_ids (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use several heuristics to assign
individual generators to functional units. EXPERIMENTAL.

	Returns

	A DataFrame containing all the fields of the EIA 860
Generators table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.max_unit_id_by_plant(gens_df)

	Identify the largest unit ID associated with each plant so we don’t overlap.

The PUDL Unit IDs are sequentially assigned integers. To assign a new ID, we
need to know the largest existing Unit ID within a plant. This function
calculates that largest existing ID, or uses zero, if no Unit IDs are set
within the plant.

Note that this calculation depends on having all of the pre-existing
generators and units still available in the dataframe!

	Parameters

	gens_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A generators_eia860 dataframe containing at
least the columns plant_id_eia and unit_id_pudl.

	Returns

	Having two columns: plant_id_eia and max_unit_id_pudl
in which each row should be unique.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.ownership_eia860(pudl_engine, start_date=None, end_date=None)

	Pull a useful set of fields related to ownership_eia860 table.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing a useful set of fields related
to the EIA 860 Ownership table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.plants_eia860(pudl_engine, start_date=None, end_date=None)

	Pull all fields from the EIA Plants tables.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all the fields of the EIA 860
Plants table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.plants_utils_eia860(pudl_engine, start_date=None, end_date=None)

	Create a dataframe of plant and utility IDs and names from EIA 860.

Returns a pandas dataframe with the following columns:
- report_date (in which data was reported)
- plant_name_eia (from EIA entity)
- plant_id_eia (from EIA entity)
- plant_id_pudl
- utility_id_eia (from EIA860)
- utility_name_eia (from EIA860)
- utility_id_pudl

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing plant and utility IDs and
names from EIA 860.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.utilities_eia860(pudl_engine, start_date=None, end_date=None)

	Pull all fields from the EIA860 Utilities table.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all the fields of the EIA 860
Utilities table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.output.eia923 module

Functions for pulling EIA 923 data out of the PUDl DB.

	
pudl.output.eia923.FUEL_COST_CATEGORIES_EIAAPI = [41696, 41762, 41740]

	The category ids for fuel costs by fuel for electricity for coal, gas and oil.

Each category id is a peice of a query to EIA’s API. Each query here contains
a set of state-level child series which contain fuel cost data.

	See EIA’s query browse here:
	
	Coal: https://www.eia.gov/opendata/qb.php?category=41696

	Gas: https://www.eia.gov/opendata/qb.php?category=41762

	Oil: https://www.eia.gov/opendata/qb.php?category=41740

	
pudl.output.eia923.boiler_fuel_eia923(pudl_engine, freq=None, start_date=None, end_date=None)

	Pull records from the boiler_fuel_eia923 table in a given data range.

Optionally, aggregate the records over some timescale – monthly, yearly,
quarterly, etc. as well as by fuel type within a plant.

If the records are not being aggregated, all of the database fields are
available. If they’re being aggregated, then we preserve the following
fields. Per-unit values are re-calculated based on the aggregated totals.
Totals are summed across whatever time range is being used, within a
given plant and fuel type.

	fuel_consumed_units (sum)

	fuel_mmbtu_per_unit (weighted average)

	fuel_consumed_mmbtu (sum)

	sulfur_content_pct (weighted average)

	ash_content_pct (weighted average)

In addition, plant and utility names and IDs are pulled in from the EIA
860 tables.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all records from the EIA 923
Boiler Fuel table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.convert_cost_json_to_df(response_fuel_state_annual)

	Convert a fuel-type/state response into a clean dataframe.

	Parameters

	response_fuel_state_annual (api response) – an EIA API response which
contains state-level series including monthly fuel cost data.

	Returns

	a dataframe containing state-level montly fuel cost.
The table contains the following columns, some of which are refernce
columns: ‘report_date’, ‘fuel_cost_per_unit’, ‘state’,
‘fuel_type_code_pudl’, ‘units’ (ref), ‘series_id’ (ref),
‘name’ (ref).

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.fuel_receipts_costs_eia923(pudl_engine, freq=None, start_date=None, end_date=None, fill=False, roll=False)

	Pull records from fuel_receipts_costs_eia923 table in given date range.

Optionally, aggregate the records at a monthly or longer timescale, as well
as by fuel type within a plant, by setting freq to something other than
the default None value.

If the records are not being aggregated, then all of the fields found in
the PUDL database are available. If they are being aggregated, then the
following fields are preserved, and appropriately summed or re-calculated
based on the specified aggregation. In both cases, new total values are
calculated, for total fuel heat content and total fuel cost.

	plant_id_eia

	report_date

	fuel_type_code_pudl (formerly energy_source_simple)

	fuel_qty_units (sum)

	fuel_cost_per_mmbtu (weighted average)

	total_fuel_cost (sum)

	fuel_consumed_mmbtu (sum)

	heat_content_mmbtu_per_unit (weighted average)

	sulfur_content_pct (weighted average)

	ash_content_pct (weighted average)

	moisture_content_pct (weighted average)

	mercury_content_ppm (weighted average)

	chlorine_content_ppm (weighted average)

In addition, plant and utility names and IDs are pulled in from the EIA
860 tables.

Optionally fill in missing fuel costs based on monthly state averages
which are pulled from the EIA’s open data API, and/or use a rolling average
to fill in gaps in the fuel costs. These behaviors are controlled by the
fill and roll parameters. If you set fill=True you need to
ensure that you have stored your API key in an environment variable named
API_KEY_EIA. You can register for a free EIA API key here:

https://www.eia.gov/opendata/register.php

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	fill (boolean) – if set to True, fill in missing coal, gas and oil fuel
cost per mmbtu from EIA’s API. This fills with montly state-level
averages.

	roll (boolean) – if set to True, apply a rolling average to a
subset of output table’s columns (currently only
‘fuel_cost_per_mmbtu’ for the frc table).

	Returns

	A DataFrame containing all records from the EIA 923
Fuel Receipts and Costs table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.generation_eia923(pudl_engine, freq=None, start_date=None, end_date=None)

	Pull records from the boiler_fuel_eia923 table in a given data range.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all records from the EIA 923
Generation table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.generation_fuel_eia923(pudl_engine, freq=None, start_date=None, end_date=None)

	Pull records from the generation_fuel_eia923 table in given date range.

Optionally, aggregate the records over some timescale – monthly, yearly,
quarterly, etc. as well as by fuel type within a plant.

If the records are not being aggregated, all of the database fields are
available. If they’re being aggregated, then we preserve the following
fields. Per-unit values are re-calculated based on the aggregated totals.
Totals are summed across whatever time range is being used, within a
given plant and fuel type.

	plant_id_eia

	report_date

	fuel_type_code_pudl

	fuel_consumed_units

	fuel_consumed_for_electricity_units

	fuel_mmbtu_per_unit

	fuel_consumed_mmbtu

	fuel_consumed_for_electricity_mmbtu

	net_generation_mwh

In addition, plant and utility names and IDs are pulled in from the EIA
860 tables.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all records from the EIA 923
Generation Fuel table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.get_fuel_cost_avg_eiaapi(fuel_cost_cat_ids)

	Get a dataframe of state-level average fuel costs for EIA’s API.

	Parameters

	fuel_cost_cat_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of category ids. Known/testing working
ids are stored in FUEL_COST_CATEGORIES_EIAAPI.

	Returns

	a dataframe containing state-level montly fuel cost.
The table contains the following columns, some of which are refernce
columns: ‘report_date’, ‘fuel_cost_per_unit’, ‘state’,
‘fuel_type_code_pudl’, ‘units’ (ref), ‘series_id’ (ref),
‘name’ (ref).

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.get_response(url)

	Get a response from the API’s url.

	
pudl.output.eia923.grab_fuel_state_monthly(cat_id)

	Grab an API response for monthly fuel costs for one fuel category.

The data we want from EIA is in monthly, state-level series for each fuel
type. For each fuel category, there are at least 51 embeded child series.
This function compiles one fuel type’s child categories into one request.
The resulting api response should contain a list of series responses from
each state which we can convert into a pandas.DataFrame using
convert_cost_json_to_df.

	Parameters

	cat_id (int [https://docs.python.org/3/library/functions.html#int]) – category id for one fuel type. Known to be

	
pudl.output.eia923.make_url_cat_eiaapi(category_id)

	Generate a url for a category from EIA’s API.

Requires an environment variable named API_KEY_EIA be set, containing
a valid EIA API key, which you can obtain from:

https://www.eia.gov/opendata/register.php

	
pudl.output.eia923.make_url_series_eiaapi(series_id)

	Generate a url for a series EIA’s API.

Requires an environment variable named API_KEY_EIA be set, containing
a valid EIA API key, which you can obtain from:

https://www.eia.gov/opendata/register.php

pudl.output.epacems module

Routines that provide user-friendly access to the partitioned EPA CEMS dataset.

	
pudl.output.epacems.get_plant_states(plant_ids, pudl_out)

	Determine what set of states a given set of EIA plant IDs are within.

If you only want to select data about a particular set of power plants from the EPA
CEMS data, this is useful for identifying which patitions of the Parquet dataset
you will need to search.

	Parameters

	
	plant_ids (iterable) – A collection of integers representing valid plant_id_eia
values within the PUDL DB.

	pudl_out (pudl.output.pudltabl.PudlTabl) – A PudlTabl output object to use to
access the PUDL DB.

	Returns

	A list containing the 2-letter state abbreviations for any state that was
found in association with one or more of the plant_ids.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.output.epacems.get_plant_years(plant_ids, pudl_out)

	Determine which years a given set of EIA plant IDs appear in.

If you only want to select data about a particular set of power plants from the EPA
CEMS data, this is useful for identifying which patitions of the Parquet dataset
you will need to search.

NOTE: the EIA-860 and EIA-923 data which are used here don’t cover as many years as
the EPA CEMS, so this is probably of limited utility – you may want to simply
include all years, or manually specify the years of interest instead.

	Parameters

	
	plant_ids (iterable) – A collection of integers representing valid plant_id_eia
values within the PUDL DB.

	pudl_out (pudl.output.pudltabl.PudlTabl) – A PudlTabl output object to use to
access the PUDL DB.

	Returns

	A list containing the 4-digit integer years found in association with one
or more of the plant_ids.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.output.epacems.year_state_filter(years=(), states=())

	Create filters to read given years and states from partitioned parquet dataset.

A subset of an Apache Parquet dataset can be read in more efficiently if files
which don’t need to be queried are avoideed. Some datasets are partitioned based
on the values of columns to make this easier. The EPA CEMS dataset which we
publish is partitioned by state and report year.

However, the way the filters are specified can be unintuitive. They use DNF
(disjunctive normal form) See this blog post for more details:

https://blog.datasyndrome.com/python-and-parquet-performance-e71da65269ce

This function takes a set of years, and a set of states, and returns a list of lists
of tuples, appropriate for use with the read_parquet() methods of pandas and dask
dataframes. The filter will include all combinations of the specified years and
states. E.g. if years=(2018, 2019) and states=(“CA”, “CO”) then the filter would
result in getting 2018 and 2019 data for CO, as well as 2018 and 2019 data for CA.

	Parameters

	
	years (iterable) – 4-digit integers indicating the years of data you would like
to read. By default it includes all years.

	states (iterable) – 2-letter state abbreviations indicating what states you would
like to include. By default it includes all states.

	Returns

	A list of lists of tuples, suitable for use as a filter in the
read_parquet method of pandas and dask dataframes.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

pudl.output.ferc1 module

Functions for pulling FERC Form 1 data out of the PUDL DB.

	
pudl.output.ferc1.fuel_by_plant_ferc1(pudl_engine, thresh=0.5)

	Summarize FERC fuel data by plant for output.

This is mostly a wrapper around
pudl.transform.ferc1.fuel_by_plant_ferc1()
which calculates some summary values on a per-plant basis (as indicated
by utility_id_ferc1 and plant_name_ferc1) related to fuel
consumption.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	thresh (float [https://docs.python.org/3/library/functions.html#float]) – Minimum fraction of fuel (cost and mmbtu) required in
order for a plant to be assigned a primary fuel. Must be between
0.5 and 1.0. default value is 0.5.

	Returns

	A DataFrame with fuel use summarized by plant.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc1.fuel_ferc1(pudl_engine)

	Pull a useful dataframe related to FERC Form 1 fuel information.

This function pulls the FERC Form 1 fuel data, and joins in the name of the
reporting utility, as well as the PUDL IDs for that utility and the plant,
allowing integration with other PUDL tables.

Useful derived values include:

	fuel_consumed_mmbtu (total fuel heat content consumed)

	fuel_consumed_total_cost (total cost of that fuel)

	Parameters

	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	Returns

	A DataFrame containing useful FERC Form 1 fuel
information.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc1.plant_in_service_ferc1(pudl_engine)

	Pull a dataframe of FERC Form 1 Electric Plant in Service data.

	
pudl.output.ferc1.plants_hydro_ferc1(pudl_engine)

	Pull a useful dataframe related to the FERC Form 1 hydro plants.

	
pudl.output.ferc1.plants_pumped_storage_ferc1(pudl_engine)

	Pull a dataframe of FERC Form 1 Pumped Storage plant data.

	
pudl.output.ferc1.plants_small_ferc1(pudl_engine)

	Pull a useful dataframe related to the FERC Form 1 small plants.

	
pudl.output.ferc1.plants_steam_ferc1(pudl_engine)

	Select and joins some useful fields from the FERC Form 1 steam table.

Select the FERC Form 1 steam plant table entries, add in the reporting
utility’s name, and the PUDL ID for the plant and utility for readability
and integration with other tables that have PUDL IDs.

Also calculates capacity_factor (based on net_generation_mwh &
capacity_mw)

	Parameters

	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	Returns

	A DataFrame containing useful fields from the FERC
Form 1 steam table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc1.plants_utils_ferc1(pudl_engine)

	Build a dataframe of useful FERC Plant & Utility information.

	Parameters

	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	Returns

	A DataFrame containing useful FERC Form 1 Plant and
Utility information.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc1.purchased_power_ferc1(pudl_engine)

	Pull a useful dataframe of FERC Form 1 Purchased Power data.

pudl.output.ferc714 module

Functions & classes for compiling derived aspects of the FERC Form 714 data.

	
pudl.output.ferc714.ASSOCIATIONS: List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]] = [{'id': 56669, 'from': 2011, 'to': [2009, 2010]}, {'id': 59504, 'from': 2014, 'to': [2006, 2009], 'exclude': ['NE']}, {'id': 59504, 'from': 2014, 'to': [2010, 2013]}, {'id': 11249, 'from': 2014, 'to': [2006, 2013]}, {'id': 12506, 'from': 2012, 'to': [2013, 2013]}, {'id': 829, 'from': 2008, 'to': [2009, 2013]}, {'id': 14725, 'from': 2011, 'to': [2006, 2010]}, {'id': 16534, 'from': 2013, 'to': [2012, 2012]}, {'id': 17718, 'from': 2010, 'to': [2006, 2009]}, {'id': 13407, 'from': 2009, 'to': [2006, 2008]}, {'id': 13407, 'from': 2013, 'to': [2014, 2019]}]

	Adjustments to balancing authority-utility associations from EIA 861.

The changes are applied locally to EIA 861 tables.

	id (int): EIA balancing authority identifier (balancing_authority_id_eia).

	from (int): Reference year, to use as a template for target years.

	to (List[int]): Target years, in the closed interval format [minimum, maximum].
Rows in balancing_authority_eia861 are added (if missing) for every target year
with the attributes from the reference year.
Rows in balancing_authority_assn_eia861 are added (or replaced, if existing)
for every target year with the utility associations from the reference year.
Rows in service_territory_eia861 are added (if missing) for every target year
with the nearest year’s associated utilities’ counties.

	exclude (Optional[List[str]]): Utilities to exclude, by state (two-letter code).
Rows are excluded from balancing_authority_assn_eia861 with target year and state.

	
class pudl.output.ferc714.Respondents(pudl_out, pudl_settings=None, ba_ids=None, util_ids=None, priority='balancing_authority', limit_by_state=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class coordinating compilation of data related to FERC 714 Respondents.

The FERC 714 Respondents themselves are not complex as they are reported, but
various ambiguities and the need to associate service territories with them mean
there are a lot of different derived aspects related to them which we repeatedly
need to compile in a self consistent way. This class allows you to choose several
parameters for that compilation, and then easily access the resulting derived
tabular outputs.

Some of these derived attributes are computationally expensive, and so they are
cached internally. You can force a new computation in most cases by using
update=True in the access methods. However, this functionality isn’t totally
implemented because we’re still depending on the interim ETL processes for the FERC
714 and EIA 861 data, and we don’t want to trigger whole new ETL runs every time
a derived value is updated.

	
pudl_out

	The PUDL output object which should be
used to obtain PUDL data.

	Type

	pudl.output.pudltabl.PudlTabl

	
pudl_settings

	A dictionary of settings indicating where data
related to PUDL can be found. Needed to obtain US Census DP1 data which
has the county geometries.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]

	
ba_ids

	EIA IDs that should be treated as referring
to balancing authorities in respondent categorization process. If None, all
known values of balancing_authority_id_eia will be used.

	Type

	ordered collection or None [https://docs.python.org/3/library/constants.html#None]

	
util_ids

	EIA IDs that should be treated as
referring to utilities in respondent categorization process. If None, all
known values of utility_id_eia will be used.

	Type

	ordered collection or None [https://docs.python.org/3/library/constants.html#None]

	
priority

	Which type of entity should take priority in the categorization
of FERC 714 respondents. Must be either utility or
balancing_authority. The default is balancing_authority.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
limit_by_state

	Whether to limit respondent service territories to the
states where they have documented activity in the EIA 861. Currently this
is only implemented for Balancing Authorities.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
annualize(update=False)

	Broadcast respondent data across all years with reported demand.

The FERC 714 Respondent IDs and names are reported in their own table,
without any refence to individual years, but much of the information we are
associating with them varies annually. This method creates an annualized
version of the respondent table, with each respondent having an entry
corresponding to every year in which hourly demand was reported in the FERC 714
dataset as a whole – this necessarily means that many of the respondents will
end up having entries for years in which they reported no demand, and that’s
fine. They can be filtered later.

	
property balancing_authority_assn_eia861

	Modified balancing_authority_assn_eia861 table.

	
property balancing_authority_eia861

	Modified balancing_authority_eia861 table.

	
categorize(update=False)

	Annualized respondents with respondent_type assigned if possible.

Categorize each respondent as either a utility or a balancing_authority
using the parameters stored in the instance of the class. While categorization
can also be done without annualizing, this function annualizes as well, since
we are adding the respondent_type in order to be able to compile service
territories for the respondent, which vary annually.

	
fipsify(update=False)

	Annual respondents with the county FIPS IDs for their service territories.

Given the respondent_type associated with each respondent (either
utility or balancing_authority) compile a list of counties that are part
of their service territory on an annual basis, and merge those into the
annualized respondent table. This results in a very long dataframe, since there
are thousands of counties and many of them are served by more than one entity.

Currently respondents categorized as utility will include any county that
appears in the service_territory_eia861 table in association with that
utility ID in each year, while for balancing_authority respondents, some
counties can be excluded based on state (if self.limit_by_state==True).

	
georef_counties(update=False)

	Annual respondents with all associated county-level geometries.

Given the county FIPS codes associated with each respondent in each year,
pull in associated geometries from the US Census DP1 dataset, so we can do
spatial analyses. This keeps each county record independent – so there will
be many records for each respondent in each year. This is fast, and still good
for mapping, and retains all of the FIPS IDs so you can also still do ID based
analyses.

	
georef_respondents(update=False)

	Annual respondents with a single all-encompassing geometry for each year.

Given the county FIPS codes associated with each responent in each year, compile
a geometry for the respondent’s entire service territory annually. This results
in just a single record per respondent per year, but is computationally
expensive and you lose the information about what all counties are associated
with the respondent in that year. But it’s useful for merging in other annual
data like total demand, so you can see which respondent-years have both reported
demand and decent geometries, calculate their areas to see if something changed
from year to year, etc.

	
property service_territory_eia861

	Modified service_territory_eia861 table.

	
summarize_demand(update=False)

	Compile annualized, categorized respondents and summarize values.

Calculated summary values include:
* Total reported electricity demand per respondent (demand_annual_mwh)
* Reported per-capita electrcity demand (demand_annual_per_capita_mwh)
* Population density (population_density_km2)
* Demand density (demand_density_mwh_km2)

These metrics are helpful identifying suspicious changes in the compiled annual
geometries for the planning areas.

	
pudl.output.ferc714.UTILITIES: List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]] = [{'id': 14328, 'reassign': True}, {'id': 16609, 'reassign': True}, {'id': 4922, 'reassign': True}, {'id': 4254}]

	Balancing authorities to treat as utilities in associations from EIA 861.

The changes are applied locally to EIA 861 tables.

	id (int): EIA balancing authority (BA) identifier (balancing_authority_id_eia).
Rows for id are removed from balancing_authority_eia861.

	reassign (Optional[bool]): Whether to reassign utilities to parent BAs.
Rows for id as BA in balancing_authority_assn_eia861 are removed.
Utilities assigned to id for a given year are reassigned
to the BAs for which id is an associated utility.

	replace (Optional[bool]): Whether to remove rows where id is a utility in
balancing_authority_assn_eia861. Applies only if reassign=True.

	
pudl.output.ferc714.add_dates(rids_ferc714, report_dates)

	Broadcast respondent data across dates.

	Parameters

	
	rids_ferc714 (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A simple FERC 714 Respondent ID dataframe,
without any date information.

	report_dates (ordered collection of datetime) – Dates for which each respondent
should be given a record.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if a report_date column exists in rids_ferc714.

	Returns

	Dataframe having all the same columns as the input
rids_ferc714 with the addition of a report_date column, but with all
records associated with each respondent_id_ferc714 duplicated on a per-date
basis.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc714.categorize_eia_code(eia_codes, ba_ids, util_ids, priority='balancing_authority')

	Categorize FERC 714 eia_codes as either balancing authority or utility IDs.

Most FERC 714 respondent IDs are associated with an eia_code which refers to
either a balancing_authority_id_eia or a utility_id_eia but no indication
as to which type of ID each one is. This is further complicated by the fact
that EIA uses the same numerical ID to refer to the same entity in most but not all
cases, when that entity acts as both a utility and as a balancing authority.

This function associates a respondent_type of utility,
balancing_authority or pandas.NA with each input eia_code using the
following rules:
* If a eia_code appears only in util_ids the respondent_type will be
utility.
* If eia_code appears only in ba_ids the respondent_type will be
assigned balancing_authority.
* If eia_code appears in neither set of IDs, respondent_type will be
assigned pandas.NA.
* If eia_code appears in both sets of IDs, then whichever respondent_type
has been selected with the priority flag will be assigned.

Note that the vast majority of balancing_authority_id_eia values also show up
as utility_id_eia values, but only a small subset of the utility_id_eia
values are associated with balancing authorities. If you use
priority="utility" you should probably also be specifically compiling the list
of Utility IDs because you know they should take precedence. If you use utility
priority with all utility IDs

	Parameters

	
	eia_codes (ordered collection of ints) – A collection of IDs which may be either
associated with EIA balancing authorities or utilities, to be categorized.

	ba_ids_eia (ordered collection of ints) – A collection of IDs which should be
interpreted as belonging to EIA Balancing Authorities.

	util_ids_eia (ordered collection of ints) – A collection of IDs which should be
interpreted as belonging to EIA Utilities.

	priorty (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which respondent_type to give priority to if the eia_code shows
up in both util_ids_eia and ba_ids_eia. Must be one of “utility” or
“balancing_authority”. The default is “balanacing_authority”.

	Returns

	A dataframe containing 2 columns: eia_code and
respondent_type.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.output.pudltabl module

This module provides a class enabling tabular compilations from the PUDL DB.

Many of our potential users are comfortable using spreadsheets, not databases,
so we are creating a collection of tabular outputs that contain the most
useful core information from the PUDL data packages, including additional keys
and human readable names for the objects (utilities, plants, generators) being
described in the table.

These tabular outputs can be joined with each other using those keys, and used
as a data source within Microsoft Excel, Access, R Studio, or other data
analysis packages that folks may be familiar with. They aren’t meant to
completely replicate all the data and relationships contained within the full
PUDL database, but should serve as a generally usable set of PUDL data
products.

The PudlTabl class can also provide access to complex derived values, like the
generator and plant level marginal cost of electricity (MCOE), which are
defined in the analysis module.

In the long run, this is a probably a kind of prototype for pre-packaged API
outputs or data products that we might want to be able to provide to users a la
carte.

Todo

Return to for update arg and returns values in functions below

	
class pudl.output.pudltabl.PudlTabl(pudl_engine, ds=None, freq=None, start_date=None, end_date=None, fill_fuel_cost=False, roll_fuel_cost=False, fill_net_gen=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for compiling common useful tabular outputs from the PUDL DB.

	
adjacency_ba_ferc714(update=False)

	An interim FERC 714 output function.

	
advanced_metering_infrastructure_eia861(update=False)

	An interim EIA 861 output function.

	
balancing_authority_assn_eia861(update=False)

	An interim EIA 861 output function.

	
balancing_authority_eia861(update=False)

	An interim EIA 861 output function.

	
bf_eia923(update=False)

	Pull EIA 923 boiler fuel consumption data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
bga_eia860(update=False)

	Pull a dataframe of boiler-generator associations from EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
capacity_factor(update=False, min_cap_fact=None, max_cap_fact=None)

	Calculate and return generator level capacity factors.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
demand_forecast_pa_ferc714(update=False)

	An interim FERC 714 output function.

	
demand_hourly_pa_ferc714(update=False)

	An interim FERC 714 output function.

	
demand_monthly_ba_ferc714(update=False)

	An interim FERC 714 output function.

	
demand_response_eia861(update=False)

	An interim EIA 861 output function.

	
demand_side_management_eia861(update=False)

	An interim EIA 861 output function.

	
description_pa_ferc714(update=False)

	An interim FERC 714 output function.

	
distributed_generation_eia861(update=False)

	An interim EIA 861 output function.

	
distribution_systems_eia861(update=False)

	An interim EIA 861 output function.

	
dynamic_pricing_eia861(update=False)

	An interim EIA 861 output function.

	
energy_efficiency_eia861(update=False)

	An interim EIA 861 output function.

	
etl_eia861(update=False)

	A single function that runs the temporary EIA 861 ETL and sets all DFs.

This is an interim solution that provides a (somewhat) standard way of accessing
the EIA 861 data prior to its being fully integrated into the PUDL database. If
any of the dataframes is attempted to be accessed, all of them are set. Only
the tables that have actual transform functions are included, and as new
transform functions are completed, they would need to be added to the list
below. Surely there is a way to do this automatically / magically but that’s
beyond my knowledge right now.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to overwrite the existing dataframes if they exist.

	
etl_ferc714(update=False)

	A single function that runs the temporary FERC 714 ETL and sets all DFs.

This is an interim solution, so that we can have a (relatively) standard way of
accessing the FERC 714 data prior to getting it integrated into the PUDL DB.
Some of these are not yet cleaned up, but there are dummy transform functions
which pass through the raw DFs with some minor alterations, so all the data is
available as it exists right now.

An attempt to access any of the dataframes results in all of them being
populated, since generating all of them is almost the same amount of work as
generating one of them.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to overwrite the existing dataframes if they exist.

	
fbp_ferc1(update=False)

	Summarize FERC Form 1 fuel usage by plant.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
frc_eia923(update=False)

	Pull EIA 923 fuel receipts and costs data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
fuel_cost(update=False)

	Calculate and return generator level fuel costs per MWh.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
fuel_ferc1(update=False)

	Pull the FERC Form 1 steam plants fuel consumption data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
gen_allocated_eia923(update=False)

	Net generation from gen fuel table allocated to generators.

	
gen_eia923(update=False)

	Pull EIA 923 net generation data by generator.

Net generation is reported in two seperate tables in EIA 923: in the
generation_eia923 and generation_fuel_eia923 tables. While the
generation_fuel_eia923 table is more complete (the generation_eia923
table includes only ~55% of the reported MWhs), the generation_eia923
table is more granular (it is reported at the generator level).

This method either grabs the generation_eia923 table that is reported
by generator, or allocates net generation from the
generation_fuel_eia923 table to the generator level.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
gen_original_eia923(update=False)

	Pull the original EIA 923 net generation data by generator.

	
gen_plants_ba_ferc714(update=False)

	An interim FERC 714 output function.

	
gens_eia860(update=False, unit_ids=False)

	Pull a dataframe describing generators, as reported in EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
gf_eia923(update=False)

	Pull EIA 923 generation and fuel consumption data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
green_pricing_eia861(update=False)

	An interim EIA 861 output function.

	
hr_by_gen(update=False)

	Calculate and return generator level heat rates (mmBTU/MWh).

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
hr_by_unit(update=False)

	Calculate and return generation unit level heat rates.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
id_certification_ferc714(update=False)

	An interim FERC 714 output function.

	
interchange_ba_ferc714(update=False)

	An interim FERC 714 output function.

	
lambda_description_ferc714(update=False)

	An interim FERC 714 output function.

	
lambda_hourly_ba_ferc714(update=False)

	An interim FERC 714 output function.

	
mcoe(update=False, min_heat_rate=5.5, min_fuel_cost_per_mwh=0.0, min_cap_fact=0.0, max_cap_fact=1.5, all_gens=True)

	Calculate and return generator level MCOE based on EIA data.

Eventually this calculation will include non-fuel operating expenses
as reported in FERC Form 1, but for now only the fuel costs reported
to EIA are included. They are attibuted based on the unit-level heat
rates and fuel costs.

	Parameters

	
	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	min_heat_rate – lowest plausible heat rate, in mmBTU/MWh. Any MCOE
records with lower heat rates are presumed to be invalid, and
are discarded before returning.

	min_cap_fact – minimum generator capacity factor. Generator records
with a lower capacity factor will be filtered out before
returning. This allows the user to exclude generators that
aren’t being used enough to have valid.

	min_fuel_cost_per_mwh – minimum fuel cost on a per MWh basis that is
required for a generator record to be considered valid. For
some reason there are now a large number of $0 fuel cost
records, which previously would have been NaN.

	max_cap_fact – maximum generator capacity factor. Generator records
with a lower capacity factor will be filtered out before
returning. This allows the user to exclude generators that
aren’t being used enough to have valid.

	all_gens (bool [https://docs.python.org/3/library/functions.html#bool]) – Controls whether the output contains records for
all generators in the generators_eia860 table, or only
those generators with associated MCOE data. True by default.

	Returns

	a compilation of generator attributes,
including fuel costs per MWh.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
mergers_eia861(update=False)

	An interim EIA 861 output function.

	
net_energy_load_ba_ferc714(update=False)

	An interim FERC 714 output function.

	
net_metering_eia861(update=False)

	An interim EIA 861 output function.

	
non_net_metering_eia861(update=False)

	An interim EIA 861 output function.

	
operational_data_eia861(update=False)

	An interim EIA 861 output function.

	
own_eia860(update=False)

	Pull a dataframe of generator level ownership data from EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
plant_in_service_ferc1(update=False)

	Pull the FERC Form 1 Plant in Service Table.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
plants_eia860(update=False)

	Pull a dataframe of plant level info reported in EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
plants_hydro_ferc1(update=False)

	Pull the FERC Form 1 Hydro Plants Table.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
plants_pumped_storage_ferc1(update=False)

	Pull the FERC Form 1 Pumped Storage Table.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
plants_small_ferc1(update=False)

	Pull the FERC Form 1 Small Plants Table.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
plants_steam_ferc1(update=False)

	Pull the FERC Form 1 steam plants data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pu_eia860(update=False)

	Pull a dataframe of EIA plant-utility associations.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pu_ferc1(update=False)

	Pull a dataframe of FERC plant-utility associations.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
purchased_power_ferc1(update=False)

	Pull the FERC Form 1 Purchased Power Table.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
reliability_eia861(update=False)

	An interim EIA 861 output function.

	
respondent_id_ferc714(update=False)

	An interim FERC 714 output function.

	
sales_eia861(update=False)

	An interim EIA 861 output function.

	
service_territory_eia861(update=False)

	An interim EIA 861 output function.

	
utility_assn_eia861(update=False)

	An interim EIA 861 output function.

	
utility_data_eia861(update=False)

	An interim EIA 861 output function.

	
utils_eia860(update=False)

	Pull a dataframe describing utilities reported in EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.pudltabl.get_table_meta(pudl_engine)

	Grab the pudl sqlitie database table metadata.

pudl.transform package

Submodules

	pudl.transform.eia module

	pudl.transform.eia860 module

	pudl.transform.eia861 module

	pudl.transform.eia923 module

	pudl.transform.epacems module

	pudl.transform.epaipm module

	pudl.transform.ferc1 module

	pudl.transform.ferc714 module

Module contents

Modules implementing the “Transform” step of the PUDL ETL pipeline.

Each module in this subpackage transforms the tabular data associated with a
single data source from the PUDL :ref: data-sources. This process begins
with a dictionary of “raw” pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] objects produced by the
corresponding data source specific routines from the pudl.extract
subpackage, and ends with a dictionary of pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] objects
that are fully normalized, cleaned, and congruent with the tabular datapackage
metadata – i.e. they are ready to be exported by the pudl.load module.

Inputs to the transform functions are a dictionary of dataframes, each of which
represents a concatenation of records with common column names from across some set of
years of reported data. The names of those columns are determined by the xlsx_maps
metadata associated with the given dataset in PUDL’s package_metadata.

This raw data is transformed in 3 main steps:

	Structural transformations that re-shape / tidy the data and turn it into rows that
represent a single observation, and columns that represent a single variable. These
transformations should not require knowledge of or access to the contents of the
data, which may or may not yet be usable at this point, depending on the true data
type and how much cleaning has to happen. One exception to this that may come up is
the need to clean up columns that are part of the primary composite key, since you
can’t usefully index on NA values. Alternatively this might mean removing rows that
have invalid key values.

	Data type compatibility: whatever massaging of the data is required to ensure that it
can be cast to the appropriate data type, including identifying NA values and
assigning them to an appropriate type-specific NA value. At the end of this you can
assign all the columns their (preferably nullable) types. Note that because some of
the columns that exist at this point may not end up in the final database table, you
may need to set them individually, rather than using the systemwide dictionary of
column data types.

	Value based data cleaning: At this point every column should have a known, homogenous
type, allowing it to be reliably manipulated as a Series, so we can move on to
cleaning up the values themselves. This includes re-coding freeform string fields to
impose a controlled vocabulary, converting column units (e.g. kWh to MWh) and
renaming the columns appropriately, as well as correcting clear data entry errors.

At the end of the main coordinating transform() function, every column that remains in
each of the transformed dataframes should correspond to a column that will exist in the
database and be associated with the EIA datasets, which means it is also part of the EIA
column namespace. It’s important that you make sure these column names match the naming
conventions that are being used, and if any of the columns exist in other tables, that
they have exactly the same name and datatype.

If you find that you need to rename a column for it to conform to those requirements, in
many cases that should happen in the xlsx_map metadata, so that column renamings can be
kept to a minimum and only used for real semantic transformations of a column (like a
unit conversion).

At the end of this step, it should be easy to categorize every column in every
dataframe as to whether it is a “data” column (containing data unique to the table it
is found in) or whether it is part of the primary key for the table (the minimal set of
columns whose values are required to uniquely specify a record), and/or whether it is a
“denormalized” column whose home table is really elsewhere in the database. Note that
denormalized columns may also be part of the primary key. This information is important
for the step after the intra-table transformations during which the collection of EIA
tables is normalized as a whole.

pudl.transform.eia module

Code for transforming EIA data that pertains to more than one EIA Form.

This module helps normalize EIA datasets and infers additonal connections
between EIA entities (i.e. utilities, plants, units, generators…). This
includes:

	compiling a master list of plant, utility, boiler, and generator IDs that
appear in any of the EIA 860 or 923 tables.

	inferring more complete boiler-generator associations.

	differentiating between static and time varying attributes associated with
the EIA entities, storing the static fields with the entity table, and the
variable fields in an annual table.

The boiler generator association inferrence (bga) takes the associations
provided by the EIA 860, and expands on it using several methods which can be
found in pudl.transform.eia._boiler_generator_assn().

	
pudl.transform.eia.harvesting(entity, eia_transformed_dfs, entities_dfs, eia860_ytd=False, debug=False)

	Compiles consistent records for various entities.

For each entity(plants, generators, boilers, utilties), this function
finds all the harvestable columns from any table that they show up
in. It then determines how consistent the records are and keeps the values
that are mostly consistent. It compiles those consistent records into
one normalized table.

There are a few things to note here. First being that we are not expecting
the outcome here to be perfect! We choose to pull the most consistent
record as reported across all the EIA tables and years, but we also
required a “strictness” level of 70% (this is currently a hard coded
argument for _occurrence_consistency). That means at least 70% of the
records must be the same for us to use that value. So if values for an
entity haven’t been reported 70% consistently, then it will show up as a
null value. We built in the ability to add special cases for columns where
we want to apply a different method to, but the only ones we added was for
latitude and longitude because they are by far the dirtiest.

We have determined which columns should be considered “static” or “annual”.
These can be found in constants in the entities dictionary. Static means
That is should not change over time. Annual means there is annual
variablity. This distinction was made in part by testing the consistency
and in part by an understanding of how the entities and columns relate in
the real world.

	Parameters

	
	entity (str [https://docs.python.org/3/library/stdtypes.html#str]) – plants, generators, boilers, utilties

	eia_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of tbl names (keys) and
transformed dfs (values)

	entities_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of entity table names (keys) and
entity dfs (values)

	eia860_ytd (boolean) – if True, the etl run is attempting to include
year-to-date updated from EIA 860M.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function will also return an additional
dictionary of dataframes that includes the pre-deduplicated
compiled records with the number of occurances of the entity and
the record to see consistency of reported values.

	Returns

	
	A tuple containing:
	eia_transformed_dfs (dict): dictionary of tbl names (keys) and
transformed dfs (values)
entity_dfs (dict): dictionary of entity table names (keys) and
entity dfs (values)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the consistency of any record value is <90%.

Todo

	Return to role of debug.

	Determine what to do with null records

	Determine how to treat mostly static records

	
pudl.transform.eia.transform(eia_transformed_dfs, eia860_years=(2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), eia923_years=(2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), eia860_ytd=False, debug=False)

	Creates DataFrames for EIA Entity tables and modifies EIA tables.

This function coordinates two main actions: generating the entity tables
via harvesting() and generating the boiler generator associations via
_boiler_generator_assn().

There is also some removal of tables that are no longer needed after the
entity harvesting is finished.

	Parameters

	
	eia_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of table names (kays) and
transformed dataframes (values).

	eia860_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of years for EIA 860, must be continuous,
and only include working years.

	eia923_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of years for EIA 923, must be continuous,
and include only working years.

	eia860_ytd (boolean) – if True, the etl run is attempting to include
year-to-date updated from EIA 860M.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, informational columns will be added into
boiler_generator_assn

	Returns

	two dictionaries having table names as keys and
dataframes as values for the entity tables transformed EIA dataframes

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

pudl.transform.eia860 module

Module to perform data cleaning functions on EIA860 data tables.

	
pudl.transform.eia860.OWNERSHIP_PLANT_GEN_ID_DUPES = [(56032, '1')]

	EIA Plant IDs which have duplicate generators within the ownership table due
to the removal of leading zeroes from the generator IDs.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.transform.eia860.boiler_generator_assn(eia860_dfs, eia860_transformed_dfs)

	Pull and transform the boilder generator association table.

Transformations include:

	Drop non-data rows with EIA notes.

	Drop duplicate rows.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA860 form, as reported in the Excel
spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.generators(eia860_dfs, eia860_transformed_dfs)

	Pull and transform the generators table.

There are three tabs that the generator records come from (proposed, existing,
retired). Pre 2009, the existing and retired data are lumped together under a single
generator file with one tab. We pull each tab into one dataframe and include an
operational_status to indicate which tab the record came from. We use
operational_status to parse the pre 2009 files as well.

Transformations include:

	Replace . values with NA.

	Update operational_status_code to reflect plant status as either proposed,
existing or retired.

	Drop values with NA for plant and generator id.

	Replace 0 values with NA where appropriate.

	Convert Y/N/X values to boolean True/False.

	Convert U/Unknown values to NA.

	Map full spelling onto code values.

	Create a fuel_type_code_pudl field that organizes fuel types into
clean, distinguishable categories.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the EIA860 form,
as reported in the Excel spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to a normalized DataFrame of
values from that page (values).

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.ownership(eia860_dfs, eia860_transformed_dfs)

	Pull and transform the ownership table.

Transformations include:

	Replace . values with NA.

	Convert pre-2012 ownership percentages to proportions to match post-2012
reporting.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA860 form, as reported in the Excel
spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in which
pages from EIA860 form (keys) correspond to normalized DataFrames of values
from that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.plants(eia860_dfs, eia860_transformed_dfs)

	Pull and transform the plants table.

Much of the static plant information is reported repeatedly, and scattered across
several different pages of EIA 923. The data frame which this function uses is
assembled from those many different pages, and passed in via the same dictionary of
dataframes that all the other ingest functions use for uniformity.

Transformations include:

	Replace . values with NA.

	Homogenize spelling of county names.

	Convert Y/N/X values to boolean True/False.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA860 form, as reported in the Excel
spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.transform(eia860_raw_dfs, eia860_tables=('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860'))

	Transform EIA 860 DataFrames.

	Parameters

	
	eia860_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of tab names (keys) and DataFrames
(values). This can be generated by pudl.

	eia860_tables (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple containing the names of the EIA 860 tables that
can be pulled into PUDL.

	Returns

	A dictionary of DataFrame objects in which pages from EIA860 form (keys)
corresponds to a normalized DataFrame of values from that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.utilities(eia860_dfs, eia860_transformed_dfs)

	Pull and transform the utilities table.

Transformations include:

	Replace . values with NA.

	Fix typos in state abbreviations, convert to uppercase.

	Drop address_3 field (all NA).

	Combine phone number columns into one field and set values that don’t mimic real
US phone numbers to NA.

	Convert Y/N/X values to boolean True/False.

	Map full spelling onto code values.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the EIA860 form,
as reported in the Excel spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.transform.eia861 module

Module to perform data cleaning functions on EIA861 data tables.

All transformations include:
- Replace . values with NA.

	
pudl.transform.eia861.advanced_metering_infrastructure(tfr_dfs)

	Transform the EIA 861 Advanced Metering Infrastructure table.

Transformations include:

	Tidy data by customer class.

	Drop total_meters columns (it’s calculable with other fields).

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.balancing_authority(tfr_dfs)

	Transform the EIA 861 Balancing Authority table.

Transformations include:

	Fill in balancing authrority IDs based on date, utility ID, and BA Name.

	Backfill balancing authority codes based on BA ID.

	Fix BA code and ID typos.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.balancing_authority_assn(tfr_dfs)

	Compile a balancing authority, utility, state association table.

For the years up through 2012, the only BA-Util information that’s available comes
from the balancing_authority_eia861 table, and it does not include any state-level
information. However, there is utility-state association information in the
sales_eia861 and other data tables.

For the years from 2013 onward, there’s explicit BA-Util-State information in the
data tables (e.g. sales_eia861). These observed associations can be compiled to give
us a picture of which BA-Util-State associations exist. However, we need to merge in
the balancing authority IDs since the data tables only contain the balancing
authority codes.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 dataframes. This must
include any dataframes from which we want to compile BA-Util-State
associations, which means this function has to be called after all the basic
transformfunctions that depend on only a single raw table.

	Returns

	a dictionary of transformed dataframes. This function both compiles the
association table, and finishes the normalization of the balancing authority
table. It may be that once the harvesting process incorporates the EIA 861, some
or all of this functionality should be pulled into the phase-2 transform
functions.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.demand_response(tfr_dfs)

	Transform the EIA 861 Demand Response table.

Transformations include:

	Fill in NA balancing authority codes with UNK (because it’s part of the primary
key).

	Tidy subset of the data by customer class.

	Drop duplicate rows based on primary keys.

	Convert 1000s of dollars into dollars.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.demand_side_management(tfr_dfs)

	Transform the EIA 861 Demand Side Management table.

In 2013, the EIA changed the contents of the 861 form so that information pertaining
to demand side management was no longer housed in a single table, but rather two
seperate ones pertaining to energy efficiency and demand response. While the pre and
post 2013 tables contain similar information, one column in the pre-2013 demand side
management table may not have an obvious column equivalent in the post-2013 energy
efficiency or demand response data. We’ve addressed this by keeping the demand side
management and energy efficiency and demand response tables seperate. Use the DSM
table for pre 2013 data and the EE / DR tables for post 2013 data. Despite the
uncertainty of comparing across these years, the data are similar and we hope to
provide a cohesive dataset in the future with all years and comprable columns
combined.

Transformations include:

	Clean up NERC codes and ensure one per row.

	Remove demand_side_management and data_observed columns (they are all the same).

	Tidy subset of the data by customer class.

	Convert Y/N columns to booleans.

	Convert 1000s of dollars into dollars.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.distributed_generation(tfr_dfs)

	Transform the EIA 861 Distributed Generation table.

Transformations include:

	Map full spelling onto code values.

	Convert pre-2010 percent values in mw values.

	Remove total columns calculable with other fields.

	Tidy subset of the data by tech class.

	Tidy subset of the data by fuel class.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.distribution_systems(tfr_dfs)

	Transform the EIA 861 Distribution Systems table.

Transformations include:

	No additional transformations.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.dynamic_pricing(tfr_dfs)

	Transform the EIA 861 Dynamic Pricing table.

Transformations include:

	Tidy subset of the data by customer class.

	Convert Y/N columns to booleans.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.energy_efficiency(tfr_dfs)

	Transform the EIA 861 Energy Efficiency table.

Transformations include:

	Tidy subset of the data by customer class.

	Drop website column (almost no valid information).

	Convert 1000s of dollars into dollars.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.green_pricing(tfr_dfs)

	Transform the EIA 861 Green Pricing table.

Transformations include:

	Tidy subset of the data by customer class.

	Convert 1000s of dollars into dollars.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.mergers(tfr_dfs)

	Transform the EIA 861 Mergers table.

Transformations include:

	Map full spelling onto code values.

	Retain preceeding zeros in zipcode field.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.net_metering(tfr_dfs)

	Transform the EIA 861 Net Metering table.

Transformations include:

	Remove rows with utility ids 99999.

	Tidy subset of the data by customer class.

	Tidy subset of the data by tech class.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.non_net_metering(tfr_dfs)

	Transform the EIA 861 Non-Net Metering table.

Transformations include:

	Remove rows with utility ids 99999.

	Drop duplicate rows.

	Tidy subset of the data by customer class.

	Tidy subset of the data by tech class.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.normalize_balancing_authority(tfr_dfs)

	Finish the normalization of the balancing_authority_eia861 table.

The balancing_authority_assn_eia861 table depends on information that is only
available in the UN-normalized form of the balancing_authority_eia861 table, so
and also on having access to a bunch of transformed data tables, so it can compile
the observed combinations of report dates, balancing authorities, states, and
utilities. This means that we have to hold off on the final normalization of the
balancing_authority_eia861 table until the rest of the transform process is over.

	
pudl.transform.eia861.operational_data(tfr_dfs)

	Transform the EIA 861 Operational Data table.

Transformations include:

	Remove rows with utility ids 88888.

	Remove rows with NA utility id.

	Clean up NERC codes and ensure one per row.

	Convert data_observed field I/O into boolean.

	Tidy subset of the data by revenue class.

	Convert 1000s of dollars into dollars.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.reliability(tfr_dfs)

	Transform the EIA 861 Reliability table.

Transformations include:

	Tidy subset of the data by reliability standard.

	Convert Y/N columns to booleans.

	Map full spelling onto code values.

	Drop duplicate rows.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.sales(tfr_dfs)

	Transform the EIA 861 Sales table.

Transformations include:

	Remove rows with utility ids 88888 and 99999.

	Tidy data by customer class.

	Drop primary key duplicates.

	Convert 1000s of dollars into dollars.

	Convert data_observed field I/O into boolean.

	Map full spelling onto code values.

	
pudl.transform.eia861.service_territory(tfr_dfs)

	Transform the EIA 861 utility service territory table.

Transformations include:

	Homogenize spelling of county names.

	Add field for state/county FIPS code.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages from EIA861
form (keys) correspond to normalized DataFrames of values from that page
(values).

	Returns

	
	a dictionary of pandas.DataFrame objects in which pages from EIA861 form
	(keys) correspond to normalized DataFrames of values from that page
(values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.transform(raw_dfs, eia861_tables=('service_territory_eia861', 'balancing_authority_eia861', 'sales_eia861', 'advanced_metering_infrastructure_eia861', 'demand_response_eia861', 'demand_side_management_eia861', 'distributed_generation_eia861', 'distribution_systems_eia861', 'dynamic_pricing_eia861', 'energy_efficiency_eia861', 'green_pricing_eia861', 'mergers_eia861', 'net_metering_eia861', 'non_net_metering_eia861', 'operational_data_eia861', 'reliability_eia861', 'utility_data_eia861'))

	Transform EIA 861 DataFrames.

	Parameters

	
	raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of tab names (keys) and DataFrames (values). This
can be generated by pudl.

	eia861_tables (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple containing the names of the EIA 861 tables that
can be pulled into PUDL.

	Returns

	A dictionary of DataFrame objects in which pages from EIA 861 form (keys)
corresponds to a normalized DataFrame of values from that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia861.utility_assn(tfr_dfs)

	Harvest a Utility-Date-State Association Table.

	
pudl.transform.eia861.utility_data(tfr_dfs)

	Transform the EIA 861 Utility Data table.

Transformations include:

	Remove rows with utility ids 88888.

	Clean up NERC codes and ensure one per row.

	Tidy subset of the data by NERC region.

	Tidy subset of the data by RTO.

	Convert Y/N columns to booleans.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

	Returns

	A dictionary of transformed EIA 861 dataframes, keyed by table name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.transform.eia923 module

Module to perform data cleaning functions on EIA923 data tables.

	
pudl.transform.eia923.boiler_fuel(eia923_dfs, eia923_transformed_dfs)

	Transforms the boiler_fuel_eia923 table.

Transformations include:

	Remove fields implicated elsewhere.

	Drop values with plant and boiler id values of NA.

	Replace . values with NA.

	Create a fuel_type_code_pudl field that organizes fuel types into clean,
distinguishable categories.

	Combine year and month columns into a single date column.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA923 form, as reported in the Excel
spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	
	eia923_transformed_dfs, a dictionary of DataFrame objects in which pages
	from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.coalmine(eia923_dfs, eia923_transformed_dfs)

	Transforms the coalmine_eia923 table.

Transformations include:

	Remove fields implicated elsewhere.

	Drop duplicates with MSHA ID.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA923 form, as reported in the Excel
spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.fuel_receipts_costs(eia923_dfs, eia923_transformed_dfs)

	Transforms the fuel_receipts_costs_eia923 dataframe.

Transformations include:

	Remove fields implicated elsewhere.

	Replace . values with NA.

	Standardize codes values.

	Fix dates.

	Replace invalid mercury content values with NA.

Fuel cost is reported in cents per mmbtu. Converts cents to dollars.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA923 form, as reported in the Excel
spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.generation(eia923_dfs, eia923_transformed_dfs)

	Transforms the generation_eia923 table.

Transformations include:

	Drop rows with NA for generator id.

	Remove fields implicated elsewhere.

	Replace . values with NA.

	Drop generator-date row duplicates (all have no data).

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA923 form, as reported in the Excel
spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.generation_fuel(eia923_dfs, eia923_transformed_dfs)

	Transforms the generation_fuel_eia923 table.

Transformations include:

	Remove fields implicated elsewhere.

	Replace . values with NA.

	Remove rows with utility ids 99999.

	Create a fuel_type_code_pudl field that organizes fuel types into
clean, distinguishable categories.

	Combine year and month columns into a single date column.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA923 form, as reported in the Excel
spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.plants(eia923_dfs, eia923_transformed_dfs)

	Transforms the plants_eia923 table.

Much of the static plant information is reported repeatedly, and scattered across
several different pages of EIA 923. The data frame that this function uses is
assembled from those many different pages, and passed in via the same dictionary of
dataframes that all the other ingest functions use for uniformity.

Transformations include:

	Map full spelling onto code values.

	Convert Y/N columns to booleans.

	Remove excess white space around values.

	Drop duplicate rows.

	Parameters

	
	eia923_dfs (dictionary of pandas.DataFrame) – Each entry in this dictionary of
DataFrame objects corresponds to a page from the EIA 923 form, as reported
in the Excel spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from
that page (values).

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in which pages
from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.transform(eia923_raw_dfs, eia923_tables=('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923'))

	Transforms all the EIA 923 tables.

	Parameters

	
	eia923_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of tab names (keys) and DataFrames
(values). Generated from pudl.extract.eia923.extract().

	eia923_tables (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple containing the EIA923 tables that can be pulled
into PUDL.

	Returns

	A dictionary of DataFrame with table names as keys and
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] objects as values, where the contents of the
DataFrames correspond to cleaned and normalized PUDL database tables, ready for
loading.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.transform.epacems module

Module to perform data cleaning functions on EPA CEMS data tables.

	
pudl.transform.epacems.add_facility_id_unit_id_epa(df)

	Harmonize columns that are added later.

The datapackage validation checks for consistent column names, and these two columns
aren’t present before August 2008, so this adds them in.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A CEMS dataframe

	Returns

	The same DataFrame guaranteed to have int facility_id and
unit_id_epa cols.

	Return type

	pandas.Dataframe

	
pudl.transform.epacems.correct_gross_load_mw(df)

	Fix values of gross load that are wrong by orders of magnitude.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A CEMS dataframe

	Returns

	The same DataFrame with corrected gross load values.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.transform.epacems.fix_up_dates(df, plant_utc_offset)

	Fix the dates for the CEMS data.

Transformations include:

	Account for timezone differences with offset from UTC.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A CEMS hourly dataframe for one year-month-state
plant_utc_offset (pandas.DataFrame): A dataframe of plants’ timezones.

	Returns

	The same data, with an op_datetime_utc column added
and the op_date and op_hour columns removed.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.transform.epacems.harmonize_eia_epa_orispl(df)

	Harmonize the ORISPL code to match the EIA data – NOT YET IMPLEMENTED.

The EIA plant IDs and CEMS ORISPL codes almost match, but not quite. EPA has
compiled a crosswalk that maps one set of IDs to the other, but we haven’t
integrated it yet. It can be found at:

https://github.com/USEPA/camd-eia-crosswalk

Note that this transformation needs to be run before fix_up_dates, because
fix_up_dates uses the plant ID to look up timezones.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A CEMS hourly dataframe for one year-month-state.

	Returns

	The same data, with the ORISPL plant codes corrected to match
the EIA plant IDs.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Actually implement the function…

	
pudl.transform.epacems.transform(epacems_raw_dfs, datapkg_dir)

	Transform EPA CEMS hourly data for use in datapackage export.

Todo

Incomplete docstring.

pudl.transform.epaipm module

Module to perform data cleaning functions on EPA IPM data tables.

	
pudl.transform.epaipm.load_curves(epaipm_dfs, epaipm_transformed_dfs)

	Transform the load curve table from wide to tidy format.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from EPA’s IPM, as reported in the Excel
spreadsheets they distribute.

	epa_epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames
of values from that table (values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM (keys) correspond to normalized DataFrames of values from
that table (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.plant_region_map(epaipm_dfs, epaipm_transformed_dfs)

	Transforms the map of plant ids to IPM regions for all plants.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a table from
EPA’s IPM, as reported in the Excel spreadsheets they distribute.

	epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM(keys) correspond to normalized DataFrames
of values from that table(values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM(keys) correspond to normalized DataFrames of values from
that table(values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.transform(epaipm_raw_dfs, epaipm_tables=('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm'))

	Transform EPA IPM DataFrames.

	Parameters

	
	epaipm_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of table names(keys) and
DataFrames(values)

	epaipm_tables (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of EPA IPM tables that can be
successfully pulled into PUDL

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM(keys) correspond to normalized DataFrames of values from
that table(values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.transmission_joint(epaipm_dfs, epaipm_transformed_dfs)

	Transforms transmission constraints between multiple inter-regional links.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a table from
EPA’s IPM, as reported in the Excel spreadsheets they distribute.

	epa_epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames
of values from that table (values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM (keys) correspond to normalized DataFrames of values from
that table (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.transmission_single(epaipm_dfs, epaipm_transformed_dfs)

	Transforms the transmission constraints between individual regions.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from EPA’s IPM, as reported in the Excel
spreadsheets they distribute.

	epa_epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames
of values from that table (values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM (keys) correspond to normalized DataFrames of values from
that table (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.transform.ferc1 module

Routines for transforming FERC Form 1 data before loading into the PUDL DB.

This module provides a variety of functions that are used in cleaning up the FERC Form 1
data prior to loading into our database. This includes adopting standardized units and
column names, standardizing the formatting of some string values, and correcting data
entry errors which we can infer based on the existing data. It may also include removing
bad data, or replacing it with the appropriate NA values.

	
pudl.transform.ferc1.CONSTRUCTION_TYPE_STRINGS = {'conventional': ['conventional', 'conventional', 'conventional boiler', 'conv-b', 'conventionall', 'convention', 'conventional', 'coventional', 'conven full boiler', 'c0nventional', 'conventtional', 'conventialunderground', 'conventional bulb', 'conventrional', '*conventional', 'convential', 'convetional', 'conventioanl', 'conventioinal', 'conventaional', 'indoor construction', 'convenional', 'conventional steam', 'conventinal', 'convntional', 'conventionl', 'conventionsl', 'conventiional', 'convntl steam plants', 'indoor const.', 'full indoor', 'indoor', 'indoor automatic', 'indoor boiler', '(peak load) indoor', 'conventionl,indoor', 'conventionl, indoor', 'conventional, indoor', 'comb. cycle indoor', '3 indoor boiler', '2 indoor boilers', '1 indoor boiler', '2 indoor boiler', '3 indoor boilers', 'fully contained', 'conv - b', 'conventional/boiler', 'cnventional', 'comb. cycle indooor', 'sonventional', 'ind enclosures'], 'outdoor': ['outdoor', 'outdoor boiler', 'full outdoor', 'outdoor boiler', 'outdoor boilers', 'outboilers', 'fuel outdoor', 'full outdoor', 'outdoors', 'outdoor', 'boiler outdoor& full', 'boiler outdoor&full', 'outdoor boiler& full', 'full -outdoor', 'outdoor steam', 'outdoor boiler', 'ob', 'outdoor automatic', 'outdoor repower', 'full outdoor boiler', 'fo', 'outdoor boiler & ful', 'full-outdoor', 'fuel outdoor', 'outoor', 'outdoor', 'outdoor boiler&full', 'boiler outdoor &full', 'outdoor boiler &full', 'boiler outdoor & ful', 'outdoor-boiler', 'outdoor - boiler', 'outdoor const.', '4 outdoor boilers', '3 outdoor boilers', 'full outdoor', 'full outdoors', 'full oudoors', 'outdoor (auto oper)', 'outside boiler', 'outdoor boiler&full', 'outdoor hrsg', 'outdoor hrsg', 'outdoor-steel encl.', 'boiler-outdr & full', 'con.& full outdoor', 'partial outdoor', 'outdoor (auto. oper)', 'outdoor (auto.oper)', 'outdoor construction', '1 outdoor boiler', '2 outdoor boilers', 'outdoor enclosure', '2 outoor boilers', 'boiler outdr.& full', 'boiler outdr. & full', 'ful outdoor', 'outdoor-steel enclos', 'outdoor (auto oper.)', 'con. & full outdoor', 'outdore', 'boiler & full outdor', 'full & outdr boilers', 'outodoor (auto oper)', 'outdoor steel encl.', 'full outoor', 'boiler & outdoor ful', 'otdr. blr. & f. otdr', 'f.otdr & otdr.blr.', 'oudoor (auto oper)', 'outdoor constructin', 'f. otdr. & otdr. blr', 'outdoor boiler & fue'], 'semioutdoor': ['more than 50% outdoo', 'more than 50% outdos', 'over 50% outdoor', 'over 50% outdoors', 'semi-outdoor', 'semi - outdoor', 'semi outdoor', 'semi-enclosed', 'semi-outdoor boiler', 'semi outdoor boiler', 'semi- outdoor', 'semi - outdoors', 'semi -outdoorconven & semi-outdr', 'conv & semi-outdoor', 'conv & semi- outdoor', 'convent. semi-outdr', 'conv. semi outdoor', 'conv(u1)/semiod(u2)', 'conv u1/semi-od u2', 'conv-one blr-semi-od', 'convent semioutdoor', 'conv. u1/semi-od u2', 'conv - 1 blr semi od', 'conv. ui/semi-od u2', 'conv-1 blr semi-od', 'conven. semi-outdoor', 'conv semi-outdoor', 'u1-conv./u2-semi-od', 'u1-conv./u2-semi -od', 'convent. semi-outdoo', 'u1-conv. / u2-semi', 'conven & semi-outdr', 'semi -outdoor', 'outdr & conventnl', 'conven. full outdoor', 'conv. & outdoor blr', 'conv. & outdoor blr.', 'conv. & outdoor boil', 'conv. & outdr boiler', 'conv. & out. boiler', 'convntl,outdoor blr', 'outdoor & conv.', '2 conv., 1 out. boil', 'outdoor/conventional', 'conv. boiler outdoor', 'conv-one boiler-outd', 'conventional outdoor', 'conventional outdor', 'conv. outdoor boiler', 'conv.outdoor boiler', 'conventional outdr.', 'conven,outdoorboiler', 'conven full outdoor', 'conven,full outdoor', '1 out boil, 2 conv', 'conv. & full outdoor', 'conv. & outdr. boilr', 'conv outdoor boiler', 'convention. outdoor', 'conv. sem. outdoor', 'convntl, outdoor blr', 'conv & outdoor boil', 'conv & outdoor boil.', 'outdoor & conv', 'conv. broiler outdor', '1 out boilr, 2 conv', 'conv.& outdoor boil.', 'conven,outdr.boiler', 'conven,outdr boiler', 'outdoor & conventil', '1 out boilr 2 conv', 'conv & outdr. boilr', 'conven, full outdoor', 'conven full outdr.', 'conven, full outdr.', 'conv/outdoor boiler', "convnt'l outdr boilr", '1 out boil 2 conv', 'conv full outdoor', 'conven, outdr boiler', 'conventional/outdoor', 'conv&outdoor boiler', 'outdoor & convention', 'conv & outdoor boilr', 'conv & full outdoor', 'convntl. outdoor blr', 'conv - ob', "1conv'l/2odboilers", "2conv'l/1odboiler", 'conv-ob', 'conv.-ob', '1 conv/ 2odboilers', '2 conv /1 odboilers', 'conv- ob', 'conv -ob', 'con sem outdoor', 'cnvntl, outdr, boilr', 'less than 50% outdoo', 'under 50% outdoor', 'under 50% outdoors', '1cnvntnl/2odboilers', '2cnvntnl1/1odboiler', 'con & ob', 'combination (b)', 'indoor & outdoor', 'conven. blr. & full', 'conv. & otdr. blr.', 'combination', 'indoor and outdoor', 'conven boiler & full', "2conv'l/10dboiler", '4 indor/outdr boiler', '4 indr/outdr boilerr', '4 indr/outdr boiler', 'indoor & outdoof'], 'unknown': ['', 'automatic operation', 'comb. turb. installn', 'comb. turb. instaln', 'com. turb. installn', 'n/a', 'for detailed info.', 'for detailed info', 'combined cycle', 'na', 'not applicable', 'gas', 'heated individually', 'metal enclosure', 'pressurized water', 'nuclear', 'jet engine', 'gas turbine', 'storage/pipelines', '0', 'during 1994', 'peaking - automatic', 'gas turbine/int. cm', '2 oil/gas turbines', 'wind', 'package', 'mobile', 'auto-operated', 'steam plants', 'other production', 'all nuclear plants', 'other power gen.', 'automatically operad', 'automatically operd', 'circ fluidized bed', 'jet turbine', 'gas turbne/int comb', 'automatically oper.', 'retired 1/1/95', 'during 1995', '1996. plant sold', 'reactivated 7/1/96', 'gas turbine/int comb', 'portable', 'head individually', 'automatic opertion', 'peaking-automatic', 'cycle', 'full order', 'circ. fluidized bed', 'gas turbine/intcomb', '0.0000', 'none', '2 oil / gas', 'block & steel', 'and 2000', 'comb.turb. instaln', 'automatic oper.', 'pakage', '---', 'n/a (ct)', 'comb turb instain', 'ind encloures', '2 oil /gas turbines', 'combustion turbine', '1970', 'gas/oil turbines', 'combined cycle steam', 'pwr', '2 oil/ gas', '2 oil / gas turbines', 'gas / oil turbines', 'no boiler', 'internal combustion', 'gasturbine no boiler', 'boiler', 'tower -10 unit facy', 'gas trubine', '4 gas/oil trubines', '2 oil/ 4 gas/oil tur', '5 gas/oil turbines', 'tower 16', '2 on 1 gas turbine', 'tower 23', 'tower -10 unit', 'tower - 101 unit', '3 on 1 gas turbine', 'tower - 10 units', 'tower - 165 units', 'wind turbine', 'fixed tilt pv', 'tracking pv', 'o', 'wind trubine', 'subcritical', 'sucritical', 'simple cycle', 'simple & reciprocat']}

	A dictionary of construction types (keys) and lists of construction type
strings associated with each type (values) from FERC Form 1.

There are many strings that weren’t categorized, including crosses between
conventional and outdoor, PV, wind, combined cycle, and internal combustion. The
lists are broken out into the two types specified in Form 1: conventional and
outdoor. These lists are inclusive so that variants of conventional (e.g.
“conventional full”) and outdoor (e.g. “outdoor full” and “outdoor hrsg”) are
included.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class pudl.transform.ferc1.FERCPlantClassifier(min_sim=0.75, plants_df=None)

	Bases: sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator], sklearn.base.ClassifierMixin [https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html#sklearn.base.ClassifierMixin]

A classifier for identifying FERC plant time series in FERC Form 1 data.

We want to be able to give the classifier a FERC plant record, and get back the
group of records(or the ID of the group of records) that it ought to be part of.

There are hundreds of different groups of records, and we can only know what they
are by looking at the whole dataset ahead of time. This is the “fitting” step, in
which the groups of records resulting from a particular set of model parameters(e.g.
the weights that are attributes of the class) are generated.

Once we have that set of record categories, we can test how well the classifier
performs, by checking it against test / training data which we have already
classified by hand. The test / training set is a list of lists of unique FERC plant
record IDs(each record ID is the concatenation of: report year, respondent id,
supplement number, and row number). It could also be stored as a dataframe where
each column is associated with a year of data(some of which could be empty). Not
sure what the best structure would be.

If it’s useful, we can assign each group a unique ID that is the time ordered
concatenation of each of the constituent record IDs. Need to understand what the
process for checking the classification of an input record looks like.

To score a given classifier, we can look at what proportion of the records in the
test dataset are assigned to the same group as in our manual classification of those
records. There are much more complicated ways to do the scoring too… but for now
let’s just keep it as simple as possible.

	
fit(X, y=None)

	Use weighted FERC plant features to group records into time series.

The fit method takes the vectorized, normalized, weighted FERC plant
features (X) as input, calculates the pairwise cosine similarity matrix
between all records, and groups the records in their best time series.
The similarity matrix and best time series are stored as data members
in the object for later use in scoring & predicting.

This isn’t quite the way a fit method would normally work.

	Parameters

	
	() (y) – a sparse matrix of size n_samples x n_features.

	() –

	Returns

	

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Zane revisit args and returns

	
predict(X, y=None)

	Identify time series of similar records to input record_ids.

Given a one-dimensional dataframe X, containing FERC record IDs, return
a dataframe in which each row corresponds to one of the input record_id
values (ordered as the input was ordered), with each column
corresponding to one of the years worth of data. Values in the returned
dataframe are the FERC record_ids of the record most similar to the
input record within that year. Some of them may be null, if there was
no sufficiently good match.

Row index is the seed record IDs. Column index is years.

TODO:
* This method is hideously inefficient. It should be vectorized.
* There’s a line that throws a FutureWarning that needs to be fixed.

	
score(X, y=None)

	Scores a collection of FERC plant categorizations.

For every record ID in X, predict its record group and calculate
a metric of similarity between the prediction and the “ground
truth” group that was passed in for that value of X.

	Parameters

	
	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – an n_samples x 1 pandas dataframe of FERC
Form 1 record IDs.

	y (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – a dataframe of “ground truth” FERC Form 1
record groups, corresponding to the list record IDs in X

	Returns

	The average of all the similarity metrics as the
score.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
transform(X, y=None)

	Passthrough transform method – just returns self.

	
pudl.transform.ferc1.FUEL_STRINGS = {'coal': ['coal', 'coal-subbit', 'lignite', 'coal(sb)', 'coal (sb)', 'coal-lignite', 'coke', 'coa', 'lignite/coal', 'coal - subbit', 'coal-subb', 'coal-sub', 'coal-lig', 'coal-sub bit', 'coals', 'ciak', 'petcoke', 'coal.oil', 'coal/gas', 'bit coal', 'coal-unit #3', 'coal-subbitum', 'coal tons', 'coal mcf', 'coal unit #3', 'pet. coke', 'coal-u3', 'coal&coke', 'tons'], 'gas': ['gas', 'gass', 'methane', 'natural gas', 'blast gas', 'gas mcf', 'propane', 'prop', 'natural gas', 'nat.gas', 'nat gas', 'nat. gas', 'natl gas', 'ga', 'gas`', 'syngas', 'ng', 'mcf', 'blast gaa', 'nat gas', 'gac', 'syngass', 'prop.', 'natural', 'coal.gas', 'n. gas', 'lp gas', 'natuaral gas', 'coke gas', 'gas #2016', 'propane**', '* propane', 'propane **', 'gas expander', 'gas ct', '# 6 gas', '#6 gas', 'coke oven gas'], 'hydro': [], 'nuclear': ['nuclear', 'grams of uran', 'grams of', 'grams of ura', 'grams', 'nucleur', 'nulear', 'nucl', 'nucleart', 'nucelar', 'gr.uranium', 'grams of urm', 'nuclear (9)', 'nulcear', 'nuc', 'gr. uranium', 'nuclear mw da', 'grams of ura'], 'oil': ['oil', '#6 oil', '#2 oil', 'fuel oil', 'jet', 'no. 2 oil', 'no.2 oil', 'no.6& used', 'used oil', 'oil-2', 'oil (#2)', 'diesel oil', 'residual oil', '# 2 oil', 'resid. oil', 'tall oil', 'oil/gas', 'no.6 oil', 'oil-fuel', 'oil-diesel', 'oil / gas', 'oil bbls', 'oil bls', 'no. 6 oil', '#1 kerosene', 'diesel', 'no. 2 oils', 'blend oil', '#2oil diesel', '#2 oil-diesel', '# 2 oil', 'light oil', 'heavy oil', 'gas.oil', '#2', '2', '6', 'bbl', 'no 2 oil', 'no 6 oil', '#1 oil', '#6', 'oil-kero', 'oil bbl', 'biofuel', 'no 2', 'kero', '#1 fuel oil', 'no. 2 oil', 'blended oil', 'no 2. oil', '# 6 oil', 'nno. 2 oil', '#2 fuel', 'oill', 'oils', 'gas/oil', 'no.2 oil gas', '#2 fuel oil', 'oli', 'oil (#6)', 'oil/diesel', '2 oil', '#6 hvy oil', 'jet fuel', 'diesel/compos', 'oil-8', 'oil {6}', 'oil-unit #1', 'bbl.', 'oil.', 'oil #6', 'oil (6)', 'oil(#2)', 'oil-unit1&2', 'oil-6', '#2 fue oil', 'dielel oil', 'dielsel oil', '#6 & used', 'barrels', 'oil un 1 & 2', 'jet oil', 'oil-u1&2', 'oiul', 'pil', 'oil - 2', '#6 & used', 'oial'], 'solar': [], 'unknown': ['steam', 'purch steam', 'all', 'tdf', 'n/a', 'purch. steam', 'other', 'composite', 'composit', 'mbtus', 'total', 'avg', 'avg.', 'blo', 'all fuel', 'comb.', 'alt. fuels', 'na', 'comb', '/#=2\x80â\x91?', 'kã\xadgv¸\x9d?', "mbtu's", 'gas, oil', 'rrm', '3\x9c', 'average', 'furfural', '0', 'watson bng', 'toal', 'bng', '# 6 & used', 'combined', 'blo bls', 'compsite', '*', 'compos.', 'gas / oil', 'mw days', 'g', 'c', 'lime', 'all fuels', 'at right', '20', '1', 'comp oil/gas', 'all fuels to', 'the right are', 'c omposite', 'all fuels are', 'total pr crk', 'all fuels =', 'total pc', 'comp', 'alternative', 'alt. fuel', 'bio fuel', 'total prairie', ''], 'waste': ['tires', 'tire', 'refuse', 'switchgrass', 'wood waste', 'woodchips', 'biomass', 'wood', 'wood chips', 'rdf', 'tires/refuse', 'tire refuse', 'waste oil', 'waste', 'woodships', 'tire chips'], 'wind': []}

	A mapping a canonical fuel name to a list of strings which are used
to represent that fuel in the FERC Form 1 Reporting. Case is ignored, as all fuel
strings are converted to a lower case in the data set.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.FUEL_UNIT_STRINGS = {'bbl': ['barrel', 'bbls', 'bbl', 'barrels', 'bbrl', 'bbl.', 'bbls.', 'oil 42 gal', 'oil-barrels', 'barrrels', 'bbl-42 gal', 'oil-barrel', 'bb.', 'barrells', 'bar', 'bbld', 'oil- barrel', 'barrels .', 'bbl .', 'barels', 'barrell', 'berrels', 'bb', 'bbl.s', 'oil-bbl', 'bls', 'bbl:', 'barrles', 'blb', 'propane-bbl', 'barriel', 'berriel', 'barrile', '(bbl.)', 'barrel *(4)', '(4) barrel', 'bbf', 'blb.', '(bbl)', 'bb1', 'bbsl', 'barrrel', 'barrels 100%', 'bsrrels', "bbl's", '*barrels', 'oil - barrels', 'oil 42 gal ba', 'bll', 'boiler barrel', 'gas barrel', '"boiler" barr', '"gas" barrel', '"boiler"barre', '"boiler barre', 'barrels .', 'bariel', 'brrels', 'oil barrel'], 'btu': ['btus', 'btu'], 'gal': ['gallons', 'gal.', 'gals', 'gals.', 'gallon', 'gal', 'galllons'], 'gramsU': ['gram', 'grams', 'gm u', 'grams u235', 'grams u-235', 'grams of uran', 'grams: u-235', 'grams:u-235', 'grams:u235', 'grams u308', 'grams: u235', 'grams of', 'grams - n/a', 'gms uran', 's e uo2 grams', 'gms uranium', 'grams of urm', 'gms. of uran', 'grams (100%)', 'grams v-235', 'se uo2 grams'], 'kgU': ['kg of uranium', 'kg uranium', 'kilg. u-235', 'kg u-235', 'kilograms-u23', 'kg', 'kilograms u-2', 'kilograms', 'kg of', 'kg-u-235', 'kilgrams', 'kilogr. u235', 'uranium kg', 'kg uranium25', 'kilogr. u-235', 'kg uranium 25', 'kilgr. u-235', 'kguranium 25', 'kg-u235', 'kgm'], 'kgal': ['oil(1000 gal)', 'oil(1000)', 'oil (1000)', 'oil(1000', 'oil(1000ga)'], 'klbs': ['k lbs.', 'k lbs'], 'mcf': ['mcf', "mcf's", 'mcfs', 'mcf.', 'gas mcf', '"gas" mcf', 'gas-mcf', 'mfc', 'mct', ' mcf', 'msfs', 'mlf', 'mscf', 'mci', 'mcl', 'mcg', 'm.cu.ft.', 'kcf', '(mcf)', 'mcf *(4)', 'mcf00', 'm.cu.ft..'], 'mmbtu': ['mmbtu', 'mmbtus', 'mbtus', '(mmbtu)', "mmbtu's", 'nuclear-mmbtu', 'nuclear-mmbt', 'mmbtul'], 'mwdth': ['mwd therman', 'mw days-therm', 'mwd thrml', 'mwd thermal', 'mwd/mtu', 'mw days', 'mwdth', 'mwd', 'mw day', 'dth', 'mwdaysthermal', 'mw day therml', 'mw days thrml', 'nuclear mwd', 'mmwd', 'mw day/thermlmw days/therm', 'mw days (th', 'ermal)'], 'mwhth': ['mwh them', 'mwh threm', 'nwh therm', 'mwhth', 'mwh therm', 'mwh', 'mwh therms.', 'mwh term.uts', 'mwh thermal', 'mwh thermals', 'mw hr therm', 'mwh therma', 'mwh therm.uts'], 'ton': ['toms', 'taons', 'tones', 'col-tons', 'toncoaleq', 'coal', 'tons coal eq', 'coal-tons', 'ton', 'tons', 'tons coal', 'coal-ton', 'tires-tons', 'coal tons -2 ', 'oil-tons', 'coal tons 200', 'ton-2000', 'coal tons', 'coal tons -2', 'coal-tone', 'tire-ton', 'tire-tons', 'ton coal eqv', 'tos', 'coal tons - 2', 'c. t.', 'c.t.', 'toncoalequiv'], 'unknown': ['', '1265', 'mwh units', 'composite', 'therms', 'n/a', 'mbtu/kg', 'uranium 235', 'oil', 'ccf', '2261', 'uo2', '(7)', 'oil #2', 'oil #6', '\x99å\x83\x90?"', 'dekatherm', '0', 'mw day/therml', 'nuclear', 'gas', '62,679', 'mw days/therm', 'na', 'uranium', 'oil/gas', 'thermal', '(thermal)', 'se uo2', '181679', '83', '3070', '248', '273976', '747', '-', 'are total', 'pr. creek', 'decatherms', 'uramium', '.', 'total pr crk', '>>>>>>>>', 'all', 'total', 'alternative-t', 'oil-mcf', '3303671', '929', '7182175', '319', '1490442', '10881', '1363663', '7171', '1726497', '4783', '7800', '12559', '2398', 'creek fuels', 'propane-barre', '509', 'barrels/mcf', 'propane-bar', '4853325', '4069628', '1431536', '708903', 'mcf/oil (1000']}

	A dictionary linking fuel units (keys) to lists of various strings
representing those fuel units (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.PLANT_KIND_STRINGS = {'combined_cycle': ['Combined cycle', 'combined cycle', 'combined', 'gas & steam turbine', 'gas turb. & heat rec', 'combined cycle', 'com. cyc', 'com. cycle', 'gas turb-combined cy', 'combined cycle ctg', 'combined cycle - 40%', 'com cycle gas turb', 'combined cycle oper', 'gas turb/comb. cyc', 'combine cycle', 'cc', 'comb. cycle', 'gas turb-combined cy', 'steam and cc', 'steam cc', 'gas steam', 'ctg steam gas', 'steam comb cycle', 'gas/steam comb. cycl', 'steam (comb. cycle)gas turbine/steam', 'steam & gas turbine', 'gas trb & heat rec', 'steam & combined ce', 'st/gas turb comb cyc', 'gas tur & comb cycl', 'combined cycle (a,b)', 'gas turbine/ steam', 'steam/gas turb.', 'steam & comb cycle', 'gas/steam comb cycle', 'comb cycle (a,b)', 'igcc', 'steam/gas turbine', 'gas turbine / steam', 'gas tur & comb cyc', 'comb cyc (a) (b)', 'comb cycle', 'comb cyc', 'combined turbine', 'combine cycle oper', 'comb cycle/steam tur', 'cc / gas turb', 'steam (comb. cycle)', 'steam & cc', 'gas turbine/steam', 'gas turb/cumbus cycl', 'gas turb/comb cycle', 'gasturb/comb cycle', 'gas turb/cumb. cyc', 'igcc/gas turbine', 'gas / steam', 'ctg/steam-gas', 'ctg/steam -gas', 'gas fired cc turbine', 'combinedcycle', 'comb cycle gas turb', 'combined cycle opern', 'comb. cycle gas turb'], 'combustion_turbine': ['combustion turbine', 'gt', 'gas turbine', 'gas turbine # 1', 'gas turbine', 'gas turbine (note 1)', 'gas turbines', 'simple cycle', 'combustion turbine', 'comb.turb.peak.units', 'gas turbine', 'combustion turbine', 'com turbine peaking', 'gas turbine peaking', 'comb turb peaking', 'combustine turbine', 'comb. turine', 'conbustion turbine', 'combustine turbine', 'gas turbine (leased)', 'combustion tubine', 'gas turb', 'gas turbine peaker', 'gtg/gas', 'simple cycle turbine', 'gas-turbine', 'gas turbine-simple', 'gas turbine - note 1', 'gas turbine #1', 'simple cycle', 'gasturbine', 'combustionturbine', 'gas turbine (2)', 'comb turb peak units', 'jet engine', 'jet powered turbine', '*gas turbine', 'gas turb.(see note5)', 'gas turb. (see note', 'combutsion turbine', 'combustion turbin', 'gas turbine-unit 2', 'gas - turbine', 'comb turbine peaking', 'gas expander turbine', 'jet turbine', 'gas turbin (lease', 'gas turbine (leased', 'gas turbine/int. cm', 'comb.turb-gas oper.', 'comb.turb.gas/oil op', 'comb.turb.oil oper.', 'jet', 'comb. turbine (a)', 'gas turb.(see notes)', 'gas turb(see notes)', 'comb. turb-gas oper', 'comb.turb.oil oper', 'gas turbin (leasd)', 'gas turbne/int comb', 'gas turbine (note1)', 'combution turbin', '* gas turbine', 'add to gas turbine', 'gas turbine (a)', 'gas turbinint comb', 'gas turbine (note 3)', 'resp share gas note3', 'gas trubine', '*gas turbine(note3)', 'gas turbine note 3,6', 'gas turbine note 4,6', 'gas turbine peakload', 'combusition turbine', 'gas turbine (lease)', 'comb. turb-gas oper.', 'combution turbine', 'combusion turbine', 'comb. turb. oil oper', 'combustion burbine', 'combustion and gas', 'comb. turb.', 'gas turbine (lease', 'gas turbine (leasd)', 'gas turbine/int comb', '*gas turbine(note 3)', 'gas turbine (see nos', 'i.c.e./gas turbine', 'gas turbine/intcomb', 'cumbustion turbine', 'gas turb, int. comb.', 'gas turb, diesel', 'gas turb, int. comb', 'i.c.e/gas turbine', 'diesel turbine', 'comubstion turbine', 'i.c.e. /gas turbine', 'i.c.e/ gas turbine', 'i.c.e./gas tubine'], 'geothermal': ['steam - geothermal', 'steam_geothermal', 'geothermal'], 'internal_combustion': ['ic', 'internal combustion', 'internal comb.', 'internl combustiondiesel turbine', 'int combust (note 1)', 'int. combust (note1)', 'int.combustine', 'comb. cyc', 'internal comb', 'diesel', 'diesel engine', 'internal combustion', 'int combust - note 1', 'int. combust - note1', 'internal comb recip', 'reciprocating engine', 'comb. turbine', 'internal combust.', 'int. combustion (1)', '*int combustion (1)', "*internal combust'n", 'internal', 'internal comb.', 'steam internal comb', 'combustion', 'int. combustion', 'int combust (note1)', 'int. combustine', 'internl combustion', '*int. combustion (1)'], 'nuclear': ['nuclear', 'nuclear (3)', 'steam(nuclear)', 'nuclear(see note4)nuclear steam', 'nuclear turbine', 'nuclear - steam', 'nuclear (a)(b)(c)', 'nuclear (b)(c)', '* nuclear', 'nuclear (b) (c)', 'nuclear (see notes)', 'steam (nuclear)', '* nuclear (note 2)', 'nuclear (note 2)', 'nuclear (see note 2)', 'nuclear(see note4)', 'nuclear steam', 'nuclear(see notes)', 'nuclear-steam', 'nuclear (see note 3)'], 'photovoltaic': ['solar photovoltaic', 'photovoltaic', 'solar', 'solar project'], 'solar_thermal': ['solar thermal'], 'steam': ['coal', 'steam', 'steam units 1 2 3', 'steam units 4 5', 'steam fossil', 'steam turbine', 'steam a', 'steam 100', 'steam units 1 2 3', 'steams', 'steam 1', 'steam retired 2013', 'stream', 'steam units 1,2,3', 'steam units 4&5', 'steam units 4&6', 'steam conventional', 'unit total-steam', 'unit total steam', '*resp. share steam', 'resp. share steam', 'steam (see note 1,', 'steam (see note 3)', 'mpc 50%share steam', '40% share steamsteam (2)', 'steam (3)', 'steam (4)', 'steam (5)', 'steam (6)', 'steam (7)', 'steam (8)', 'steam units 1 and 2', 'steam units 3 and 4', 'steam (note 1)', 'steam (retired)', 'steam (leased)', 'coal-fired steam', 'oil-fired steam', 'steam/fossil', 'steam (a,b)', 'steam (a)', 'stean', 'steam-internal comb', 'steam (see notes)', 'steam units 4 & 6', 'resp share stm note3', 'mpc50% share steam', 'mpc40%share steam', 'steam - 64%', 'steam - 100%', 'steam (1) & (2)', 'resp share st note3', 'mpc 50% shares steam', 'steam-64%', 'steam-100%', 'steam (see note 1)', 'mpc 50% share steam', 'steam units 1, 2, 3', 'steam units 4, 5', 'steam (2)', 'steam (1)', 'steam 4, 5', 'steam - 72%', 'steam (incl i.c.)', 'steam- 72%', 'steam;retired - 2013', "respondent's sh.-st.", "respondent's sh-st", '40% share steam', 'resp share stm note3', 'mpc50% share steam', 'resp share st note 3', '\x02steam (1)'], 'unknown': ['', 'n/a', 'see pgs 402.1-402.3', 'see pgs 403.1-403.9', "respondent's share", '--', '(see note 7)', 'other', 'not applicable', 'peach bottom', 'none.', 'fuel facilities', '0', 'not in service', 'none', 'common expenses', 'expenses common to', 'retired in 1981', 'retired in 1978', 'na', 'unit total (note3)', 'unit total (note2)', 'resp. share (note2)', 'resp. share (note8)', 'resp. share (note 9)', 'resp. share (note11)', 'resp. share (note4)', 'resp. share (note6)', 'conventional', 'expenses commom to', 'not in service in', 'unit total (note 3)', 'unit total (note 2)', 'resp. share (note 8)', 'resp. share (note 3)', 'resp. share note 11', 'resp. share (note 4)', 'resp. share (note 6)', '(see note 5)', 'resp. share (note 2)', 'package', '(left blank)', 'common', '0.0000', 'other generation', 'resp share (note 11)', 'retired', 'storage/pipelines', 'sold april 16, 1999', 'sold may 07, 1999', 'plants sold in 1999', 'gas', 'not applicable.', 'resp. share - note 2', 'resp. share - note 8', 'resp. share - note 9', 'resp share - note 11', 'resp. share - note 4', 'resp. share - note 6', 'plant retired- 2013', 'retired - 2013', 'resp share - note 5', 'resp. share - note 7', 'non-applicable', 'other generation plt', 'combined heat/power', 'oil'], 'wind': ['wind', 'wind energy', 'wind turbine', 'wind - turbine', 'wind generation']}

	A mapping from canonical plant kinds (keys) to the associated freeform strings
(values) identified as being associated with that kind of plant in the FERC Form 1
raw data. There are many strings that weren’t categorized, Solar and Solar
Project were not classified as these do not indicate if they are solar thermal or
photovoltaic. Variants on Steam (e.g. “steam 72” and “steam and gas”) were
classified based on additional research of the plants on the Internet.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.accumulated_depreciation(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 depreciation data for loading into PUDL.

This information is organized by FERC account, with each line of the FERC Form 1
having a different descriptive identifier like ‘balance_end_of_year’ or
‘transmission’.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	The dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.cols_to_cats(df, cat_name, col_cats)

	Turn top-level MultiIndex columns into a categorial column.

In some cases FERC Form 1 data comes with many different types of related values
interleaved in the same table – e.g. current year and previous year income – this
can result in DataFrames that are hundreds of columns wide, which is unwieldy. This
function takes those top level MultiIndex labels and turns them into categories in a
single column, which can be used to select a particular type of report.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – the dataframe to be simplified.

	cat_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the label of the column to be created indicating what
MultiIndex label the values came from.

	col_cats (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary with top level MultiIndex labels as keys,
and the category to which they should be mapped as values.

	Returns

	A re-shaped/re-labeled dataframe with one fewer levels of
MultiIndex in the columns, and an additional column containing the assigned
labels.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.transform.ferc1.fuel(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 fuel data for loading into PUDL Database.

This process includes converting some columns to be in terms of our preferred units,
like MWh and mmbtu instead of kWh and btu. Plant names are also standardized
(stripped & lower). Fuel and fuel unit strings are also standardized using our
cleanstrings() function and string cleaning dictionaries found above (FUEL_STRINGS,
etc.)

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.fuel_by_plant_ferc1(fuel_df, thresh=0.5)

	Calculates useful FERC Form 1 fuel metrics on a per plant-year basis.

Each record in the FERC Form 1 corresponds to a particular type of fuel. Many plants
– especially coal plants – use more than one fuel, with gas and/or diesel serving
as startup fuels. In order to be able to classify the type of plant based on
relative proportions of fuel consumed or fuel costs it is useful to aggregate these
per-fuel records into a single record for each plant.

Fuel cost (in nominal dollars) and fuel heat content (in mmBTU) are calculated for
each fuel based on the cost and heat content per unit, and the number of units
consumed, and then summed by fuel type (there can be more than one record for a
given type of fuel in each plant because we are simplifying the fuel categories).
The per-fuel records are then pivoted to create one column per fuel type. The total
is summed and stored separately, and the individual fuel costs & heat contents are
divided by that total, to yield fuel proportions. Based on those proportions and a
minimum threshold that’s passed in, a “primary” fuel type is then assigned to the
plant-year record and given a string label.

	Parameters

	
	fuel_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Pandas DataFrame resembling the post-transform
result for the fuel_ferc1 table.

	thresh (float [https://docs.python.org/3/library/functions.html#float]) – A value between 0.5 and 1.0 indicating the minimum fraction of
overall heat content that must have been provided by a fuel in a plant-year
for it to be considered the “primary” fuel for the plant in that year.
Default value: 0.5.

	Returns

	A DataFrame with a single record for each plant-year,
including the columns required to merge it with the plants_steam_ferc1
table/DataFrame (report_year, utility_id_ferc1, and plant_name) as well as
totals for fuel mmbtu consumed in that plant-year, and the cost of fuel in that
year, the proportions of heat content and fuel costs for each fuel in that year,
and a column that labels the plant’s primary fuel for that year.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the DataFrame input does not have the columns required to
 run the function.

	
pudl.transform.ferc1.make_ferc1_clf(plants_df, ngram_min=2, ngram_max=10, min_sim=0.75, plant_name_ferc1_wt=2.0, plant_type_wt=2.0, construction_type_wt=1.0, capacity_mw_wt=1.0, construction_year_wt=1.0, utility_id_ferc1_wt=1.0, fuel_fraction_wt=1.0)

	Create a FERC Plant Classifier using several weighted features.

Given a FERC steam plants dataframe plants_df, which also includes fuel consumption
information, transform a selection of useful columns into features suitable for use
in calculating inter-record cosine similarities. Individual features are weighted
according to the keyword arguments.

Features include:

	plant_name (via TF-IDF, with ngram_min and ngram_max as parameters)

	plant_type (OneHot encoded categorical feature)

	construction_type (OneHot encoded categorical feature)

	capacity_mw (MinMax scaled numerical feature)

	construction year (OneHot encoded categorical feature)

	utility_id_ferc1 (OneHot encoded categorical feature)

	fuel_fraction_mmbtu (several MinMax scaled numerical columns, which are
normalized and treated as a single feature.)

This feature matrix is then used to instantiate a FERCPlantClassifier.

The combination of the ColumnTransformer and FERCPlantClassifier are combined in a
sklearn Pipeline, which is returned by the function.

	Parameters

	
	ngram_min (int [https://docs.python.org/3/library/functions.html#int]) – the minimum lengths to consider in the vectorization of the
plant_name feature.

	ngram_max (int [https://docs.python.org/3/library/functions.html#int]) – the maximum n-gram lengths to consider in the vectorization of
the plant_name feature.

	min_sim (float [https://docs.python.org/3/library/functions.html#float]) – the minimum cosine similarity between two records that can be
considered a “match” (a number between 0.0 and 1.0).

	plant_name_ferc1_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine
similarity between records. Used to scale each individual feature before the
vectors are normalized.

	plant_type_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative importance of each
of the features in the feature matrix used to calculate the cosine
similarity between records. Used to scale each individual feature before the
vectors are normalized.

	construction_type_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine
similarity between records. Used to scale each individual feature before the
vectors are normalized.

	capacity_mw_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative importance of each
of the features in the feature matrix used to calculate the cosine
similarity between records. Used to scale each individual feature before the
vectors are normalized.

	construction_year_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine
similarity between records. Used to scale each individual feature before the
vectors are normalized.

	utility_id_ferc1_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine
similarity between records. Used to scale each individual feature before the
vectors are normalized.

	fuel_fraction_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative importance of
each of the features in the feature matrix used to calculate the cosine
similarity between records. Used to scale each individual feature before the
vectors are normalized.

	Returns

	an sklearn Pipeline that performs reprocessing and
classification with a FERCPlantClassifier object.

	Return type

	sklearn.pipeline.Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]

	
pudl.transform.ferc1.plant_in_service(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 Plant in Service data for loading into PUDL.

Re-organizes the original FERC Form 1 Plant in Service data by unpacking the rows as
needed on a year by year basis, to organize them into columns. The “columns” in the
original FERC Form 1 denote starting balancing, ending balance, additions,
retirements, adjustments, and transfers – these categories are turned into labels
in a column called “amount_type”. Because each row in the transformed table is
composed of many individual records (rows) from the original table, row_number can’t
be part of the record_id, which means they are no longer unique. To infer exactly
what record a given piece of data came from, the record_id and the row_map (found in
the PUDL package_data directory) can be used.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	The dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_hydro(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 plant_hydro data for loading into PUDL Database.

Standardizes plant names (stripping whitespace and Using Title Case). Also converts
into our preferred units of MW and MWh.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_pumped_storage(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 pumped storage data for loading into PUDL.

Standardizes plant names (stripping whitespace and Using Title Case). Also converts
into our preferred units of MW and MWh.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_small(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 plant_small data for loading into PUDL Database.

This FERC Form 1 table contains information about a large number of small plants,
including many small hydroelectric and other renewable generation facilities.
Unfortunately the data is not well standardized, and so the plants have been
categorized manually, with the results of that categorization stored in an Excel
spreadsheet. This function reads in the plant type data from the spreadsheet and
merges it with the rest of the information from the FERC DB based on record number,
FERC respondent ID, and report year. When possible the FERC license number for small
hydro plants is also manually extracted from the data.

This categorization will need to be renewed with each additional year of FERC data
we pull in. As of v0.1 the small plants have been categorized for 2004-2015.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_steam(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 plant_steam data for loading into PUDL Database.

This includes converting to our preferred units of MWh and MW, as well as
standardizing the strings describing the kind of plant and construction.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	of transformed dataframes, including the newly transformed
plants_steam_ferc1 dataframe.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_steam_validate_ids(ferc1_steam_df)

	Tests that plant_id_ferc1 times series includes one record per year.

	Parameters

	ferc1_steam_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A DataFrame of the data from the FERC 1
Steam table.

	Returns

	None

	
pudl.transform.ferc1.purchased_power(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 pumped storage data for loading into PUDL.

This table has data about inter-utility power purchases into the PUDL DB. This
includes how much electricty was purchased, how much it cost, and who it was
purchased from. Unfortunately the field describing which other utility the power was
being bought from is poorly standardized, making it difficult to correlate with
other data. It will need to be categorized by hand or with some fuzzy matching
eventually.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be transformed.

	Returns

	The dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.transform(ferc1_raw_dfs, ferc1_tables=('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'purchased_power_ferc1', 'plant_in_service_ferc1'))

	Transforms FERC 1.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from the FERC Form 1 DBC database

	ferc1_tables (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple containing the set of tables which have been
successfully integrated into PUDL

	Returns

	A dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.unpack_table(ferc1_df, table_name, data_cols, data_rows)

	Normalize a row-and-column based FERC Form 1 table.

Pulls the named database table from the FERC Form 1 DB and uses the corresponding
ferc1_row_map to unpack the row_number coded data.

	Parameters

	
	ferc1_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Raw FERC Form 1 DataFrame from the DB.

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Original name of the FERC Form 1 DB table.

	data_cols (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of strings corresponding to the original FERC Form 1
database table column labels – these are the columns of data that we are
extracting (it can be a subset of the columns which are present in the
original database).

	data_rows (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of row_names to extract, as defined in the FERC 1 row
maps. Set to slice(None) if you want all rows.

	Returns

	pandas.DataFrame

pudl.transform.ferc714 module

Transformation of the FERC Form 714 data.

	
pudl.transform.ferc714.BAD_RESPONDENTS = [319, 99991, 99992, 99993, 99994, 99995]

	Fake respondent IDs for database test entities.

	
pudl.transform.ferc714.EIA_CODE_FIXES = {125: 2775, 134: 5416, 203: 12341, 257: 59504, 292: 20382, 295: 40229, 301: 14725, 302: 14725, 303: 14725, 304: 14725, 305: 14725, 306: 14725, 307: 14379, 309: 12427, 315: 56090, 323: 58790, 324: 58791, 329: 39347}

	Overrides of FERC 714 respondent IDs with wrong or missing EIA Codes

	
pudl.transform.ferc714.OFFSET_CODES = {'AKDT': Timedelta('-1 days +15:00:00'), 'AKST': Timedelta('-1 days +15:00:00'), 'CDT': Timedelta('-1 days +18:00:00'), 'CST': Timedelta('-1 days +18:00:00'), 'EDT': Timedelta('-1 days +19:00:00'), 'EST': Timedelta('-1 days +19:00:00'), 'HST': Timedelta('-1 days +14:00:00'), 'MDT': Timedelta('-1 days +17:00:00'), 'MST': Timedelta('-1 days +17:00:00'), 'PDT': Timedelta('-1 days +16:00:00'), 'PST': Timedelta('-1 days +16:00:00')}

	A mapping of timezone offset codes to Timedelta offsets from UTC.

from one year to the next, and these result in duplicate records, which are Note that
the FERC 714 instructions state that all hourly demand is to be reported in STANDARD
time for whatever timezone is being used. Even though many respondents use daylight
savings / standard time abbreviations, a large majority do appear to conform to using a
single UTC offset throughout the year. There are 6 instances in which the timezone
associated with reporting changed dropped.

	
pudl.transform.ferc714.TZ_CODES = {'AKDT': 'America/Anchorage', 'AKST': 'America/Anchorage', 'CDT': 'America/Chicago', 'CST': 'America/Chicago', 'EDT': 'America/New_York', 'EST': 'America/New_York', 'HST': 'Pacific/Honolulu', 'MDT': 'America/Denver', 'MST': 'America/Denver', 'PDT': 'America/Los_Angeles', 'PST': 'America/Los_Angeles'}

	Mapping between standardized time offset codes and canonical timezones.

	
pudl.transform.ferc714.adjacency_ba(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.demand_forecast_pa(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.demand_hourly_pa(tfr_dfs)

	Transform the hourly demand time series by Planning Area.

Transformations include:

	Clean UTC offset codes.

	Replace UTC offset codes with UTC offset and timezone.

	Drop 25th hour rows.

	Set records with 0 UTC code to 0 demand.

	Drop duplicate rows.

	Flip negative signs for reported demand.

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of (partially) transformed dataframes, to be
cleaned up.

	Returns

	The input dictionary of dataframes, but with a finished
pa_demand_hourly_ferc714 dataframe.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc714.demand_monthly_ba(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.description_pa(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.gen_plants_ba(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.id_certification(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.interchange_ba(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.lambda_description(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.lambda_hourly_ba(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.net_energy_load_ba(tfr_dfs)

	A stub transform function.

	
pudl.transform.ferc714.respondent_id(tfr_dfs)

	Transform the FERC 714 respondent IDs, names, and EIA utility IDs.

This consists primarily of dropping test respondents and manually assigning EIA
utility IDs to a few FERC Form 714 respondents that report planning area demand, but
which don’t have their corresponding EIA utility IDs provided by FERC for some
reason (including PacifiCorp).

	Parameters

	tfr_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of (partially) transformed dataframes, to be
cleaned up.

	Returns

	The input dictionary of dataframes, but with a finished
respondent_id_ferc714 dataframe.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc714.transform(raw_dfs, tables=('respondent_id_ferc714', 'id_certification_ferc714', 'gen_plants_ba_ferc714', 'demand_monthly_ba_ferc714', 'net_energy_load_ba_ferc714', 'adjacency_ba_ferc714', 'interchange_ba_ferc714', 'lambda_hourly_ba_ferc714', 'lambda_description_ferc714', 'description_pa_ferc714', 'demand_forecast_pa_ferc714', 'demand_hourly_pa_ferc714'))

	Transform the raw FERC 714 dataframes into datapackage ready ouputs.

	Parameters

	
	raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of raw pandas.DataFrame objects, as read out of
the original FERC 714 CSV files. Generated by the
pudl.extract.ferc714.extract() function.

	tables (iterable) – The set of PUDL tables within FERC 714 that we should
process. Typically set to all of them, unless

	Returns

	A dictionary of pandas.DataFrame objects that are ready to be output in a
data package / database table.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.workspace package

Submodules

	pudl.workspace.datastore module

	pudl.workspace.resource_cache module

	pudl.workspace.setup module

	pudl.workspace.setup_cli module

Module contents

Tools for acquiring PUDL’s original input data and organizing it locally.

The datastore subpackage takes care of downloading original data form various
public sources, organizing it locally, and providing a programmatic interface
to that collection of raw inputs, which we refer to as the PUDL datastore.

These tools are available both as a library module, and via a command line
interface installed as an entrypoint script called pudl_datastore. For
full reproducibility of PUDL’s ETL pipeline outputs, the datastore should be
archived alongside the PUDL release which was used and the resulting
datapackage outputs.

pudl.workspace.datastore module

Datastore manages file retrieval for PUDL datasets.

	
exception pudl.workspace.datastore.ChecksumMismatch

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Resource checksum (md5) does not match.

	
class pudl.workspace.datastore.DatapackageDescriptor(datapackage_json: dict [https://docs.python.org/3/library/stdtypes.html#dict], dataset: str [https://docs.python.org/3/library/stdtypes.html#str], doi: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple wrapper providing access to datapackage.json contents.

	
get_json_string() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Exports the underlying json as normalized (sorted, indented) json string.

	
get_partitions(name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Returns mapping of all known partition keys to the set of its known values.

	
get_resource_path(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns zenodo url that holds contents of given named resource.

	
get_resources(name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **filters: Any) → Iterator[pudl.workspace.resource_cache.PudlResourceKey]

	Returns series of PudlResourceKey identifiers for matching resources.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – if specified, find resource(s) with this name.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – if specified, find resoure(s) matching these key=value constraints.
The constraints are matched against the ‘parts’ field of the resource
entry in the datapackage.json.

	
validate_checksum(name: str [https://docs.python.org/3/library/stdtypes.html#str], content: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if content matches checksum for given named resource.

	
class pudl.workspace.datastore.Datastore(local_cache_path: Optional[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]] = None, gcs_cache_path: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, sandbox: bool [https://docs.python.org/3/library/functions.html#bool] = False, timeout: float [https://docs.python.org/3/library/functions.html#float] = 15)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Handle connections and downloading of Zenodo Source archives.

	
get_datapackage_descriptor(dataset: str [https://docs.python.org/3/library/stdtypes.html#str]) → pudl.workspace.datastore.DatapackageDescriptor

	Fetch datapackage descriptor for given dataset either from cache or from zenodo.

	
get_known_datasets() → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns list of supported datasets.

	
get_resources(dataset: str [https://docs.python.org/3/library/stdtypes.html#str], cached_only: bool [https://docs.python.org/3/library/functions.html#bool] = False, skip_optimally_cached: bool [https://docs.python.org/3/library/functions.html#bool] = False, **filters: Any) → Iterator[Tuple[pudl.workspace.resource_cache.PudlResourceKey, bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	Return content of the matching resources.

	Parameters

	
	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the dataset to query.

	cached_only (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, only retrieve resources that are present in the cache.

	skip_optimally_cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, only retrieve resources that are not optimally
cached. This triggers attempt to optimally cache these resources.

	filters (key=val) – only return resources that match the key-value mapping in their

	metadata["parts"] –

	Yields

	(PudlResourceKey, io.BytesIO) holding content for each matching resource

	
get_unique_resource(dataset: str [https://docs.python.org/3/library/stdtypes.html#str], **filters: Any) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns content of a resource assuming there is exactly one that matches.

	
get_zipfile_resource(dataset: str [https://docs.python.org/3/library/stdtypes.html#str], **filters: Any) → zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]

	Retrieves unique resource and opens it as a ZipFile.

	
remove_from_cache(res: pudl.workspace.resource_cache.PudlResourceKey)

	Remove given resource from the associated cache.

	
class pudl.workspace.datastore.ParseKeyValues(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Transforms k1=v1,k2=v2,… into dict(k1=v1, k2=v2, …).

	
class pudl.workspace.datastore.ZenodoFetcher(sandbox: bool [https://docs.python.org/3/library/functions.html#bool] = False, timeout: float [https://docs.python.org/3/library/functions.html#float] = 15.0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

API for fetching datapackage descriptors and resource contents from zenodo.

	
API_ROOT = {'production': 'https://zenodo.org/api', 'sandbox': 'https://sandbox.zenodo.org/api'}

	

	
DOI = {'production': {'censusdp1tract': '10.5281/zenodo.4127049', 'eia860': '10.5281/zenodo.4127027', 'eia860m': '10.5281/zenodo.4540268', 'eia861': '10.5281/zenodo.4127029', 'eia923': '10.5281/zenodo.4127040', 'epacems': '10.5281/zenodo.4660268', 'ferc1': '10.5281/zenodo.4127044', 'ferc714': '10.5281/zenodo.4127101'}, 'sandbox': {'censusdp1tract': '10.5072/zenodo.674992', 'eia860': '10.5072/zenodo.672210', 'eia860m': '10.5072/zenodo.692655', 'eia861': '10.5072/zenodo.687052', 'eia923': '10.5072/zenodo.687071', 'epacems': '10.5072/zenodo.672963', 'ferc1': '10.5072/zenodo.687072', 'ferc714': '10.5072/zenodo.672224'}}

	

	
TOKEN = {'production': 'KXcG5s9TqeuPh1Ukt5QYbzhCElp9LxuqAuiwdqHP0WS4qGIQiydHn6FBtdJ5', 'sandbox': 'qyPC29wGPaflUUVAv1oGw99ytwBqwEEdwi4NuUrpwc3xUcEwbmuB4emwysco'}

	

	
get_descriptor(dataset: str [https://docs.python.org/3/library/stdtypes.html#str]) → pudl.workspace.datastore.DatapackageDescriptor

	Returns DatapackageDescriptor for given dataset.

	
get_doi(dataset: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns DOI for given dataset.

	
get_known_datasets() → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns list of supported datasets.

	
get_resource(res: pudl.workspace.resource_cache.PudlResourceKey) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Given resource key, retrieve contents of the file from zenodo.

	
get_resource_key(dataset: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → pudl.workspace.resource_cache.PudlResourceKey

	Returns PudlResourceKey for given resource.

	
pudl.workspace.datastore.fetch_resources(dstore: pudl.workspace.datastore.Datastore, datasets: List[str [https://docs.python.org/3/library/stdtypes.html#str]], args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) → None [https://docs.python.org/3/library/constants.html#None]

	Retrieve all matching resources and store them in the cache.

	
pudl.workspace.datastore.main()

	Cache datasets.

	
pudl.workspace.datastore.parse_command_line()

	Collect the command line arguments.

	
pudl.workspace.datastore.print_partitions(dstore: pudl.workspace.datastore.Datastore, datasets: List[str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Prints known partition keys and its values for each of the datasets.

	
pudl.workspace.datastore.validate_cache(dstore: pudl.workspace.datastore.Datastore, datasets: List[str [https://docs.python.org/3/library/stdtypes.html#str]], args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) → None [https://docs.python.org/3/library/constants.html#None]

	Validate elements in the datastore cache. Delete invalid entires from cache.

pudl.workspace.resource_cache module

Implementations of datastore resource caches.

	
class pudl.workspace.resource_cache.AbstractCache(read_only: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Defines interaface for the generic resource caching layer.

	
abstract add(resource: pudl.workspace.resource_cache.PudlResourceKey, content: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → None [https://docs.python.org/3/library/constants.html#None]

	Adds resource to the cache and sets the content.

	
abstract contains(resource: pudl.workspace.resource_cache.PudlResourceKey) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if the resource is present in the cache.

	
abstract delete(resource: pudl.workspace.resource_cache.PudlResourceKey) → None [https://docs.python.org/3/library/constants.html#None]

	Removes the resource from cache.

	
abstract get(resource: pudl.workspace.resource_cache.PudlResourceKey) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Retrieves content of given resource or throws KeyError.

	
is_read_only() → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns true if the cache is read-only and should not be modified.

	
class pudl.workspace.resource_cache.GoogleCloudStorageCache(gcs_path: str [https://docs.python.org/3/library/stdtypes.html#str], **kwargs: Any)

	Bases: pudl.workspace.resource_cache.AbstractCache

Implements file cache backed by Google Cloud Storage bucket.

	
add(resource: pudl.workspace.resource_cache.PudlResourceKey, value: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	Adds (or updates) resource to the cache with given value.

	
contains(resource: pudl.workspace.resource_cache.PudlResourceKey) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if resource is present in the cache.

	
delete(resource: pudl.workspace.resource_cache.PudlResourceKey)

	Deletes resource from the cache.

	
get(resource: pudl.workspace.resource_cache.PudlResourceKey) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Retrieves value associated with given resource.

	
class pudl.workspace.resource_cache.LayeredCache(*caches: List[pudl.workspace.resource_cache.AbstractCache], **kwargs: Any)

	Bases: pudl.workspace.resource_cache.AbstractCache

Implements multi-layered system of caches.

This allows building multi-layered system of caches. The idea is that you can
have faster local caches with fall-back to the more remote or expensive caches
that can be acessed in case of missing content.

Only the closest layer is being written to (set, delete), while all remaining
layers are read-only (get).

	
add(resource: pudl.workspace.resource_cache.PudlResourceKey, value)

	Adds (or replaces) resource into the cache with given value.

	
add_cache_layer(cache: pudl.workspace.resource_cache.AbstractCache)

	Adds caching layer. The priority is below all other.

	
contains(resource: pudl.workspace.resource_cache.PudlResourceKey) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if resource is present in the cache.

	
delete(resource: pudl.workspace.resource_cache.PudlResourceKey)

	Removes resource from the cache if the cache is not in the read_only mode.

	
get(resource: pudl.workspace.resource_cache.PudlResourceKey) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns content of a given resource.

	
is_optimally_cached(resource: pudl.workspace.resource_cache.PudlResourceKey) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns true if the resource is contained in the closest write-enabled layer.

	
num_layers()

	Returns number of caching layers that are in this LayeredCache.

	
class pudl.workspace.resource_cache.LocalFileCache(cache_root_dir: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], **kwargs: Any)

	Bases: pudl.workspace.resource_cache.AbstractCache

Simple key-value store mapping PudlResourceKeys to ByteIO contents.

	
add(resource: pudl.workspace.resource_cache.PudlResourceKey, content: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	Adds (or updates) resource to the cache with given value.

	
contains(resource: pudl.workspace.resource_cache.PudlResourceKey) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if resource is present in the cache.

	
delete(resource: pudl.workspace.resource_cache.PudlResourceKey)

	Deletes resource from the cache.

	
get(resource: pudl.workspace.resource_cache.PudlResourceKey) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Retrieves value associated with a given resource.

	
class pudl.workspace.resource_cache.PudlResourceKey(dataset: str [https://docs.python.org/3/library/stdtypes.html#str], doi: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Uniquely identifies a specific resource.

	
dataset: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 0

	
doi: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 1

	
get_local_path() → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns (relative) path that should be used when caching this resource.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 2

pudl.workspace.setup module

Tools for setting up and managing PUDL workspaces.

	
pudl.workspace.setup.deploy(pkg_path, deploy_dir, ignore_files, clobber=False)

	Deploy all files from a package_data directory into a workspace.

	Parameters

	
	pkg_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dotted module path to the subpackage inside of
package_data containing the resources to be deployed.

	deploy_dir (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Directory on the filesystem to which the
files within pkg_path should be deployed.

	ignore_files (iterable) – List of filenames (strings) that may be
present in the pkg_path subpackage, but that should be ignored.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, replace existing copies of the files that are
being deployed from pkg_path to deploy_dir. If False, do not
replace existing files.

	Returns

	None

	
pudl.workspace.setup.derive_paths(pudl_in, pudl_out)

	Derive PUDL paths based on given input and output paths.

If no configuration file path is provided, attempt to read in the user
configuration from a file called .pudl.yml in the user’s HOME directory.
Presently the only values we expect are pudl_in and pudl_out, directories
that store files that PUDL either depends on that rely on PUDL.

	Parameters

	
	pudl_in (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory containing the PUDL input
files, most notably the data directory which houses the raw
data downloaded from public agencies by the
pudl.workspace.datastore tools. pudl_in may be the same
directory as pudl_out.

	pudl_out (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory where PUDL should write
the outputs it generates. These will be organized into directories
according to the output format (sqlite, datapackage, etc.).

	Returns

	
	A dictionary containing common PUDL settings, derived from those
	read out of the YAML file. Mostly paths for inputs & outputs.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.workspace.setup.get_defaults()

	Read paths to default PUDL input/output dirs from user’s $HOME/.pudl.yml.

	Parameters

	None –

	Returns

	The contents of the user’s PUDL settings file, with keys
pudl_in and pudl_out defining their default PUDL workspace. If
the $HOME/.pudl.yml file does not exist, set these paths to None.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.workspace.setup.init(pudl_in, pudl_out, clobber=False)

	Set up a new PUDL working environment based on the user settings.

	Parameters

	
	pudl_in (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory containing the PUDL input
files, most notably the data directory which houses the raw
data downloaded from public agencies by the
pudl.workspace.datastore tools. pudl_in may be the same
directory as pudl_out.

	pudl_out (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory where PUDL should write
the outputs it generates. These will be organized into directories
according to the output format (sqlite, datapackage, etc.).

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, replace existing files. If False (the default)
do not replace existing files.

	Returns

	None

	
pudl.workspace.setup.set_defaults(pudl_in, pudl_out, clobber=False)

	Set default user input and output locations in $HOME/.pudl.yml.

Create a user settings file for future reference, that defines the default
PUDL input and output directories. If this file already exists, behavior
depends on the clobber parameter, which is False by default. If it’s True,
the existing file is replaced. If False, the existing file is not changed.

	Parameters

	
	pudl_in (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to be used as the default input directory
for PUDL – this is where pudl.workspace.datastore will look
to find the data directory, full of data from public agencies.

	pudl_out (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the default output directory for PUDL,
where results of data processing will be organized.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and a user settings file exists, overwrite it.
If False, do not alter the existing file. Defaults to False.

	Returns

	None

pudl.workspace.setup_cli module

Set up a well-organized PUDL data management workspace.

This script creates a well-defined directory structure for use by the PUDL
package, and copies several example settings files and Jupyter notebooks into
it to get you started. If the command is run without any arguments, it will
create this workspace in your current directory.

The script will also create a file named .pudl.yml, describing the location of
your PUDL workspace. The PUDL package will refer to this location in the future
to know where it should look for raw data, where to put its outputs, etc. This
file can be edited to change the default input and output directories if you
wish. However, make sure those workspaces are set up using this script.

It’s also possible to specify different input and output directories, which is
useful if you want to use a single PUDL data store (which may contain many GB
of data) to support several different workspaces. See the –pudl_in and
–pudl_out options.

By default the script will not overwrite existing files. If you want it to
replace existing files (including your .pudl.yml file which defines your
default PUDL workspace) use the –clobber option.

The directory structure set up for PUDL looks like this:

	PUDL_IN
	
	└── data
	├── censusdp1tract
├── eia860
├── eia860m
├── eia861
├── eia923
├── epacems
├── ferc1
├── ferc714
└── tmp

	PUDL_OUT
	├── datapkg
├── parquet
├── settings
└── sqlite

Initially, the directories in the data store will be empty. The pudl_datastore or
pudl_etl commands will download data from public sources and organize it for
you there by source. The PUDL_OUT directories are organized by the type of
file they contain.

	
pudl.workspace.setup_cli.initialize_parser()

	Parse command line arguments for the pudl_setup script.

	
pudl.workspace.setup_cli.main()

	Set up a new default PUDL workspace.

pudl.cli module

A command line interface (CLI) to the main PUDL ETL functionality.

This script generates datapacakges based on the datapackage settings enumerated
in the settings_file which is given as an argument to this script. If the
settings has empty datapackage parameters (meaning there are no years or
tables included), no datapacakges will be generated. If the settings include a
datapackage that has empty parameters, the other valid datatpackages will be
generated, but not the empty one. If there are invalid parameters (meaning a
partition that is not included in the pudl.constant.working_partitions), the
build will fail early on in the process.

The datapackages will be stored in “PUDL_OUT” in the “datapackge” subdirectory.
Currently, this function only uses default directories for “PUDL_IN” and
“PUDL_OUT” (meaning those stored in $HOME/.pudl.yml). To setup your default
pudl directories see the pudl_setup script (pudl_setup –help for more details).

	
pudl.cli.main()

	Parse command line and initialize PUDL DB.

	
pudl.cli.parse_command_line(argv)

	Parse script command line arguments. See the -h option.

	Parameters

	argv (list [https://docs.python.org/3/library/stdtypes.html#list]) – command line arguments including caller file name.

	Returns

	A dictionary mapping command line arguments to their values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.constants module

A warehouse for constant values required to initilize the PUDL Database.

This constants module stores and organizes a bunch of constant values which are
used throughout PUDL to populate static lists within the data packages or for
data cleaning purposes.

	
pudl.constants.TRANSIT_TYPE_DICT = {'CV': 'conveyer', 'PL': 'pipeline', 'RR': 'railroad', 'TK': 'truck', 'UN': 'unknown', 'WA': 'water'}

	A dictionary of datasets (keys) and keywords (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.aer_coal_strings = ['col', 'woc', 'pc']

	A list of EIA 923 AER fuel type strings associated with coal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_fuel_type_strings = {'coal': ['col', 'woc', 'pc'], 'gas': ['mlg', 'ng', 'oog'], 'hydro': ['hps', 'hyc'], 'nuclear': ['nuc'], 'oil': ['dfo', 'rfo', 'woo'], 'other': ['geo', 'orw', 'oth'], 'solar': ['sun'], 'waste': ['www'], 'wind': ['wnd']}

	A dictionary mapping EIA 923 AER fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.aer_gas_strings = ['mlg', 'ng', 'oog']

	A list of EIA 923 AER fuel type strings associated with gas.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_hydro_strings = ['hps', 'hyc']

	A list of EIA 923 AER fuel type strings associated with hydro power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_nuclear_strings = ['nuc']

	A list of EIA 923 AER fuel type strings associated with nuclear power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_oil_strings = ['dfo', 'rfo', 'woo']

	A list of EIA 923 AER fuel type strings associated with oil.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_other_strings = ['geo', 'orw', 'oth']

	A list of EIA 923 AER fuel type strings associated with other fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_solar_strings = ['sun']

	A list of EIA 923 AER fuel type strings associated with solar power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_waste_strings = ['www']

	A list of EIA 923 AER fuel type strings associated with waste.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_wind_strings = ['wnd']

	A list of EIA 923 AER fuel type strings associated with wind power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.base_data_urls = {'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'pudl': 'https://catalyst.coop/pudl/'}

	A dictionary containing data sources (keys) and their base data URLs
(values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.canada_prov_terr = {'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NL': 'Newfoundland and Labrador', 'NS': 'Nova Scotia', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory'}

	A dictionary containing Canadian provinces’ and territories’
abbreviations (keys) and names (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.cems_states = {'AL': 'Alabama', 'AR': 'Arkansas', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MS': 'Mississippi', 'MT': 'Montana', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming'}

	A dictionary containing US state abbreviations (keys) and names
(values) that are present in the CEMS dataset

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.census_region = {'ENC': 'East North Central', 'ESC': 'East South Central', 'MAT': 'Middle Atlantic', 'MTN': 'Mountain', 'NEW': 'New England', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', 'SAT': 'South Atlantic', 'WNC': 'West North Central', 'WSC': 'West South Central'}

	A dictionary mapping Census Region abbreviations (keys) to Census
Region names (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.coalmine_country_eia923 = {'AU': 'AUS', 'CL': 'COL', 'CN': 'CAN', 'IM': 'unknown', 'IS': 'IDN', 'OT': 'other_country', 'PL': 'POL', 'RS': 'RUS', 'UK': 'GBR', 'VZ': 'VEN'}

	A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three
letter country codes (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.coalmine_type_eia923 = {'P': 'Preparation Plant', 'S': 'Surface', 'SU': 'Both an underground and surface mine with most coal extracted from surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground'}

	A dictionary mapping EIA 923 coal mine type codes (keys) to
descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.contract_type_eia923 = {'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'N': 'New Contract - see NC code. This abbreviation existed only in 2008 before being replaced by NC.', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'S': 'Spot Purchase', 'T': 'Tolling Agreement – Fuel received under a tolling agreement (bartering arrangement of fuel for generation)'}

	A dictionary mapping EIA 923 contract codes (keys) to contract
descriptions (values) for each month in the Fuel Receipts and Costs table.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.contributors = {'alana-wilson': {'email': 'alana.wilson@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Alana Wilson'}, 'catalyst-cooperative': {'email': 'pudl@catalyst.coop', 'organization': 'Catalyst Cooperative', 'path': 'https://catalyst.coop/', 'role': 'publisher', 'title': 'Catalyst Cooperative'}, 'christina-gosnell': {'email': 'christina.gosnell@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Christina Gosnell'}, 'greg-schivley': {'role': 'contributor', 'title': 'Greg Schivley'}, 'karl-dunkle-werner': {'email': 'karldw@berkeley.edu', 'organization': 'UC Berkeley', 'path': 'https://karldw.org/', 'role': 'contributor', 'title': 'Karl Dunkle Werner'}, 'steven-winter': {'email': 'steven.winter@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Steven Winter'}, 'zane-selvans': {'email': 'zane.selvans@catalyst.coop', 'organization': 'Catalyst Cooperative', 'path': 'https://amateurearthling.org/', 'role': 'wrangler', 'title': 'Zane Selvans'}}

	A dictionary of dictionaries containing organization names (keys) and
their attributes (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.contributors_by_source = {'eia860': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson'], 'eia923': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter'], 'epacems': ['catalyst-cooperative', 'karl-dunkle-werner', 'zane-selvans'], 'epaipm': ['greg-schivley'], 'ferc1': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson'], 'pudl': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson', 'karl-dunkle-werner']}

	A dictionary of data sources (keys) and lists of contributors (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.data_source_info = {'eia860': {'path': 'https://www.eia.gov/electricity/data/eia860/', 'title': 'EIA Form 860'}, 'eia861': {'path': 'https://www.eia.gov/electricity/data/eia861/', 'title': 'EIA Form 861'}, 'eia923': {'path': 'https://www.eia.gov/electricity/data/eia923/', 'title': 'EIA Form 923'}, 'eiawater': {'path': 'https://www.eia.gov/electricity/data/water/', 'title': 'EIA Water Use for Power'}, 'epacems': {'path': 'https://ampd.epa.gov/ampd/', 'title': 'EPA Air Markets Program Data'}, 'epaipm': {'path': 'https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6', 'title': 'EPA Integrated Planning Model'}, 'ferc1': {'path': 'https://www.ferc.gov/docs-filing/forms/form-1/data.asp', 'title': 'FERC Form 1'}, 'ferc714': {'path': 'https://www.ferc.gov/docs-filing/forms/form-714/data.asp', 'title': 'FERC Form 714'}, 'ferceqr': {'path': 'https://www.ferc.gov/docs-filing/eqr.asp', 'title': 'FERC Electric Quarterly Report'}, 'msha': {'path': 'https://www.msha.gov/mine-data-retrieval-system', 'title': 'Mining Safety and Health Administration'}, 'phmsa': {'path': 'https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview', 'title': 'Pipelines and Hazardous Materials Safety Administration'}, 'pudl': {'email': 'pudl@catalyst.coop', 'path': 'https://catalyst.coop/pudl/', 'title': 'The Public Utility Data Liberation Project (PUDL)'}}

	A dictionary of dictionaries containing datasources (keys) and
associated attributes (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.data_sources = ('eia860', 'eia861', 'eia923', 'epacems', 'epaipm', 'ferc1', 'ferc714')

	A tuple containing the data sources we are able to pull into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.data_years = {'eia860': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'eia861': (1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'eia923': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'epacems': (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020), 'epaipm': (None,), 'ferc1': (1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'ferc714': (None,)}

	A dictionary of data sources (keys) and tuples containing the years
that we expect to be able to download for each data source (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.dbf_typemap = {'+': 'XXX', '0': <class 'sqlalchemy.sql.sqltypes.Integer'>, '@': 'XXX', 'B': 'XXX', 'C': <class 'sqlalchemy.sql.sqltypes.String'>, 'D': <class 'sqlalchemy.sql.sqltypes.Date'>, 'F': <class 'sqlalchemy.sql.sqltypes.Float'>, 'G': 'XXX', 'I': <class 'sqlalchemy.sql.sqltypes.Integer'>, 'L': <class 'sqlalchemy.sql.sqltypes.Boolean'>, 'M': <class 'sqlalchemy.sql.sqltypes.Text'>, 'N': <class 'sqlalchemy.sql.sqltypes.Float'>, 'O': 'XXX', 'T': <class 'sqlalchemy.sql.sqltypes.DateTime'>}

	A dictionary mapping field types in the DBF objects (keys) to the
corresponding generic SQLAlchemy Column types.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.eia860_pudl_tables = ('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860')

	A tuple enumerating EIA 860 tables for which PUDL’s ETL works.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923')

	A tuple containing the EIA923 tables that can be successfully
integrated into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.energy_source_eia923 = {'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BM': 'Biomass', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'OG': 'Other Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SG': 'Synthesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.'}

	A dictionary mapping fuel codes (keys) to fuel descriptions (values)
for each fuel receipt from the EIA 923 Fuel Receipts and Costs table.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.energy_source_eia_simple_map = {'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'], 'solar': ['SUN'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'wind': ['WND']}

	A dictionary mapping EIA fuel types (keys) to fuel codes (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.entities = {'boilers': [['plant_id_eia', 'boiler_id'], ['prime_mover_code'], [], {}], 'generators': [['plant_id_eia', 'generator_id'], ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'bypass_heat_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'owned_by_non_utility', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'summer_capacity_estimate', 'winter_capacity_estimate', 'minimum_load_mw', 'distributed_generation', 'technology_description', 'reactive_power_output_mvar', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'energy_source_1_transport_1', 'energy_source_1_transport_2', 'energy_source_1_transport_3', 'energy_source_2_transport_1', 'energy_source_2_transport_2', 'energy_source_2_transport_3', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date', 'utility_id_eia', 'data_source'], {}], 'plants': [['plant_id_eia'], ['balancing_authority_code_eia', 'balancing_authority_name_eia', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'latitude', 'longitude', 'service_area', 'plant_name_eia', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'datum', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'nerc_region', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], {}], 'utilities': [['utility_id_eia'], ['utility_name_eia'], ['street_address', 'city', 'state', 'zip_code', 'entity_type', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship', 'attention_line', 'address_2', 'zip_code_4', 'contact_firstname', 'contact_lastname', 'contact_title', 'contact_firstname_2', 'contact_lastname_2', 'contact_title_2', 'phone_extension_1', 'phone_extension_2', 'phone_number_1', 'phone_number_2'], {'utility_id_eia': 'int64'}]}

	A dictionary containing table name strings (keys) and lists of columns
to keep for those tables (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm']

	A list of PUDL entity tables.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.epacems_tables = 'hourly_emissions_epacems'

	A tuple containing tables of EPA CEMS data to pull into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.epaipm_pudl_tables = ('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm')

	A tuple containing the EPA IPM tables that can be successfully
integrated into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.epaipm_region_aggregations = {'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': ['MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS'], 'NYISO': ['NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K'], 'PJM': ['PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC'], 'SPP': ['SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE'], 'WECC_NW': ['WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY']}

	A dictionary containing EPA IPM regions (keys) and lists of their
associated abbreviations (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.epaipm_region_names = ['ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK']

	A list of EPA IPM region names.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.epaipm_url_ext = {'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx'}

	A dictionary of EPA IPM tables and associated URLs extensions for
downloading that table’s data.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_data_tables = ('f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev')

	A tuple containing the FERC Form 1 tables that have the same composite
primary keys: [respondent_id, report_year, report_prd, row_number,
spplmnt_num].

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.ferc1_dbf2tbl = {'F1_1': 'f1_respondent_id', 'F1_10': 'f1_allowances', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_106_2009': 'f1_106_2009', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_2': 'f1_acb_epda', 'F1_20': 'f1_csscslc_pcsircs', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_3': 'f1_accumdepr_prvsn', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_33': 'f1_gnrt_plant', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_40': 'f1_mtrl_spply', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_43': 'f1_note_fin_stmnt', 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_5': 'f1_adit_190_detail', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_6': 'f1_adit_190_notes', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_7': 'f1_adit_amrt_prop', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_8': 'f1_adit_other', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_9': 'f1_adit_other_prop', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security'}

	A dictionary mapping FERC Form 1 DBF files(w / o .DBF file extension)
(keys) to database table names (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_huge_tables = {'f1_footnote_data', 'f1_footnote_tbl', 'f1_note_fin_stmnt'}

	A set containing large FERC Form 1 tables.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.constants.ferc1_power_purchase_type = {'AD': 'adjustment', 'EX': 'electricity_exchange', 'IF': 'intermediate_firm', 'IU': 'intermediate_unit', 'LF': 'long_firm', 'LU': 'long_unit', 'OS': 'other_service', 'RQ': 'requirement', 'SF': 'short_firm'}

	A dictionary of abbreviations (keys) and types (values) for power
purchase agreements from FERC Form 1.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_pudl_tables = ('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'purchased_power_ferc1', 'plant_in_service_ferc1')

	A tuple containing the FERC Form 1 tables that can be successfully
integrated into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.ferc1_tbl2dbf = {'f1_106_2009': 'F1_106_2009', 'f1_106a_2009': 'F1_106A_2009', 'f1_106b_2009': 'F1_106B_2009', 'f1_208_elc_dep': 'F1_208_ELC_DEP', 'f1_231_trn_stdycst': 'F1_231_TRN_STDYCST', 'f1_324_elc_expns': 'F1_324_ELC_EXPNS', 'f1_325_elc_cust': 'F1_325_ELC_CUST', 'f1_331_transiso': 'F1_331_TRANSISO', 'f1_338_dep_depl': 'F1_338_DEP_DEPL', 'f1_397_isorto_stl': 'F1_397_ISORTO_STL', 'f1_398_ancl_ps': 'F1_398_ANCL_PS', 'f1_399_mth_peak': 'F1_399_MTH_PEAK', 'f1_400_sys_peak': 'F1_400_SYS_PEAK', 'f1_400a_iso_peak': 'F1_400A_ISO_PEAK', 'f1_429_trans_aff': 'F1_429_TRANS_AFF', 'f1_acb_epda': 'F1_2', 'f1_accumdepr_prvsn': 'F1_3', 'f1_accumdfrrdtaxcr': 'F1_4', 'f1_adit_190_detail': 'F1_5', 'f1_adit_190_notes': 'F1_6', 'f1_adit_amrt_prop': 'F1_7', 'f1_adit_other': 'F1_8', 'f1_adit_other_prop': 'F1_9', 'f1_allowances': 'F1_10', 'f1_allowances_nox': 'F1_ALLOWANCES_NOX', 'f1_audit_log': 'F1_78', 'f1_bal_sheet_cr': 'F1_11', 'f1_capital_stock': 'F1_12', 'f1_cash_flow': 'F1_13', 'f1_cmmn_utlty_p_e': 'F1_14', 'f1_cmpinc_hedge': 'F1_CMPINC_HEDGE', 'f1_cmpinc_hedge_a': 'F1_CMPINC_HEDGE_A', 'f1_co_directors': 'F1_18', 'f1_codes_val': 'F1_76', 'f1_col_lit_tbl': 'F1_79', 'f1_comp_balance_db': 'F1_15', 'f1_construction': 'F1_16', 'f1_control_respdnt': 'F1_17', 'f1_cptl_stk_expns': 'F1_19', 'f1_csscslc_pcsircs': 'F1_20', 'f1_dacs_epda': 'F1_21', 'f1_dscnt_cptl_stk': 'F1_22', 'f1_edcfu_epda': 'F1_23', 'f1_elc_op_mnt_expn': 'F1_27', 'f1_elc_oper_rev_nb': 'F1_26', 'f1_elctrc_erg_acct': 'F1_24', 'f1_elctrc_oper_rev': 'F1_25', 'f1_electric': 'F1_28', 'f1_email': 'F1_EMAIL', 'f1_envrnmntl_expns': 'F1_29', 'f1_envrnmntl_fclty': 'F1_30', 'f1_footnote_data': 'F1_85', 'f1_footnote_tbl': 'F1_87', 'f1_fuel': 'F1_31', 'f1_general_info': 'F1_32', 'f1_gnrt_plant': 'F1_33', 'f1_hydro': 'F1_86', 'f1_ident_attsttn': 'F1_88', 'f1_important_chg': 'F1_34', 'f1_incm_stmnt_2': 'F1_35', 'f1_income_stmnt': 'F1_36', 'f1_leased': 'F1_90', 'f1_load_file_names': 'F1_80', 'f1_long_term_debt': 'F1_93', 'f1_misc_dfrrd_dr': 'F1_38', 'f1_miscgen_expnelc': 'F1_37', 'f1_mthly_peak_otpt': 'F1_39', 'f1_mtrl_spply': 'F1_40', 'f1_nbr_elc_deptemp': 'F1_41', 'f1_nonutility_prop': 'F1_42', 'f1_note_fin_stmnt': 'F1_43', 'f1_nuclear_fuel': 'F1_44', 'f1_officers_co': 'F1_45', 'f1_othr_dfrrd_cr': 'F1_46', 'f1_othr_pd_in_cptl': 'F1_47', 'f1_othr_reg_assets': 'F1_48', 'f1_othr_reg_liab': 'F1_49', 'f1_overhead': 'F1_50', 'f1_pccidica': 'F1_51', 'f1_plant': 'F1_92', 'f1_plant_in_srvce': 'F1_52', 'f1_privilege': 'F1_81', 'f1_pumped_storage': 'F1_53', 'f1_purchased_pwr': 'F1_54', 'f1_r_d_demo_actvty': 'F1_59', 'f1_reconrpt_netinc': 'F1_55', 'f1_reg_comm_expn': 'F1_56', 'f1_respdnt_control': 'F1_57', 'f1_respondent_id': 'F1_1', 'f1_retained_erng': 'F1_58', 'f1_rg_trn_srv_rev': 'F1_RG_TRN_SRV_REV', 'f1_row_lit_tbl': 'F1_84', 'f1_s0_checks': 'F1_S0_CHECKS', 'f1_s0_filing_log': 'F1_S0_FILING_LOG', 'f1_sale_for_resale': 'F1_61', 'f1_sales_by_sched': 'F1_60', 'f1_sbsdry_detail': 'F1_91', 'f1_sbsdry_totals': 'F1_62', 'f1_sched_lit_tbl': 'F1_77', 'f1_schedules_list': 'F1_63', 'f1_security': 'F1_SECURITY', 'f1_security_holder': 'F1_64', 'f1_slry_wg_dstrbtn': 'F1_65', 'f1_steam': 'F1_89', 'f1_substations': 'F1_66', 'f1_sys_error_log': 'F1_82', 'f1_taxacc_ppchrgyr': 'F1_67', 'f1_unique_num_val': 'F1_83', 'f1_unrcvrd_cost': 'F1_68', 'f1_utltyplnt_smmry': 'F1_69', 'f1_work': 'F1_70', 'f1_xmssn_adds': 'F1_71', 'f1_xmssn_elc_bothr': 'F1_72', 'f1_xmssn_elc_fothr': 'F1_73', 'f1_xmssn_line': 'F1_74', 'f1_xtraordnry_loss': 'F1_75'}

	A dictionary mapping database table names (keys) to FERC Form 1 DBF
files(w / o .DBF file extension) (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc_accumulated_depreciation = row_number ... ferc_account_description 0 1 ... Balance Beginning of Year 1 3 ... (403) Depreciation Expense 2 4 ... (403.1) Depreciation Expense for Asset Retirem... 3 5 ... (413) Exp. of Elec. Plt. Leas. to Others 4 6 ... Transportation Expenses-Clearing 5 7 ... Other Clearing Accounts 6 8 ... Other Accounts (Specify, details in footnote): 7 9 ... Other Charges: 8 10 ... TOTAL Deprec. Prov for Year (Enter Total of li... 9 11 ... Net Charges for Plant Retired: 10 12 ... Book Cost of Plant Retired 11 13 ... Cost of Removal 12 14 ... Salvage (Credit) 13 15 ... TOTAL Net Chrgs. for Plant Ret. (Enter Total o... 14 16 ... Other Debit or Cr. Items (Describe, details in... 15 17 ... Other Charges 2 16 18 ... Book Cost or Asset Retirement Costs Retired 17 19 ... Balance End of Year (Enter Totals of lines 1, ... 18 20 ... Steam Production 19 21 ... Nuclear Production 20 22 ... Hydraulic Production-Conventional 21 23 ... Hydraulic Production-Pumped Storage 22 24 ... Other Production 23 25 ... Transmission 24 26 ... Distribution 25 27 ... Regional Transmission and Market Operation 26 28 ... General 27 29 ... TOTAL (Enter Total of lines 20 thru 28) [28 rows x 3 columns]

	A list of tuples containing row numbers, FERC account IDs, and FERC
account descriptions from FERC Form 1 page 219, Accumulated Provision for
Depreciation of electric utility plant(Account 108).

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc_electric_plant_accounts = row_number ... ferc_account_description 0 2.0 ... Intangible: Organization 1 3.0 ... Intangible: Franchises and consents 2 4.0 ... Intangible: Miscellaneous intangible plant 3 5.0 ... Subtotal: Intangible Plant 4 8.0 ... Steam production: Land and land rights 92 100.0 ... Electric plant in service (Major only) 93 101.0 ... Electric plant purchased 94 102.0 ... Electric plant sold 95 103.0 ... Experimental plant unclassified 96 104.0 ... TOTAL Electric Plant in Service [97 rows x 3 columns]

	A list of tuples containing row numbers, FERC account IDs, and FERC
account descriptions from FERC Form 1 pages 204 - 207, Electric Plant in
Service.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.files_dict_epaipm = {'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'transmission_single_epaipm': '*table_3-21*'}

	A dictionary of EPA IPM tables and strings that files of those tables
contain.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_group_eia923 = ('coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas')

	A tuple containing EIA 923 fuel groups.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.fuel_group_eia923_simple_map = {'coal': ['coal', 'petroleum coke'], 'gas': ['natural gas', 'other gas'], 'oil': ['petroleum']}

	A dictionary mapping EIA 923 simple fuel types(“oil”, “coal”, “gas”)
(keys) to fuel types (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_aer_eia923 = {'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'SUN': 'Solar PV and thermal', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste'}

	A dictionary mapping EIA 923 AER fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc']

	A list of strings from EIA 860 associated with fuel type coal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg']

	A list of strings from EIA 860 associated with fuel type gas.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro']

	A list of strings from EIA 860 associated with hydro power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear']

	A list of strings from EIA 860 associated with nuclear power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum']

	A list of strings from EIA 860 associated with fuel type oil.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other']

	A list of strings from EIA 860 associated with fuel type other.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_simple_map = {'coal': ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'], 'gas': ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'], 'hydro': ['wat', 'hyc', 'hps', 'hydro'], 'nuclear': ['nuc', 'nuclear'], 'oil': ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'], 'other': ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'], 'solar': ['sun', 'solar'], 'waste': ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'], 'wind': ['wnd', 'wind', 'wt']}

	A dictionary mapping EIA 860 fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia860_solar_strings = ['sun', 'solar']

	A list of strings from EIA 860 associated with solar power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www']

	A list of strings from EIA 860 associated with fuel type waste.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt']

	A list of strings from EIA 860 associated with wind power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923 = {'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.'}

	A dictionary mapping EIA 923 fuel type codes (keys) and fuel type
names / descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia923_boiler_fuel_coal_strings = ['ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
coal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_gas_strings = ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
gas.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
oil.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
other.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_simple_map = {'coal': ['ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc'], 'gas': ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp'], 'oil': ['dfo', 'rfo', 'wo', 'jf', 'ker'], 'other': ['oth', 'pur', 'wh'], 'waste': ['ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']}

	A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia923_boiler_fuel_waste_strings = ['ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
waste.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc']

	The list of EIA 923 Generation Fuel strings associated with coal fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_gas_strings = ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp']

	The list of EIA 923 Generation Fuel strings associated with gas fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_hydro_strings = ['wat']

	The list of EIA 923 Generation Fuel strings associated with hydro
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc']

	The list of EIA 923 Generation Fuel strings associated with nuclear
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker']

	The list of EIA 923 Generation Fuel strings associated with oil fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh']

	The list of EIA 923 Generation Fuel strings associated with geothermal
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_simple_map = {'coal': ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc'], 'gas': ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp'], 'hydro': ['wat'], 'nuclear': ['nuc'], 'oil': ['dfo', 'rfo', 'wo', 'jf', 'ker'], 'other': ['geo', 'mwh', 'oth', 'pur', 'wh'], 'solar': ['sun'], 'waste': ['ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'], 'wind': ['wnd']}

	A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia923_gen_fuel_solar_strings = ['sun']

	The list of EIA 923 Generation Fuel strings associated with solar
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_waste_strings = ['ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']

	The list of EIA 923 Generation Fuel strings associated with solid waste
fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_wind_strings = ['wnd']

	The list of EIA 923 Generation Fuel strings associated with wind
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_units_eia923 = {'barrels': 'Barrels (for liquids)', 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)'}

	A dictionary mapping EIA 923 fuel units (keys) to fuel unit
descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn')

	A dictionary of dictionaries containing EPA IPM tables (keys) and items
for each table to be renamed along with the replacement name (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.keywords_by_data_source = {'eia860': ['electricity', 'electric', 'boiler', 'generator', 'plant', 'utility', 'fuel', 'coal', 'natural gas', 'prime mover', 'eia860', 'retirement', 'capacity', 'planned', 'proposed', 'energy', 'hydro', 'solar', 'wind', 'nuclear', 'form 860', 'eia', 'annual', 'gas', 'ownership', 'steam', 'turbine', 'combustion', 'combined cycle', 'eia', 'energy information administration'], 'eia923': ['fuel', 'boiler', 'generator', 'plant', 'utility', 'cost', 'price', 'natural gas', 'coal', 'eia923', 'energy', 'electricity', 'form 923', 'receipts', 'generation', 'net generation', 'monthly', 'annual', 'gas', 'fuel consumption', 'MWh', 'energy information administration', 'eia', 'mercury', 'sulfur', 'ash', 'lignite', 'bituminous', 'subbituminous', 'heat content'], 'epacems': ['epa', 'us', 'emissions', 'pollution', 'ghg', 'so2', 'co2', 'sox', 'nox', 'load', 'utility', 'electricity', 'plant', 'generator', 'unit', 'generation', 'capacity', 'output', 'power', 'heat content', 'mmbtu', 'steam', 'cems', 'continuous emissions monitoring system', 'hourlyenvironmental protection agency', 'ampd', 'air markets program data'], 'epaipm': ['epaipm', 'integrated planning'], 'ferc1': ['electricity', 'electric', 'utility', 'plant', 'steam', 'generation', 'cost', 'expense', 'price', 'heat content', 'ferc', 'form 1', 'federal energy regulatory commission', 'capital', 'accounting', 'depreciation', 'finance', 'plant in service', 'hydro', 'coal', 'natural gas', 'gas', 'opex', 'capex', 'accounts', 'investment', 'capacity'], 'ferc714': ['electricity', 'electric', 'utility', 'planning area', 'form 714', 'balancing authority', 'demand', 'system lambda', 'ferc', 'federal energy regulatory commission', 'hourly', 'generation', 'interchange', 'forecast', 'load', 'adjacency', 'plants'], 'pudl': ['us', 'electricity']}

	A dictionary of datasets (keys) and keywords (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.licenses = {'cc-by-4.0': {'name': 'CC-BY-4.0', 'path': 'https://creativecommons.org/licenses/by/4.0/', 'title': 'Creative Commons Attribution 4.0'}, 'us-govt': {'name': 'other-pd', 'path': 'http://www.usa.gov/publicdomain/label/1.0/', 'title': 'U.S. Government Work'}}

	A dictionary of dictionaries containing license types and their
attributes.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.need_fix_inting = {'hourly_emissions_epacems': ('facility_id', 'unit_id_epa'), 'plants_hydro_ferc1': ('construction_year', 'installation_year'), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_steam_ferc1': ('construction_year', 'installation_year')}

	A dictionary containing tables (keys) and column names (values)
containing integer - type columns whose null values need fixing.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.nerc_region = {'ASCC': 'Alaska Systems Coordinating Council', 'FRCC': 'Florida Reliability Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'NPCC': 'Northeast Power Coordinating Council', 'RFC': 'Reliability First Corporation', 'SERC': 'SERC Reliability Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'WECC': 'Western Electricity Coordinating Council'}

	A dictionary mapping NERC Region abbreviations (keys) to NERC
Region names (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.output_formats = ['sqlite', 'parquet', 'datapkg']

	A list of types of PUDL output formats.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.prime_movers = ['steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine']

	A list of the types of prime movers

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.prime_movers_eia923 = {'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CC': 'Combined-Cycle, Total Unit', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'OT': 'Other', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'PV': 'Photovoltaic', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'WS': 'Wind Turbine, Offshore', 'WT': 'Wind Turbine, Onshore'}

	A dictionary mapping EIA 923 prime mover codes (keys) and prime mover
names / descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.pudl_tables = {'eia860': ('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860'), 'eia861': ('service_territory_eia861', 'balancing_authority_eia861', 'sales_eia861', 'advanced_metering_infrastructure_eia861', 'demand_response_eia861', 'demand_side_management_eia861', 'distributed_generation_eia861', 'distribution_systems_eia861', 'dynamic_pricing_eia861', 'energy_efficiency_eia861', 'green_pricing_eia861', 'mergers_eia861', 'net_metering_eia861', 'non_net_metering_eia861', 'operational_data_eia861', 'reliability_eia861', 'utility_data_eia861'), 'eia923': ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923'), 'epacems': 'hourly_emissions_epacems', 'epaipm': ('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm'), 'ferc1': ('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'purchased_power_ferc1', 'plant_in_service_ferc1'), 'ferc714': ('respondent_id_ferc714', 'id_certification_ferc714', 'gen_plants_ba_ferc714', 'demand_monthly_ba_ferc714', 'net_energy_load_ba_ferc714', 'adjacency_ba_ferc714', 'interchange_ba_ferc714', 'lambda_hourly_ba_ferc714', 'lambda_description_ferc714', 'description_pa_ferc714', 'demand_forecast_pa_ferc714', 'demand_hourly_pa_ferc714'), 'glue': ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn')}

	A dictionary containing data sources (keys) and the list of associated
tables from that datasource that can be pulled into PUDL (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.rto_iso = {'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'ISO-NE': 'ISO New England', 'MISO': 'Midcontinent ISO', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool'}

	A dictionary containing ISO/RTO abbreviations (keys) and names (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.sector_eia = {'1': 'Electric Utility', '2': 'NAICS-22 Non-Cogen', '3': 'NAICS-22 Cogen', '4': 'Commercial NAICS Non-Cogen', '5': 'Commercial NAICS Cogen', '6': 'Industrial NAICS Non-Cogen', '7': 'Industrial NAICS Cogen'}

	A dictionary mapping EIA numeric codes (keys) to EIA’s internal
consolidated NAICS sectors (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.state_tz_approx = {'AB': 'America/Edmonton', 'AK': 'US/Alaska', 'AL': 'US/Central', 'AR': 'US/Central', 'AS': 'Pacific/Pago_Pago', 'AZ': 'US/Arizona', 'BC': 'America/Vancouver', 'CA': 'US/Pacific', 'CO': 'US/Mountain', 'CT': 'US/Eastern', 'DC': 'US/Eastern', 'DE': 'US/Eastern', 'FL': 'US/Eastern', 'GA': 'US/Eastern', 'GU': 'Pacific/Guam', 'HI': 'US/Hawaii', 'IA': 'US/Central', 'ID': 'US/Mountain', 'IL': 'US/Central', 'IN': 'US/Eastern', 'KS': 'US/Central', 'KY': 'US/Eastern', 'LA': 'US/Central', 'MA': 'US/Eastern', 'MB': 'America/Winnipeg', 'MD': 'US/Eastern', 'ME': 'US/Eastern', 'MI': 'America/Detroit', 'MN': 'US/Central', 'MO': 'US/Central', 'MP': 'Pacific/Saipan', 'MS': 'US/Central', 'MT': 'US/Mountain', 'NB': 'America/Moncton', 'NC': 'US/Eastern', 'ND': 'US/Central', 'NE': 'US/Central', 'NH': 'US/Eastern', 'NJ': 'US/Eastern', 'NL': 'America/St_Johns', 'NM': 'US/Mountain', 'NS': 'America/Halifax', 'NT': 'America/Yellowknife', 'NU': 'America/Iqaluit', 'NV': 'US/Pacific', 'NY': 'US/Eastern', 'OH': 'US/Eastern', 'OK': 'US/Central', 'ON': 'America/Toronto', 'OR': 'US/Pacific', 'PA': 'US/Eastern', 'PE': 'America/Halifax', 'PR': 'America/Puerto_Rico', 'QC': 'America/Montreal', 'RI': 'US/Eastern', 'SC': 'US/Eastern', 'SD': 'US/Central', 'SK': 'America/Regina', 'TN': 'US/Central', 'TX': 'US/Central', 'UT': 'US/Mountain', 'VA': 'US/Eastern', 'VI': 'America/Puerto_Rico', 'VT': 'US/Eastern', 'WA': 'US/Pacific', 'WI': 'US/Central', 'WV': 'US/Eastern', 'WY': 'US/Mountain', 'YT': 'America/Whitehorse'}

	A dictionary containing US and Canadian state/territory abbreviations
(keys) and timezones (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.table_map_ferc1_pudl = {'fuel_ferc1': 'f1_fuel', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_steam_ferc1': 'f1_steam', 'purchased_power_ferc1': 'f1_purchased_pwr'}

	A dictionary mapping PUDL table names (keys) to the corresponding FERC
Form 1 DBF table names.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.transport_modes_eia923 = {'GL': 'Great Lakes: Shipments of coal moved to consumers via the Great Lakes. These shipments are moved via the Great Lakes coal loading docks, which are identified by name and location as follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; KCBX Terminals Inc., Chicago, Illinois; Superior Midwest Energy Terminal, Superior, Wisconsin', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline', 'RR': 'Rail: Shipments of fuel moved to consumers by rail (private or public/commercial). Included is coal hauled to or away from a railroad siding by truck if the truck did not use public roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. Not included are shipments to Great Lakes coal loading docks, tidewater piers, or coastal ports.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers by slurry pipeline.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers by tramway or conveyor.', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to Tidewater Piers and Coastal Ports for further shipments to consumers via coastal water or ocean. The Tidewater Piers and Coastal Ports are identified by name and location as follows: Dominion Terminal Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, Alabama; IC Railmarine Terminal, Convent, Louisiana; International Marine Terminals, Myrtle Grove, Louisiana; Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, Inc., Los Angeles, California; Levin-Richmond Terminal Corp., Richmond, California; Baltimore Terminal, Baltimore, Maryland; Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, Newport News, Virginia; Electro-Coal Transport Corp., Davant, Louisiana', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. Not included is fuel hauled to or away from a railroad siding by truck on non-public roads.', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. Not included is fuel hauled to or away from a railroad siding by truck on non-public roads.'}

	A dictionary mapping primary and secondary transportation mode codes
(keys) to descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.us_states = {'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming'}

	A dictionary containing US state abbreviations (keys) and names
(values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.working_partitions = {'eia860': {'years': (2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'eia860m': {'year_month': '2020-11'}, 'eia861': {'years': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'eia923': {'years': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'epacems': {'states': ('AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY'), 'years': (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020)}, 'ferc1': {'years': (1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'ferc714': {}}

	A dictionary of data sources (keys) and dictionaries (values) of names of
partition type (sub-key) and paritions (sub-value) containing the paritions
such as tuples of years for each data source that are able to be ingested
into PUDL.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps'

	The location of the xlsx maps within the PUDL package data.

	Type

	string

pudl.dfc module

Implemenation of DataFrameCollection.

Pudl ETL needs to exchange collections of named tables (pandas.DataFrame)
between ETL tasks and the volume of data contained in these tables can
far exceed the memory of a single machine.

Prefect framework currently caches task results in-memory and this can
lead to out of memory problem, especially when dealing with large datasets
(e.g. during the full data release). To alleviate this problem, prefect
team recommends passing “references” to actual data that is stored separately.

DataFrameCollection does just this. It keeps lightweight references to named
data frames and stores the data either locally or on cloud storage (we use
pandas.to_pickle method which supports these various storage backends out of
the box).

Think of DataFrameCollection as a dict-like structure backed by a disk.

	
class pudl.dfc.DataFrameCollection(storage_path: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **data_frames: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], pandas.core.frame.DataFrame])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class can hold named pandas.DataFrame that are stored on disk or GCS.

This should be used whenever dictionaries of named pandas.DataFrames are passed
between prefect tasks. Due to the implicit in-memory caching of task results it
is important to keep the in-memory footprint of the exchanged data small.

This wrapper achieves this by maintaining references to tables that themselves
are stored on a persistent medium such as local disk of GCS bucket.

This is intended to be used from within prefect flows and new instances
can be configured by setting relevant prefect.context variables.

	
add_reference(name: str [https://docs.python.org/3/library/stdtypes.html#str], table_id: uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID])

	Adds reference to a named dataframe to this collection.

This assumes that the data is already present on disk.

	
static from_dict(d: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], pandas.core.frame.DataFrame])

	Constructs new DataFrameCollection from dataframe dictionary.

	
get(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → pandas.core.frame.DataFrame

	Returns the content of the named dataframe.

	
get_table_names() → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns sorted list of dataframes that are contained in this collection.

	
items() → Iterator[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], pandas.core.frame.DataFrame]]

	Iterates over table names and the corresponding pd.DataFrame objects.

	
references() → Iterator[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]]]

	Returns a set-like object with (name, table_id) tuples.

	
store(name: str [https://docs.python.org/3/library/stdtypes.html#str], data: pandas.core.frame.DataFrame)

	Adds named dataframe to collection and stores its contents on disk.

	
to_dict() → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], pandas.core.frame.DataFrame]

	Loads the entire collection to memory as a dictionary.

	
union(*others)

	Returns new DataFrameCollection that is union of self and others.

	
update(other)

	Adds references to tables from the other DataFrameCollection.

	
exception pudl.dfc.TableExistsError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

The table already exists.

Either the table already exists in the DataFrameCollection when it is added or the file
containing the serialized form is found on disk.

pudl.etl module

Run the PUDL ETL Pipeline.

The PUDL project integrates several different public data sets into well
normalized data packages allowing easier access and interaction between all
each dataset. This module coordinates the extract/transfrom/load process for
data from:

	US Energy Information Agency (EIA):
- Form 860 (eia860)
- Form 923 (eia923)

	US Federal Energy Regulatory Commission (FERC):
- Form 1 (ferc1)

	US Environmental Protection Agency (EPA):
- Continuous Emissions Monitory System (epacems)
- Integrated Planning Model (epaipm)

	
pudl.etl.check_for_bad_tables(try_tables, dataset)

	Check for bad data tables.

	
pudl.etl.check_for_bad_years(try_years, dataset)

	Check for bad data years.

	
pudl.etl.etl(datapkg_settings, output_dir, pudl_settings, ds_kwargs)

	Run ETL process for data package specified by datapkg_settings dictionary.

This is the coordinating function for generating all of the CSV’s for a
data package. For each of the datasets enumerated in the datapkg_settings,
this function runs the dataset specific ETL function. Along the way, we are
accumulating which tables have been loaded. This is useful for generating
the metadata associated with the package.

	Parameters

	
	datapkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Validated ETL parameters for a single
datapackage, originally read in from the PUDL ETL input file.

	output_dir (path-like) – The individual datapackage directory, which
will contain the datapackage.json file and the data directory.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary describing paths to various
resources and outputs.

	ds_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – named-arguments to pass to Datastore constructor
when creating new instance. This contains values derived
from command-line flags that control how caching layers
operate.

	Returns

	The names of the tables included in the output datapackage.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.etl.generate_datapkg_bundle(datapkg_bundle_settings, pudl_settings, datapkg_bundle_name, datapkg_bundle_doi=None, clobber=False, use_local_cache: bool [https://docs.python.org/3/library/functions.html#bool] = True, gcs_cache_path: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Coordinate the generation of data packages.

For each bundle of packages laid out in the package_settings, this function
generates data packages. First, the settings are validated (which runs
through each of the settings listed in the package_settings). Then for
each of the packages, run through the etl (extract, transform, load)
functions, which generates CSVs. Then the metadata for the packages is
generated by pulling from the metadata (which is a json file containing
the schema for all of the possible pudl tables).

	Parameters

	
	datapkg_bundle_settings (iterable) – a list of dictionaries. Each item
in the list corresponds to a data package. Each data package’s
dictionary contains the arguements for its ETL function.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary filled with settings that mostly
describe paths to various resources and outputs.

	datapkg_bundle_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of directory you want the bundle of
data packages to live.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and there is already a directory with data
packages with the datapkg_bundle_name, the existing data packages
will be deleted and new data packages will be generated in their
place.

	use_local_cache (bool [https://docs.python.org/3/library/functions.html#bool]) – controls whether datastore should be using local
file cache.

	gcs_cache_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – controls whether datastore should be using Google
Cloud Storage based cache.

	Returns

	A dictionary with datapackage names as the keys, and Python
dictionaries representing tabular datapackage resource descriptors as
the values, one per datapackage that was generated as part of the
bundle.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.etl.get_flattened_etl_parameters(datapkg_bundle_settings)

	Compile flattened etl parameters.

The datapkg_bundle_settings is a list of dictionaries with the specific etl
parameters for each dataset nested inside the dictionary. This function
extracts the years, states, tables, etc. from the list datapackage settings
and compiles them into one dictionary.

	Parameters

	datapkg_bundle_settings (iterable) – a list of data package parameters,
with each element of the list being a dictionary specifying
the data to be packaged.

	Returns

	dictionary of etl parameters with etl parameter names (keys)
(i.e. ferc1_years, eia923_years) and etl parameters (values) (i.e. a
list of years for ferc1_years)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.etl.validate_params(datapkg_bundle_settings, pudl_settings)

	Enforce validity of ETL parameters found in datapackage bundle settings.

For each enumerated data package in the datapkg_bundle_settings, this
function checks to ensure the input parameters for each of the datasets
are consistent with the known input options. Most of those options are
enumerated in pudl.constants. For each dataset, the years, states, tables,
etc. are checked to ensure that they are valid and present. If parameters
are not valid, assertions will be raised.

There is some options that have default options or are hard coded during
validation. Tables will typically be defaulted to all of the tables if
they aren’t set. CEMS is always going to be partitioned by year and state.
This means we have functinoally removed the option to not partition or
partition another way.

	Parameters

	
	datapkg_bundle_settings (iterable) – a list of data package parameters,
with each element of the list being a dictionary specifying
the data to be packaged.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary describing paths to various
resources and outputs.

	Returns

	
	validated list of data package parameters, with each element
	of the list being a dictionary specitying the data to be packaged.

	Return type

	iterable

pudl.helpers module

General utility functions that are used in a variety of contexts.

The functions in this module are used in various stages of the ETL and post-etl
processes. They are usually not dataset specific, but not always. If a function
is designed to be used as a general purpose tool, applicable in multiple
scenarios, it should probably live here. There are lost of transform type
functions in here that help with cleaning and restructing dataframes.

	
pudl.helpers.add_fips_ids(df, state_col='state', county_col='county', vintage=2015)

	Add State and County FIPS IDs to a dataframe.

	
pudl.helpers.clean_eia_counties(df, fixes, state_col='state', county_col='county')

	Replace non-standard county names with county nmes from US Census.

	
pudl.helpers.clean_merge_asof(left, right, left_on='report_date', right_on='report_date', by={})

	Merge two dataframes having different time report_date frequencies.

We often need to bring together data which is reported on a monthly basis,
and entity attributes that are reported on an annual basis. The
pandas.merge_asof() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof] is designed to do this, but requires that
dataframes are sorted by the merge keys (left_on, right_on, and
by.keys() here). We also need to make sure that all merge keys have
identical data types in the two dataframes (e.g. plant_id_eia needs to
be a nullable integer in both dataframes, not a python int in one, and a
nullable pandas.Int64Dtype() in the other). Note that
pandas.merge_asof() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof] performs a left merge, so the higher frequency
dataframe must be the left dataframe.

We also force both left_on and right_on to be a Datetime using
pandas.to_datetime() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime] to allow merging dataframes having integer years
with those having datetime columns.

Because pandas.merge_asof() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof] searches backwards for the first matching
date, this function only works if the less granular dataframe uses the
convention of reporting the first date in the time period for which it
reports. E.g. annual dataframes need to have January 1st as the date. This
is what happens by defualt if only a year or year-month are provided to
pandas.to_datetime() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime] as strings.

	Parameters

	
	left (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The higher frequency “data” dataframe.
Typically monthly in our use cases. E.g. generation_eia923. Must
contain report_date and any columns specified in the by
argument.

	right (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The lower frequency “attribute” dataframe.
Typically annual in our uses cases. E.g. generators_eia860. Must
contain report_date and any columns specified in the by
argument.

	left_on (str [https://docs.python.org/3/library/stdtypes.html#str]) – Column in left to merge on using merge_asof. Default
is report_date. Must be convertible to a Datetime using
pandas.to_datetime() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime]

	right_on (str [https://docs.python.org/3/library/stdtypes.html#str]) – Column in right to merge on using merge_asof.
Default is report_date. Must be convertible to a Datetime using
pandas.to_datetime() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime]

	by (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary enumerating any columns to merge on other than
report_date. Typically ID columns like plant_id_eia,
generator_id or boiler_id. The keys of the dictionary are
the names of the columns, and the values are their data source, as
defined in pudl.constants (e.g. ferc1 or eia). The
data source is used to look up the column’s canonical data type.

	Returns

	Merged contents of left and right input dataframes.
Will be sorted by left_on and any columns specified in by. See
documentation for pandas.merge_asof() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof] to understand how this kind
of merge works.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if left_on or right_on columns are missing from
 their respective input dataframes.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if any of the labels referenced in by are missing from
 either the left or right dataframes.

	
pudl.helpers.cleanstrings(df, columns, stringmaps, unmapped=None, simplify=True)

	Consolidate freeform strings in several dataframe columns.

This function will consolidate freeform strings found in columns into
simplified categories, as defined by stringmaps. This is useful when
a field contains many different strings that are really meant to represent
a finite number of categories, e.g. a type of fuel. It can also be used to
create simplified categories that apply to similar attributes that are
reported in various data sources from different agencies that use their own
taxonomies.

The function takes and returns a pandas.DataFrame, making it suitable for
use with the pandas.DataFrame.pipe() method in a chain.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – the DataFrame containing the string columns to
be cleaned up.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of string column labels found in the column
index of df. These are the columns that will be cleaned.

	stringmaps (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of dictionaries. The keys of these
dictionaries are strings, and the values are lists of strings. Each
dictionary in the list corresponds to a column in columns. The
keys of the dictionaries are the values with which every string in
the list of values will be replaced.

	unmapped (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – the value with which strings not found in the
stringmap dictionary will be replaced. Typically the null string
‘’. If None, then strings found in the columns but not in the
stringmap will be left unchanged.

	simplify (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, strip whitespace, remove duplicate
whitespace, and force lower-case on both the string map and the
values found in the columns to be cleaned. This can reduce the
overall number of string values that need to be tracked.

	Returns

	The function returns a new DataFrame containing the
cleaned strings.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.cleanstrings_series(col, str_map, unmapped=None, simplify=True)

	Clean up the strings in a single column/Series.

	Parameters

	
	col (pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) – A pandas Series, typically a single column of a
dataframe, containing the freeform strings that are to be cleaned.

	str_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of lists of strings, in which the keys are
the simplified canonical strings, witch which each string found in
the corresponding list will be replaced.

	unmapped (str [https://docs.python.org/3/library/stdtypes.html#str]) – A value with which to replace any string found in col
that is not found in one of the lists of strings in map. Typically
the null string ‘’. If None, these strings will not be replaced.

	simplify (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, strip and compact whitespace, and lowercase
all strings in both the list of values to be replaced, and the
values found in col. This can reduce the number of strings that
need to be kept track of.

	Returns

	The cleaned up Series / column, suitable for
replacing the original messy column in a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame].

	Return type

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]

	
pudl.helpers.cleanstrings_snake(df, cols)

	Clean the strings in a columns in a dataframe with snake case.

	Parameters

	
	df (panda.DataFrame) – original dataframe.

	cols (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of columns in df to apply snake case to.

	
pudl.helpers.convert_cols_dtypes(df, data_source, name=None)

	Convert the data types for a dataframe.

This function will convert a PUDL dataframe’s columns to the correct data
type. It uses a dictionary in constants.py called column_dtypes to assign
the right type. Within a given data source (e.g. eia923, ferc1) each column
name is assumed to always have the same data type whenever it is found.

Boolean type conversions created a special problem, because null values in
boolean columns get converted to True (which is bonkers!)… we generally
want to preserve the null values and definitely don’t want them to be True,
so we are keeping those columns as objects and preforming a simple mask for
the boolean columns.

The other exception in here is with the utility_id_eia column. It is
often an object column of strings. All of the strings are numbers, so it
should be possible to convert to pandas.Int32Dtype() directly, but it
is requiring us to convert to int first. There will probably be other
columns that have this problem… and hopefully pandas just enables this
direct conversion.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – dataframe with columns that appear in the PUDL
tables.

	data_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the datasource (eia, ferc1, etc.)

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the table (for logging only!)

	Returns

	a dataframe with columns as specified by the
pudl.constants column_dtypes dictionary.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.convert_dfs_dict_dtypes(dfs_dict, data_source)

	Convert the data types of a dictionary of dataframes.

This is a wrapper for pudl.helpers.convert_cols_dtypes() which loops
over an entire dictionary of dataframes, assuming they are all from the
specified data source, and appropriately assigning data types to each
column based on the data source specific type map stored in pudl.constants

	
pudl.helpers.convert_to_date(df, date_col='report_date', year_col='report_year', month_col='report_month', day_col='report_day', month_value=1, day_value=1)

	Convert specified year, month or day columns into a datetime object.

If the input date_col already exists in the input dataframe, then no
conversion is applied, and the original dataframe is returned unchanged.
Otherwise the constructed date is placed in that column, and the columns
which were used to create the date are dropped.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – dataframe to convert

	date_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the column you want in the output.

	year_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the year column in the original table.

	month_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the month column in the original table.

	day_col – the name of the day column in the original table.

	month_value (int [https://docs.python.org/3/library/functions.html#int]) – generated month if no month exists.

	day_value (int [https://docs.python.org/3/library/functions.html#int]) – generated day if no month exists.

	Returns

	A DataFrame in which the year, month, day columns
values have been converted into datetime objects.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Update docstring.

	
pudl.helpers.count_records(df, cols, new_count_col_name)

	Count the number of unique records in group in a dataframe.

	Parameters

	
	df (panda.DataFrame) – dataframe you would like to groupby and count.

	cols (iterable) – list of columns to group and count by.

	new_count_col_name (string) – the name that will be assigned to the
column that will contain the count.

	Returns

	dataframe containing only cols and
new_count_col_name.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.download_zip_url(url, save_path, chunk_size=128)

	Download and save a Zipfile locally.

Useful for acquiring and storing non-PUDL data locally.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL from which to download the Zipfile

	save_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The location to save the file.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – Data chunk in bytes to use while downloading.

	Returns

	None

	
pudl.helpers.drop_tables(engine, clobber=False)

	Drops all tables from a SQLite database.

Creates an sa.schema.MetaData object reflecting the structure of the
database that the passed in engine refers to, and uses that schema to
drop all existing tables.

Todo

Treat DB connection as a context manager (with/as).

	Parameters

	engine (sa.engine.Engine) – An SQL Alchemy SQLite database Engine
pointing at an exising SQLite database to be deleted.

	Returns

	None

	
pudl.helpers.fillna_w_rolling_avg(df_og, group_cols, data_col, window=12, **kwargs)

	Filling NaNs with a rolling average.

Imputes null values from a dataframe on a rolling monthly average. To note,
this was designed to work with the PudlTabl object’s tables.

	Parameters

	
	df_og (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Original dataframe. Must have group_cols
column, a data_col column and a ‘report_date’ column.

	group_cols (iterable) – a list of columns to groupby.

	data_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the data column.

	window (int [https://docs.python.org/3/library/functions.html#int]) – window from pandas.Series.rolling

	kwargs – Additional arguments to pass to
pandas.Series.rolling.

	Returns

	dataframe with nulls filled in.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.find_timezone(*, lng=None, lat=None, state=None, strict=True)

	Find the timezone associated with the a specified input location.

Note that this function requires named arguments. The names are lng, lat,
and state. lng and lat must be provided, but they may be NA. state isn’t
required, and isn’t used unless lng/lat are NA or timezonefinder can’t find
a corresponding timezone.

Timezones based on states are imprecise, so it’s far better to use lng/lat
if possible. If strict is True, state will not be used.
More on state-to-timezone conversion here:
https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory

	Parameters

	
	lng (int [https://docs.python.org/3/library/functions.html#int] or float in [-180,180]) – Longitude, in decimal degrees

	lat (int [https://docs.python.org/3/library/functions.html#int] or float in [-90, 90]) – Latitude, in decimal degrees

	state (str [https://docs.python.org/3/library/stdtypes.html#str]) – Abbreviation for US state or Canadian province

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Raise an error if no timezone is found?

	Returns

	The timezone (as an IANA string) for that location.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Todo

Update docstring.

	
pudl.helpers.fix_eia_na(df)

	Replace common ill-posed EIA NA spreadsheet values with np.nan.

Currently replaces empty string, single decimal points with no numbers,
and any single whitespace character with np.nan.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame to clean.

	Returns

	The cleaned DataFrame.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.fix_int_na(df, columns, float_na=nan, int_na=- 1, str_na='')

	Convert NA containing integer columns from float to string.

Numpy doesn’t have a real NA value for integers. When pandas stores integer
data which has NA values, it thus upcasts integers to floating point
values, using np.nan values for NA. However, in order to dump some of our
dataframes to CSV files for use in data packages, we need to write out
integer formatted numbers, with empty strings as the NA value. This
function replaces np.nan values with a sentinel value, converts the column
to integers, and then to strings, finally replacing the sentinel value with
the desired NA string.

This is an interim solution – now that pandas extension arrays have been
implemented, we need to go back through and convert all of these integer
columns that contain NA values to Nullable Integer types like Int64.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe to be fixed. This argument allows
method chaining with the pipe() method.

	columns (iterable of strings) – A list of DataFrame column labels
indicating which columns need to be reformatted for output.

	float_na (float [https://docs.python.org/3/library/functions.html#float]) – The floating point value to be interpreted as NA and
replaced in col.

	int_na (int [https://docs.python.org/3/library/functions.html#int]) – Sentinel value to substitute for float_na prior to
conversion of the column to integers.

	str_na (str [https://docs.python.org/3/library/stdtypes.html#str]) – sa.String value to substitute for int_na after the column
has been converted to strings.

	Returns

	a new DataFrame, with the selected columns
converted to strings that look like integers, compatible with
the postgresql COPY FROM command.

	Return type

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame])

	
pudl.helpers.fix_leading_zero_gen_ids(df)

	Remove leading zeros from EIA generator IDs which are numeric strings.

If the DataFrame contains a column named generator_id then that column
will be cast to a string, and any all numeric value with leading zeroes
will have the leading zeroes removed. This is necessary because in some
but not all years of data, some of the generator IDs are treated as integers
in the Excel spreadsheets published by EIA, so the same generator may show
up with the ID “0001” and “1” in different years.

Alphanumeric generator IDs with leadings zeroes are not affected, as we
found no instances in which an alphanumeric generator ID appeared both with
and without leading zeroes.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame, presumably containing a column named
generator_id (otherwise no action will be taken.)

	Returns

	pandas.DataFrame

	
pudl.helpers.generate_rolling_avg(df, group_cols, data_col, window, **kwargs)

	Generate a rolling average.

For a given dataframe with a report_date column, generate a monthly
rolling average and use this rolling average to impute missing values.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Original dataframe. Must have group_cols
column, a data_col column and a report_date column.

	group_cols (iterable) – a list of columns to groupby.

	data_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the data column.

	window (int [https://docs.python.org/3/library/functions.html#int]) – window from pandas.Series.rolling().

	kwargs – Additional arguments to pass to
pandas.Series.rolling().

	Returns

	pandas.DataFrame

	
pudl.helpers.get_pudl_dtype(col, data_source)

	Look up a column’s canonical data type based on its PUDL data source.

	
pudl.helpers.get_pudl_dtypes(col_source_dict)

	Look up canonical PUDL data types for columns based on data sources.

	
pudl.helpers.get_working_eia_dates()

	Get all working EIA dates as a DatetimeIndex.

	
pudl.helpers.is_doi(doi)

	Determine if a string is a valid digital object identifier (DOI).

Function simply checks whether the offered string matches a regular
expresssion – it doesn’t check whether the DOI is actually registered
with the relevant authority.

	Parameters

	doi (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to validate.

	Returns

	True if doi matches the regex for valid DOIs, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
pudl.helpers.iterate_multivalue_dict(**kwargs)

	Make dicts from dict with main dict key and one value of main dict.

	
pudl.helpers.merge_dicts(list_of_dicts)

	Merge multipe dictionaries together.

Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.

	Parameters

	dict_args (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of dictionaries.

	Returns

	dict

	
pudl.helpers.month_year_to_date(df)

	Convert all pairs of year/month fields in a dataframe into Date fields.

This function finds all column names within a dataframe that match the
regular expression ‘_month$’ and ‘_year$’, and looks for pairs that have
identical prefixes before the underscore. These fields are assumed to
describe a date, accurate to the month. The two fields are used to
construct a new _date column (having the same prefix) and the month/year
columns are then dropped.

Todo

This function needs to be combined with convert_to_date, and improved:
* find and use a _day$ column as well
* allow specification of default month & day values, if none are found.
* allow specification of lists of year, month, and day columns to be
combined, rather than automataically finding all the matching ones.
* Do the Right Thing when invalid or NA values are encountered.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame in which to convert year/months
fields to Date fields.

	Returns

	A DataFrame in which the year/month fields have been
converted into Date fields.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.oob_to_nan(df, cols, lb=None, ub=None)

	Set non-numeric values and those outside of a given rage to NaN.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe containing values to be altered.

	cols (iterable) – Labels of the columns whose values are to be changed.

	lb – (number): Lower bound, below which values are set to NaN. If None,
don’t use a lower bound.

	ub – (number): Upper bound, below which values are set to NaN. If None,
don’t use an upper bound.

	Returns

	The altered DataFrame.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.organize_cols(df, cols)

	Organize columns into key ID & name fields & alphabetical data columns.

For readability, it’s nice to group a few key columns at the beginning
of the dataframe (e.g. report_year or report_date, plant_id…) and then
put all the rest of the data columns in alphabetical order.

	Parameters

	
	df – The DataFrame to be re-organized.

	cols – The columns to put first, in their desired output ordering.

	Returns

	A dataframe with the same columns as the input
DataFrame df, but with cols first, in the same order as they
were passed in, and the remaining columns sorted alphabetically.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.prep_dir(dir_path, clobber=False)

	Create (or delete and recreate) a directory.

	Parameters

	
	dir_path (path-like) – path to the directory that you are trying to
clean and prepare.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and dir_path exists, it will be removed and
replaced with a new, empty directory.

	Raises

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – if a file or directory already exists at dir_path.

	Returns

	Path to the created directory.

	Return type

	pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	
pudl.helpers.simplify_columns(df)

	Simplify column labels for use as snake_case database fields.

All columns will be re-labeled by:
* Replacing all non-alphanumeric characters with spaces.
* Forcing all letters to be lower case.
* Compacting internal whitespace to a single ” “.
* Stripping leading and trailing whitespace.
* Replacing all remaining whitespace with underscores.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame to clean.

	Returns

	The cleaned DataFrame.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Update docstring.

	
pudl.helpers.simplify_strings(df, columns)

	Simplify the strings contained in a set of dataframe columns.

Performs several operations to simplify strings for comparison and parsing purposes.
These include removing Unicode control characters, stripping leading and trailing
whitespace, using lowercase characters, and compacting all internal whitespace to a
single space.

Leaves null values unaltered. Casts other values with astype(str).

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame whose columns are being cleaned up.

	columns (iterable) – The labels of the string columns to be simplified.

	Returns

	The whole DataFrame that was passed in, with
the string columns cleaned up.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.helpers.zero_pad_zips(zip_series, n_digits)

	Retain prefix zeros in zipcodes.

	Parameters

	
	zip_series (pd.Series) – series containing the zipcode values.

	n_digits (int [https://docs.python.org/3/library/functions.html#int]) – zipcode length (likely 4 or 5 digits).

	Returns

	a series containing zipcodes with their prefix zeros
intact and invalid zipcodes rendered as na.

	Return type

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]

pudl.validate module

PUDL data validation functions and test case specifications.

	What defines a data validation?
	
	What data are we checking?
* What table or output does it come from?
* What selection criteria do we apply to that table or output?

	What are we checking it against?
* Itself (helps validate that the tests themselves are working)
* A processed version of itself (aggregation or derived values)
* A hard-coded external standard (e.g. heat rates, fuel heat content)

	
pudl.validate.bf_eia923_agg = [{'title': 'Coal ash content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.2, 'mid_q': 0.7, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Coal sulfur content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Coal heat content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	EIA923 Boiler Fuel data validation against aggregated data.

	
pudl.validate.bf_eia923_coal_ash_content = [{'title': 'Bituminous coal ash content (middle)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.5, 'low_bound': 6.0, 'hi_q': 0.5, 'hi_bound': 15.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal ash content (middle)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.5, 'low_bound': 4.5, 'hi_q': 0.5, 'hi_bound': 7.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite ash content (middle)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'All coal ash content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 4.0, 'hi_q': 0.5, 'hi_bound': 20.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}]

	Valid coal ash content (%). Based on historical reporting in EIA 923.

	
pudl.validate.bf_eia923_coal_heat_content = [{'title': 'Bituminous coal heat content (middle)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Bituminous coal heat content (tails)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.05, 'low_bound': 17.0, 'hi_q': 0.95, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal heat content (middle)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.5, 'low_bound': 16.5, 'hi_q': 0.5, 'hi_bound': 18.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal heat content (tails)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'low_bound': 15.0, 'hi_q': 0.95, 'hi_bound': 20.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content (middle)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.5, 'low_bound': 12.0, 'hi_q': 0.5, 'hi_bound': 14.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content (tails)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 15.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All coal heat content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid coal (bituminous, sub-bituminous, and lignite) heat content values.

	
pudl.validate.bf_eia923_coal_sulfur_content = [{'title': 'Coal sulfur content (tails)', 'query': "fuel_type_code_pudl=='coal'", 'hi_q': 0.95, 'hi_bound': 4.0, 'low_q': 0.05, 'low_bound': 0.15, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_consumed_units'}]

	Valid coal sulfur content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.bf_eia923_gas_heat_content = [{'title': 'Natural Gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.5, 'hi_bound': 1.036, 'low_q': 0.5, 'low_bound': 1.018, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Natural Gas heat content (tails)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.99, 'hi_bound': 1.15, 'low_q': 0.01, 'low_bound': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid natural gas heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs. May
fail because of a population of bad data around 0.1 mmbtu/unit. This appears
to be an off-by-10x error, possibly due to reporting error in units used.

	
pudl.validate.bf_eia923_oil_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "fuel_type_code=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "fuel_type_code=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All petroleum heat content (tails)', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.6, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid petroleum based fuel heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.bf_eia923_self = [{'title': 'Bituminous coal ash content', 'query': "fuel_type_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.25, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Subbituminous coal ash content', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite coal ash content', 'query': "fuel_type_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Bituminous coal heat content', 'query': "fuel_type_code=='BIT'", 'low_q': 0.07, 'mid_q': 0.5, 'hi_q': 0.98, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Subbituminous coal heat content', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.9, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content', 'query': "fuel_type_code=='LIG'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content', 'query': "fuel_type_code=='DFO'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	EIA923 Boiler Fuel data validation against itself.

	
pudl.validate.bounds_histogram(df, data_col, weight_col, query, low_q, hi_q, low_bound, hi_bound, title='')

	Plot a weighted histogram showing acceptable bounds/actual values.

	
pudl.validate.check_date_freq(df1, df2, mult)

	Verify an expected relationship between time frequencies of two dataframes.

Identify all distinct values of report_date in each of the input
dataframes and check that the number of distinct report_date values in
df2 is mult times the number of report_date values in df1
across only those years which appear in both dataframes. This is primarily
aimed at comparing annual and monthly dataframes, but should
also work with e.g. annual (df1) and quarterly (df2) frequency data using
mult=4.

Note the function assumes that a dataframe with sub-annual frequency will
cover the entire year it’s part of. If you have a partial year of monthly
data in one dataframe that overlaps with annual data in another dataframe
you’ll probably get unexpected behavior.

We use this method rather than attempting to infer a frequency from the
observed values because often we have only a single year of data, and you
need at least 3 values in a DatetimeIndex to infer the frequency.

	Parameters

	
	df1 (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A dataframe with a column named report_date
which contains dates.

	df2 (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A dataframe with a column named report_date
which contains dates.
frequency.

	mult (int [https://docs.python.org/3/library/functions.html#int]) – A multiplicative factor indicating the expected ratio
between the number of distinct date values found in df1 and
df2. E.g. if df1 is annual and df2 is monthly, mult
should be 12.

	Returns

	None

	Raises

	
	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – if the number of distinct report_date values in
 df2 is not mult times the number of distinct
 report_date values in df1.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if either df1 or df2 does not have a
 column named report_date

	
pudl.validate.check_max_rows(df, expected_rows=inf, margin=0.05, df_name='')

	Validate that a dataframe has less than a maximum number of rows.

	
pudl.validate.check_min_rows(df, expected_rows=0, margin=0.05, df_name='')

	Validate that a dataframe has a certain minimum number of rows.

	
pudl.validate.check_unique_rows(df, subset=None, df_name='')

	Test whether dataframe has unique records within a subset of columns.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame to check for duplicate records.

	subset (iterable or None [https://docs.python.org/3/library/constants.html#None]) – Columns to consider in checking for dupes.

	df_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the dataframe, to aid in debugging/logging.

	Returns

	
	The same DataFrame as was passed in, for use in
	DataFrame.pipe().

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If there are duplicate records in the subset of selected
 columns.

	
pudl.validate.frc_eia923_ag_byproduct_heat_content = [{'title': 'Agricultural byproduct heat content (tails)', 'query': "energy_source_code=='AB'", 'low_q': 0.05, 'low_bound': 7.0, 'hi_q': 0.95, 'hi_bound': 18.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable agricultural byproduct heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_agg = [{'title': 'Coal ash content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.2, 'mid_q': 0.7, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal chlorine content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'chlorine_content_ppm', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal fuel costs', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal sulfur content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Gas fuel costs', 'query': "fuel_type_code_pudl=='gas'", 'low_q': False, 'mid_q': 0.5, 'hi_q': False, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Petroleum fuel cost', 'query': "fuel_type_code_pudl=='oil'", 'low_q': False, 'mid_q': 0.5, 'hi_q': False, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	EIA923 fuel receipts & costs data validation against aggregated data.

	
pudl.validate.frc_eia923_biomass_gas_heat_content = [{'title': 'Other biomass gas heat content (tails)', 'query': "energy_source_code=='OBG'", 'low_q': 0.05, 'low_bound': 0.36, 'hi_q': 0.95, 'hi_bound': 1.6, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable other biomass gas heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_biomass_liquids_heat_content = [{'title': 'Other biomass liquids heat content (tails)', 'query': "energy_source_code=='OBL'", 'low_q': 0.05, 'low_bound': 3.5, 'hi_q': 0.95, 'hi_bound': 4.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable other biomass liquids heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_biomass_solids_heat_content = [{'title': 'Other biomass solids heat content (tails)', 'query': "energy_source_code=='OBS'", 'low_q': 0.05, 'low_bound': 8.0, 'hi_q': 0.95, 'hi_bound': 25.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable other biomass solids heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_black_liquor_heat_content = [{'title': 'Black liquor heat content (tails)', 'query': "energy_source_code=='BLQ'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 14.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable black liquor heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_blast_furnace_gas_heat_content = [{'title': 'Blast furnace gas heat content (tails)', 'query': "energy_source_code=='BFG'", 'low_q': 0.05, 'low_bound': 0.07, 'hi_q': 0.95, 'hi_bound': 0.12, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable blast furnace gas heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_coal_ant_heat_content = [{'title': 'Anthracite coal heat content (middle)', 'query': "energy_source_code=='ANT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Anthracite coal heat content (tails)', 'query': "energy_source_code=='ANT'", 'low_q': 0.05, 'low_bound': 22.0, 'hi_q': 0.95, 'hi_bound': 29.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable anthracite coal heat content.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_coal_ash_content = [{'title': 'Bituminous coal ash content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 6.0, 'hi_q': 0.5, 'hi_bound': 15.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal ash content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 4.5, 'hi_q': 0.5, 'hi_bound': 7.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite ash content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'All coal ash content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 4.0, 'hi_q': 0.5, 'hi_bound': 20.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}]

	Valid coal ash content (%). Based on historical reporting in EIA 923.

	
pudl.validate.frc_eia923_coal_bit_heat_content = [{'title': 'Bituminous coal heat content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal heat content (tails)', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'low_bound': 18.0, 'hi_q': 0.95, 'hi_bound': 29.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable bituminous coal heat content.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_coal_cc_heat_content = [{'title': 'Refined coal heat content (tails)', 'query': "energy_source_code=='RC'", 'low_q': 0.05, 'low_bound': 6.5, 'hi_q': 0.95, 'hi_bound': 16.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable refined coal heat content.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_coal_lig_heat_content = [{'title': 'Lignite heat content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 12.0, 'hi_q': 0.5, 'hi_bound': 14.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite heat content (tails)', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 15.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable lignite coal heat content.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_coal_mercury_content = [{'title': 'Coal mercury content (upper tail)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'low_bound': False, 'hi_q': 0.95, 'hi_bound': 0.125, 'data_col': 'mercury_content_ppm', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal mercury content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 0.0, 'hi_q': 0.5, 'hi_bound': 0.1, 'data_col': 'mercury_content_ppm', 'weight_col': 'fuel_qty_units'}]

	Valid coal mercury content limits.

Based on USGS FS095-01: https://pubs.usgs.gov/fs/fs095-01/fs095-01.html
Upper tail may fail because of a population of extremely high mercury content
coal (9.0ppm) which is likely a reporting error.

	
pudl.validate.frc_eia923_coal_moisture_content = [{'title': 'Bituminous coal moisture content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 5.0, 'hi_q': 0.5, 'hi_bound': 16.5, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal moisture content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 15.0, 'hi_q': 0.5, 'hi_bound': 32.5, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite moisture content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 25.0, 'hi_q': 0.5, 'hi_bound': 45.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'All coal moisture content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 5.0, 'hi_q': 0.5, 'hi_bound': 40.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}]

	Valid coal moisture content, based on historical EIA 923 reporting.

	
pudl.validate.frc_eia923_coal_sub_heat_content = [{'title': 'Sub-bituminous coal heat content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 16.5, 'hi_q': 0.5, 'hi_bound': 18.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal heat content (tails)', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'low_bound': 15.0, 'hi_q': 0.95, 'hi_bound': 20.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable Sub-bituminous coal heat content.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_coal_sulfur_content = [{'title': 'Coal sulfur content (tails)', 'query': "fuel_type_code_pudl=='coal'", 'hi_q': 0.95, 'hi_bound': 4.0, 'low_q': 0.05, 'low_bound': 0.15, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_qty_units'}]

	Valid coal sulfur content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.frc_eia923_coal_wc_heat_content = [{'title': 'Waste coal heat content (tails)', 'query': "energy_source_code=='WC'", 'low_q': 0.05, 'low_bound': 6.5, 'hi_q': 0.95, 'hi_bound': 16.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable waste coal heat content.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_gas_sgc_heat_content = [{'title': 'Coal syngas heat content (tails)', 'query': "energy_source_code=='SGC'", 'low_q': 0.05, 'low_bound': 0.2, 'hi_q': 0.95, 'hi_bound': 0.3, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable coal syngas heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_landfill_gas_heat_content = [{'title': 'Landfill gas heat content (tails)', 'query': "energy_source_code=='LFG'", 'low_q': 0.05, 'low_bound': 0.3, 'hi_q': 0.95, 'hi_bound': 0.6, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable landfill gas heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_muni_solids_heat_content = [{'title': 'Municipal solid waste heat content (tails)', 'query': "energy_source_code=='MSW'", 'low_q': 0.05, 'low_bound': 9.0, 'hi_q': 0.95, 'hi_bound': 12.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable municipal solid waste heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_natural_gas_heat_content = [{'title': 'Natural gas heat content (tails)', 'query': "energy_source_code=='NG'", 'low_q': 0.05, 'low_bound': 0.8, 'hi_q': 0.95, 'hi_bound': 1.2, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable natural gas heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_oil_dfo_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "energy_source_code=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "energy_source_code=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable diesel fuel oil heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_oil_jf_heat_content = [{'title': 'Jet fuel heat content (tails)', 'query': "energy_source_code=='JF'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable jet fuel heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_oil_ker_heat_content = [{'title': 'Kerosene heat content (tails)', 'query': "energy_source_code=='KER'", 'low_q': 0.05, 'low_bound': 5.4, 'hi_q': 0.95, 'hi_bound': 6.1, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable kerosene heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_other_gas_heat_content = [{'title': 'Other gas heat content (tails)', 'query': "energy_source_code=='OG'", 'low_q': 0.05, 'low_bound': 0.07, 'hi_q': 0.95, 'hi_bound': 3.3, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable other gas heat contents.

Based on values given in the EIA 923 instructions, but with the lower bound
set by the expected lower bound of heat content on blast furnace gas (since
there were “other” gasses with bounds lower than the expected 0.32 in the data)
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_petcoke_heat_content = [{'title': 'Petroleum coke heat content (tails)', 'query': "energy_source_code=='PC'", 'low_q': 0.05, 'low_bound': 24.0, 'hi_q': 0.95, 'hi_bound': 30.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable petroleum coke heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_petcoke_syngas_heat_content = [{'title': 'Petcoke syngas heat content (tails)', 'query': "energy_source_code=='SGP'", 'low_q': 0.05, 'low_bound': 0.2, 'hi_q': 0.95, 'hi_bound': 1.1, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable petcoke syngas heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_propane_heat_content = [{'title': 'Propane heat content (tails)', 'query': "energy_source_code=='PG'", 'low_q': 0.05, 'low_bound': 2.5, 'hi_q': 0.95, 'hi_bound': 2.75, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable propane heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_rfo_heat_content = [{'title': 'Residual fuel oil heat content (tails)', 'query': "energy_source_code=='RFO'", 'low_q': 0.05, 'low_bound': 5.7, 'hi_q': 0.95, 'hi_bound': 6.9, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable residual fuel oil heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_self = [{'title': 'Bituminous coal ash content', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.25, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal ash content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite coal ash content', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal heat content', 'query': "energy_source_code=='BIT'", 'low_q': 0.07, 'mid_q': 0.5, 'hi_q': 0.98, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal heat content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.9, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite heat content', 'query': "energy_source_code=='LIG'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Diesel Fuel Oil heat content', 'query': "energy_source_code=='DFO'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal moisture content', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal moisture content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite moisture content', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 1.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}]

	EIA923 fuel receipts & costs data validation against itself.

	
pudl.validate.frc_eia923_sludge_heat_content = [{'title': 'Sludge waste heat content (tails)', 'query': "energy_source_code=='SLW'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 16.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable sludget waste heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_waste_oil_heat_content = [{'title': 'Waste oil heat content (tails)', 'query': "energy_source_code=='WO'", 'low_q': 0.05, 'low_bound': 3.0, 'hi_q': 0.95, 'hi_bound': 5.9, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable waste oil heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_wood_liquids_heat_content = [{'title': 'Wood waste liquids heat content (tails)', 'query': "energy_source_code=='WDL'", 'low_q': 0.05, 'low_bound': 8.0, 'hi_q': 0.95, 'hi_bound': 14.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable wood waste liquids heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.frc_eia923_wood_solids_heat_content = [{'title': 'Wood solids heat content (tails)', 'query': "energy_source_code=='WDS'", 'low_q': 0.05, 'low_bound': 7.0, 'hi_q': 0.95, 'hi_bound': 18.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Check for reasonable wood solids heat contents.

Based on values given in the EIA 923 instructions:
https://www.eia.gov/survey/form/eia_923/instructions.pdf

	
pudl.validate.gf_eia923_agg = [{'title': 'Coal heat content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	EIA923 Boiler Fuel data validation against aggregated data.

	
pudl.validate.gf_eia923_coal_heat_content = [{'title': 'All coal heat content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid coal heat content values (all coal types).

The Generation Fuel table does not break different coal types out separately,
so we can only test the validity of the entire suite of coal records.

	
pudl.validate.gf_eia923_gas_heat_content = [{'title': 'All gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.5, 'low_bound': 0.975, 'hi_q': 0.5, 'hi_bound': 1.075, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.2, 'low_bound': 0.95, 'hi_q': 0.9, 'hi_bound': 1.1, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid natural gas heat content values.

Focuses on natural gas proper. Lower bound excludes other types of gaseous
fuels intentionally.

	
pudl.validate.gf_eia923_oil_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "fuel_type_code_aer=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "fuel_type_code_aer=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All petroleum heat content (tails)', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.6, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid petroleum based fuel heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.historical_distribution(df, data_col, weight_col, quantile)

	Calculate a historical distribution of weighted values of a column.

In order to know what a “reasonable” value of a particular column is in the
pudl data, we can use this function to see what the value in that column
has been in each of the years of data we have on hand, and a given
quantile. This population of values can then be used to set boundaries on
acceptable data distributions in the aggregated and processed data.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – a dataframe containing historical data, with a
column named either report_date or report_year.

	data_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Label of the column containing the data of interest.

	weight_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Label of the column containing the weights to be
used in scaling the data.

	Returns

	The weighted quantiles of data, for each of the years found in
the historical data of df.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.validate.historical_histogram(orig_df, test_df, data_col, weight_col, query='', low_q=0.05, mid_q=0.5, hi_q=0.95, low_bound=None, hi_bound=None, title='')

	Weighted histogram comparing distribution with historical subsamples.

	
pudl.validate.intersect_indexes(indexes)

	Calculate the intersection of a collection of pandas Indexes.

	Parameters

	indexes (iterable of pandas.Index objects) –

	Returns

	The intersection of all values found in the input
indexes.

	Return type

	pandas.Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index]

	
pudl.validate.mcoe_coal_capacity_factor = [{'title': 'Coal Capacity Factor (middle)', 'query': "fuel_type_code_pudl=='coal' and capacity_factor!=0.0", 'low_q': 0.6, 'low_bound': 0.5, 'hi_q': 0.6, 'hi_bound': 0.9, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}, {'title': 'Coal Capacity Factor (tails)', 'query': "fuel_type_code_pudl=='coal' and capacity_factor!=0.0", 'low_q': 0.1, 'low_bound': 0.04, 'hi_q': 0.95, 'hi_bound': 0.95, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}]

	Static constraints on coal fired generator capacity factors.

	
pudl.validate.mcoe_coal_heat_rate = [{'title': 'Coal Unit Heat Rates (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 11.0, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Coal Unit Heat Rates (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 9.0, 'hi_q': 0.95, 'hi_bound': 12.5, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}]

	Static constraints on coal fired generator heat rates.

	
pudl.validate.mcoe_fuel_cost_per_mmbtu = [{'title': 'Coal Fuel Costs (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 1.5, 'hi_q': 0.5, 'hi_bound': 3.0, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Coal Fuel Costs (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 1.2, 'hi_q': 0.95, 'hi_bound': 4.5, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Natural Gas Fuel Costs (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 2.0, 'hi_q': 0.5, 'hi_bound': 4.0, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Natural Gas Fuel Costs (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 1.75, 'hi_q': 0.95, 'hi_bound': 6.7, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}]

	Static constraints on fuel costs per mmbtu of fuel consumed.

	
pudl.validate.mcoe_fuel_cost_per_mwh = [{'title': 'Coal Fuel Costs (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 18.0, 'hi_q': 0.5, 'hi_bound': 27.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Coal Fuel Costs (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 50.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Fuel Costs (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 20.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Fuel Costs (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 55.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}]

	Static constraints on fuel costs per MWh net generation.

	
pudl.validate.mcoe_gas_capacity_factor = [{'title': 'Natural Gas Capacity Factor (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01' and capacity_factor!=0.0", 'low_q': 0.65, 'low_bound': 0.4, 'hi_q': 0.65, 'hi_bound': 0.7, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}, {'title': 'Natural Gas Capacity Factor (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01' and capacity_factor!=0.0", 'low_q': 0.15, 'low_bound': 0.01, 'hi_q': 0.95, 'hi_bound': 0.95, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}]

	Static constraints on natural gas generator capacity factors.

	
pudl.validate.mcoe_gas_heat_rate = [{'title': 'Natural Gas Unit Heat Rates (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 7.5, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Unit Heat Rates (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 6.5, 'hi_q': 0.95, 'hi_bound': 13.0, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}]

	Static constraints on gas fired generator heat rates.

	
pudl.validate.no_null_cols(df, cols='all', df_name='')

	Check that a dataframe has no all-NaN columns.

Occasionally in the concatenation / merging of dataframes we get a label
wrong, and it results in a fully NaN column… which should probably never
actually happen. This is a quick verification.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame to check for null columns.

	cols (iterable or "all") – The labels of columns to check for
all-null values. If “all” check all columns.

	df_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the dataframe, to aid in debugging/logging.

	Returns

	
	The same DataFrame as was passed in, for use in
	DataFrame.pipe().

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any completely NaN / Null valued columns are found.

	
pudl.validate.no_null_rows(df, cols='all', df_name='', thresh=0.9)

	Check for rows filled with NA values indicating bad merges.

Sum up the number of NA values in each row and the columns specified by
cols. If the NA values make up more than thresh of the columns
overall, the row is considered Null and the check fails.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame to check for null rows.

	cols (iterable or "all") – The labels of columns to check for
all-null values. If “all” check all columns.

	Returns

	The input DataFrame, for use with DataFrame.pipe().

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the fraction of NA values in any row is greater than

	thresh` –

	
pudl.validate.plot_vs_agg(orig_df, agg_df, validation_cases)

	Validate a bunch of distributions against aggregated versions.

	
pudl.validate.plot_vs_bounds(df, validation_cases)

	Run through a data validation based on absolute bounds.

	
pudl.validate.plot_vs_self(df, validation_cases)

	Validate a bunch of distributions against themselves.

	
pudl.validate.vs_bounds(df, data_col, weight_col, query='', title='', low_q=False, low_bound=False, hi_q=False, hi_bound=False)

	Test a distribution against an upper bound, lower bound, or both.

	
pudl.validate.vs_historical(orig_df, test_df, data_col, weight_col, query='', low_q=0.05, mid_q=0.5, hi_q=0.95, title='')

	Validate aggregated distributions against original data.

	
pudl.validate.vs_self(df, data_col, weight_col, query='', title='', low_q=0.05, mid_q=0.5, hi_q=0.95)

	Test a distribution against its own historical range.

This is a special case of the pudl.validate.vs_historical() function,
in which both the orig_df and test_df are the same. Mostly it
helps ensure that the test itself is valid for the given distribution.

	
pudl.validate.weighted_quantile(data, weights, quantile)

	Calculate the weighted quantile of a Series or DataFrame column.

This function allows us to take two columns from a
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] one of which contains an observed value (data)
like heat content per unit of fuel, and the other of which (weights)
contains a quantity like quantity of fuel delivered which should be used to
scale the importance of the observed value in an overall distribution, and
calculate the values that the scaled distribution will have at various
quantiles.

	Parameters

	
	data (pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) – A series containing numeric data.

	weights (pandas.series) – Weights to use in scaling the data. Must have
the same length as data.

	quantile (float [https://docs.python.org/3/library/functions.html#float]) – A number between 0 and 1, representing the quantile
at which we want to find the value of the weighted data.

	Returns

	the value in the weighted data corresponding to the given
quantile. If there are no values in the data, return numpy.na.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pudl	

 	
 	
 pudl.analysis	

 	
 	
 pudl.analysis.allocate_net_gen	

 	
 	
 pudl.analysis.mcoe	

 	
 	
 pudl.analysis.service_territory	

 	
 	
 pudl.analysis.spatial	

 	
 	
 pudl.analysis.state_demand	

 	
 	
 pudl.analysis.timeseries_cleaning	

 	
 	
 pudl.cli	

 	
 	
 pudl.constants	

 	
 	
 pudl.convert	

 	
 	
 pudl.convert.censusdp1tract_to_sqlite	

 	
 	
 pudl.convert.datapkg_to_rst	

 	
 	
 pudl.convert.datapkg_to_sqlite	

 	
 	
 pudl.convert.epacems_to_parquet	

 	
 	
 pudl.convert.ferc1_to_sqlite	

 	
 	
 pudl.convert.merge_datapkgs	

 	
 	
 pudl.dfc	

 	
 	
 pudl.etl	

 	
 	
 pudl.extract	

 	
 	
 pudl.extract.eia860	

 	
 	
 pudl.extract.eia860m	

 	
 	
 pudl.extract.eia861	

 	
 	
 pudl.extract.eia923	

 	
 	
 pudl.extract.epacems	

 	
 	
 pudl.extract.epaipm	

 	
 	
 pudl.extract.excel	

 	
 	
 pudl.extract.ferc1	

 	
 	
 pudl.extract.ferc714	

 	
 	
 pudl.glue	

 	
 	
 pudl.glue.eia_epacems	

 	
 	
 pudl.glue.ferc1_eia	

 	
 	
 pudl.helpers	

 	
 	
 pudl.load	

 	
 	
 pudl.load.csv	

 	
 	
 pudl.load.metadata	

 	
 	
 pudl.output	

 	
 	
 pudl.output.censusdp1tract	

 	
 	
 pudl.output.eia860	

 	
 	
 pudl.output.eia923	

 	
 	
 pudl.output.epacems	

 	
 	
 pudl.output.ferc1	

 	
 	
 pudl.output.ferc714	

 	
 	
 pudl.output.pudltabl	

 	
 	
 pudl.transform	

 	
 	
 pudl.transform.eia	

 	
 	
 pudl.transform.eia860	

 	
 	
 pudl.transform.eia861	

 	
 	
 pudl.transform.eia923	

 	
 	
 pudl.transform.epacems	

 	
 	
 pudl.transform.epaipm	

 	
 	
 pudl.transform.ferc1	

 	
 	
 pudl.transform.ferc714	

 	
 	
 pudl.validate	

 	
 	
 pudl.workspace	

 	
 	
 pudl.workspace.datastore	

 	
 	
 pudl.workspace.resource_cache	

 	
 	
 pudl.workspace.setup	

 	
 	
 pudl.workspace.setup_cli	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	AbstractCache (class in pudl.workspace.resource_cache)

 	accumulated_depreciation() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	add() (pudl.workspace.resource_cache.AbstractCache method)

 	(pudl.workspace.resource_cache.GoogleCloudStorageCache method)

 	(pudl.workspace.resource_cache.LayeredCache method)

 	(pudl.workspace.resource_cache.LocalFileCache method)

 	add_cache_layer() (pudl.workspace.resource_cache.LayeredCache method)

 	add_dates() (in module pudl.output.ferc714)

 	add_facility_id_unit_id_epa() (in module pudl.transform.epacems)

 	add_fips_ids() (in module pudl.helpers)

 	add_geometries() (in module pudl.analysis.service_territory)

 	add_reference() (pudl.dfc.DataFrameCollection method)

 	add_sqlite_table() (in module pudl.extract.ferc1)

 	adjacency_ba() (in module pudl.transform.ferc714)

 	adjacency_ba_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	advanced_metering_infrastructure() (in module pudl.transform.eia861)

 	advanced_metering_infrastructure_eia861() (pudl.output.pudltabl.PudlTabl method)

 	aer_coal_strings (in module pudl.constants)

 	aer_fuel_type_strings (in module pudl.constants)

 	
 	aer_gas_strings (in module pudl.constants)

 	aer_hydro_strings (in module pudl.constants)

 	aer_nuclear_strings (in module pudl.constants)

 	aer_oil_strings (in module pudl.constants)

 	aer_other_strings (in module pudl.constants)

 	aer_solar_strings (in module pudl.constants)

 	aer_waste_strings (in module pudl.constants)

 	aer_wind_strings (in module pudl.constants)

 	agg_by_generator() (in module pudl.analysis.allocate_net_gen)

 	allocate_gen_fuel_by_gen() (in module pudl.analysis.allocate_net_gen)

 	allocate_gen_fuel_by_gen_pm_fuel() (in module pudl.analysis.allocate_net_gen)

 	annualize() (pudl.output.ferc714.Respondents method)

 	API_ROOT (pudl.workspace.datastore.ZenodoFetcher attribute)

 	append_eia860m() (in module pudl.extract.eia860m)

 	array_diff() (in module pudl.analysis.timeseries_cleaning)

 	assign_cc_unit_ids() (in module pudl.output.eia860)

 	assign_prime_fuel_unit_ids() (in module pudl.output.eia860)

 	assign_single_gen_unit_ids() (in module pudl.output.eia860)

 	assign_unit_ids() (in module pudl.output.eia860)

 	associate_generator_tables() (in module pudl.analysis.allocate_net_gen)

 	ASSOCIATIONS (in module pudl.output.ferc714)

B

 	
 	ba_ids (pudl.output.ferc714.Respondents attribute)

 	BAD_RESPONDENTS (in module pudl.transform.ferc714)

 	balancing_authority() (in module pudl.transform.eia861)

 	balancing_authority_assn() (in module pudl.transform.eia861)

 	balancing_authority_assn_eia861() (pudl.output.ferc714.Respondents property)

 	(pudl.output.pudltabl.PudlTabl method)

 	balancing_authority_eia861() (pudl.output.ferc714.Respondents property)

 	(pudl.output.pudltabl.PudlTabl method)

 	base_data_urls (in module pudl.constants)

 	bf_eia923() (pudl.output.pudltabl.PudlTabl method)

 	bf_eia923_agg (in module pudl.validate)

 	bf_eia923_coal_ash_content (in module pudl.validate)

 	
 	bf_eia923_coal_heat_content (in module pudl.validate)

 	bf_eia923_coal_sulfur_content (in module pudl.validate)

 	bf_eia923_gas_heat_content (in module pudl.validate)

 	bf_eia923_oil_heat_content (in module pudl.validate)

 	bf_eia923_self (in module pudl.validate)

 	bga_eia860() (pudl.output.pudltabl.PudlTabl method)

 	BLACKLISTED_PAGES (pudl.extract.excel.GenericExtractor attribute)

 	boiler_fuel() (in module pudl.transform.eia923)

 	boiler_fuel_eia923() (in module pudl.output.eia923)

 	boiler_generator_assn() (in module pudl.transform.eia860)

 	boiler_generator_assn_eia860() (in module pudl.output.eia860)

 	bounds_histogram() (in module pudl.validate)

C

 	
 	calc_allocation_fraction() (in module pudl.analysis.allocate_net_gen)

 	canada_prov_terr (in module pudl.constants)

 	capacity_factor() (in module pudl.analysis.mcoe)

 	(pudl.output.pudltabl.PudlTabl method)

 	categorize() (pudl.output.ferc714.Respondents method)

 	categorize_eia_code() (in module pudl.output.ferc714)

 	cems_states (in module pudl.constants)

 	census_region (in module pudl.constants)

 	censusdp1tract_to_sqlite() (in module pudl.convert.censusdp1tract_to_sqlite)

 	check_date_freq() (in module pudl.validate)

 	check_etl_params() (in module pudl.convert.merge_datapkgs)

 	check_ferc1_tables() (in module pudl.extract.ferc1)

 	check_for_bad_tables() (in module pudl.etl)

 	check_for_bad_years() (in module pudl.etl)

 	check_gdf() (in module pudl.analysis.spatial)

 	check_identical_vals() (in module pudl.convert.merge_datapkgs)

 	check_max_rows() (in module pudl.validate)

 	check_min_rows() (in module pudl.validate)

 	check_unique_rows() (in module pudl.validate)

 	ChecksumMismatch

 	clean_columns_dump() (in module pudl.load.csv)

 	clean_eia_counties() (in module pudl.helpers)

 	clean_ferc714_hourly_demand_matrix() (in module pudl.analysis.state_demand)

 	clean_merge_asof() (in module pudl.helpers)

 	cleanstrings() (in module pudl.helpers)

 	cleanstrings_series() (in module pudl.helpers)

 	cleanstrings_snake() (in module pudl.helpers)

 	
 	coalmine() (in module pudl.transform.eia923)

 	coalmine_country_eia923 (in module pudl.constants)

 	coalmine_type_eia923 (in module pudl.constants)

 	cols_to_cats() (in module pudl.transform.ferc1)

 	columns (pudl.analysis.timeseries_cleaning.Timeseries attribute)

 	compare_state_demand() (in module pudl.analysis.state_demand)

 	compile_geoms() (in module pudl.analysis.service_territory)

 	compile_keywords() (in module pudl.load.metadata)

 	compile_partitions() (in module pudl.load.metadata)

 	CONSTRUCTION_TYPE_STRINGS (in module pudl.transform.ferc1)

 	contains() (pudl.workspace.resource_cache.AbstractCache method)

 	(pudl.workspace.resource_cache.GoogleCloudStorageCache method)

 	(pudl.workspace.resource_cache.LayeredCache method)

 	(pudl.workspace.resource_cache.LocalFileCache method)

 	contract_type_eia923 (in module pudl.constants)

 	contributors (in module pudl.constants)

 	contributors_by_source (in module pudl.constants)

 	convert_cols_dtypes() (in module pudl.helpers)

 	convert_cost_json_to_df() (in module pudl.output.eia923)

 	convert_dfs_dict_dtypes() (in module pudl.helpers)

 	convert_to_date() (in module pudl.helpers)

 	correct_gross_load_mw() (in module pudl.transform.epacems)

 	count_records() (in module pudl.helpers)

 	create_cems_schema() (in module pudl.convert.epacems_to_parquet)

 	create_in_dtypes() (in module pudl.convert.epacems_to_parquet)

 	CSV_DTYPES (in module pudl.extract.epacems)

 	csv_dump() (in module pudl.load.csv)

D

 	
 	DATA_COLS (in module pudl.analysis.allocate_net_gen)

 	data_source_info (in module pudl.constants)

 	data_sources (in module pudl.constants)

 	data_sources_from_tables() (in module pudl.load.metadata)

 	data_years (in module pudl.constants)

 	DataFrameCollection (class in pudl.dfc)

 	DatapackageDescriptor (class in pudl.workspace.datastore)

 	datapkg2rst() (in module pudl.convert.datapkg_to_rst)

 	datapkg_to_sqlite() (in module pudl.convert.datapkg_to_sqlite)

 	dataset (pudl.workspace.resource_cache.PudlResourceKey attribute)

 	Datastore (class in pudl.workspace.datastore)

 	dbf2sqlite() (in module pudl.extract.ferc1)

 	dbf_typemap (in module pudl.constants)

 	define_sqlite_db() (in module pudl.extract.ferc1)

 	delete() (pudl.workspace.resource_cache.AbstractCache method)

 	(pudl.workspace.resource_cache.GoogleCloudStorageCache method)

 	(pudl.workspace.resource_cache.LayeredCache method)

 	(pudl.workspace.resource_cache.LocalFileCache method)

 	demand_forecast_pa() (in module pudl.transform.ferc714)

 	demand_forecast_pa_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	demand_hourly_pa() (in module pudl.transform.ferc714)

 	demand_hourly_pa_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	demand_monthly_ba() (in module pudl.transform.ferc714)

 	
 	demand_monthly_ba_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	demand_response() (in module pudl.transform.eia861)

 	demand_response_eia861() (pudl.output.pudltabl.PudlTabl method)

 	demand_side_management() (in module pudl.transform.eia861)

 	demand_side_management_eia861() (pudl.output.pudltabl.PudlTabl method)

 	deploy() (in module pudl.workspace.setup)

 	derive_paths() (in module pudl.workspace.setup)

 	description_pa() (in module pudl.transform.ferc714)

 	description_pa_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	dict_dump() (in module pudl.load.csv)

 	diff() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	dissolve() (in module pudl.analysis.spatial)

 	distributed_generation() (in module pudl.transform.eia861)

 	distributed_generation_eia861() (pudl.output.pudltabl.PudlTabl method)

 	distribution_systems() (in module pudl.transform.eia861)

 	distribution_systems_eia861() (pudl.output.pudltabl.PudlTabl method)

 	DOI (pudl.workspace.datastore.ZenodoFetcher attribute)

 	doi (pudl.workspace.resource_cache.PudlResourceKey attribute)

 	download_zip_url() (in module pudl.helpers)

 	drop_tables() (in module pudl.extract.ferc1)

 	(in module pudl.helpers)

 	dynamic_pricing() (in module pudl.transform.eia861)

 	dynamic_pricing_eia861() (pudl.output.pudltabl.PudlTabl method)

E

 	
 	eia860_pudl_tables (in module pudl.constants)

 	eia923_pudl_tables (in module pudl.constants)

 	EIA_CODE_FIXES (in module pudl.transform.ferc714)

 	encode_run_length() (in module pudl.analysis.timeseries_cleaning)

 	energy_efficiency() (in module pudl.transform.eia861)

 	energy_efficiency_eia861() (pudl.output.pudltabl.PudlTabl method)

 	energy_source_eia923 (in module pudl.constants)

 	energy_source_eia_simple_map (in module pudl.constants)

 	entities (in module pudl.constants)

 	entity_tables (in module pudl.constants)

 	epacems_tables (in module pudl.constants)

 	epacems_to_parquet() (in module pudl.convert.epacems_to_parquet)

 	EpaCemsDatastore (class in pudl.extract.epacems)

 	EpaCemsPartition (class in pudl.extract.epacems)

 	epaipm_pudl_tables (in module pudl.constants)

 	epaipm_region_aggregations (in module pudl.constants)

 	epaipm_region_names (in module pudl.constants)

 	
 	epaipm_url_ext (in module pudl.constants)

 	EpaIpmDatastore (class in pudl.extract.epaipm)

 	etl() (in module pudl.etl)

 	etl_eia861() (pudl.output.pudltabl.PudlTabl method)

 	etl_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	excel_filename() (pudl.extract.excel.GenericExtractor method)

 	excel_settings (pudl.extract.epaipm.TableSettings attribute)

 	explode() (in module pudl.analysis.spatial)

 	extract() (in module pudl.extract.epacems)

 	(in module pudl.extract.epaipm)

 	(in module pudl.extract.ferc1)

 	(in module pudl.extract.ferc714)

 	(pudl.extract.excel.GenericExtractor method)

 	Extractor (class in pudl.extract.eia860)

 	(class in pudl.extract.eia860m)

 	(class in pudl.extract.eia861)

 	(class in pudl.extract.eia923)

F

 	
 	fbp_ferc1() (pudl.output.pudltabl.PudlTabl method)

 	ferc1_data_tables (in module pudl.constants)

 	ferc1_dbf2tbl (in module pudl.constants)

 	ferc1_huge_tables (in module pudl.constants)

 	ferc1_power_purchase_type (in module pudl.constants)

 	ferc1_pudl_tables (in module pudl.constants)

 	ferc1_tbl2dbf (in module pudl.constants)

 	Ferc1Datastore (class in pudl.extract.ferc1)

 	FERC1FieldParser (class in pudl.extract.ferc1)

 	ferc_accumulated_depreciation (in module pudl.constants)

 	ferc_electric_plant_accounts (in module pudl.constants)

 	FERCPlantClassifier (class in pudl.transform.ferc1)

 	fetch_resources() (in module pudl.workspace.datastore)

 	file (pudl.extract.epaipm.TableSettings attribute)

 	files_dict_epaipm (in module pudl.constants)

 	fill_unit_ids() (in module pudl.output.eia860)

 	fillna_w_rolling_avg() (in module pudl.helpers)

 	filter_ferc714_hourly_demand_matrix() (in module pudl.analysis.state_demand)

 	find_timezone() (in module pudl.helpers)

 	fipsify() (pudl.output.ferc714.Respondents method)

 	fit() (pudl.transform.ferc1.FERCPlantClassifier method)

 	fix_eia_na() (in module pudl.helpers)

 	fix_int_na() (in module pudl.helpers)

 	fix_leading_zero_gen_ids() (in module pudl.helpers)

 	fix_up_dates() (in module pudl.transform.epacems)

 	flag() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_anomalous_region() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_double_delta() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_global_outlier() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_global_outlier_neighbor() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_identical_run() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_local_outlier() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_negative_or_zero() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_ruggles() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flag_single_delta() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	flagged (pudl.analysis.timeseries_cleaning.Timeseries attribute)

 	flags (pudl.analysis.timeseries_cleaning.Timeseries attribute)

 	fold_tensor() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	frc_eia923() (pudl.output.pudltabl.PudlTabl method)

 	frc_eia923_ag_byproduct_heat_content (in module pudl.validate)

 	frc_eia923_agg (in module pudl.validate)

 	frc_eia923_biomass_gas_heat_content (in module pudl.validate)

 	frc_eia923_biomass_liquids_heat_content (in module pudl.validate)

 	frc_eia923_biomass_solids_heat_content (in module pudl.validate)

 	frc_eia923_black_liquor_heat_content (in module pudl.validate)

 	frc_eia923_blast_furnace_gas_heat_content (in module pudl.validate)

 	frc_eia923_coal_ant_heat_content (in module pudl.validate)

 	frc_eia923_coal_ash_content (in module pudl.validate)

 	frc_eia923_coal_bit_heat_content (in module pudl.validate)

 	frc_eia923_coal_cc_heat_content (in module pudl.validate)

 	frc_eia923_coal_lig_heat_content (in module pudl.validate)

 	frc_eia923_coal_mercury_content (in module pudl.validate)

 	frc_eia923_coal_moisture_content (in module pudl.validate)

 	frc_eia923_coal_sub_heat_content (in module pudl.validate)

 	frc_eia923_coal_sulfur_content (in module pudl.validate)

 	frc_eia923_coal_wc_heat_content (in module pudl.validate)

 	frc_eia923_gas_sgc_heat_content (in module pudl.validate)

 	frc_eia923_landfill_gas_heat_content (in module pudl.validate)

 	frc_eia923_muni_solids_heat_content (in module pudl.validate)

 	
 	frc_eia923_natural_gas_heat_content (in module pudl.validate)

 	frc_eia923_oil_dfo_heat_content (in module pudl.validate)

 	frc_eia923_oil_jf_heat_content (in module pudl.validate)

 	frc_eia923_oil_ker_heat_content (in module pudl.validate)

 	frc_eia923_other_gas_heat_content (in module pudl.validate)

 	frc_eia923_petcoke_heat_content (in module pudl.validate)

 	frc_eia923_petcoke_syngas_heat_content (in module pudl.validate)

 	frc_eia923_propane_heat_content (in module pudl.validate)

 	frc_eia923_rfo_heat_content (in module pudl.validate)

 	frc_eia923_self (in module pudl.validate)

 	frc_eia923_sludge_heat_content (in module pudl.validate)

 	frc_eia923_waste_oil_heat_content (in module pudl.validate)

 	frc_eia923_wood_liquids_heat_content (in module pudl.validate)

 	frc_eia923_wood_solids_heat_content (in module pudl.validate)

 	from_dict() (pudl.dfc.DataFrameCollection static method)

 	fuel() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	fuel_by_plant_ferc1() (in module pudl.output.ferc1)

 	(in module pudl.transform.ferc1)

 	fuel_cost() (in module pudl.analysis.mcoe)

 	(pudl.output.pudltabl.PudlTabl method)

 	FUEL_COST_CATEGORIES_EIAAPI (in module pudl.output.eia923)

 	fuel_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	fuel_group_eia923 (in module pudl.constants)

 	fuel_group_eia923_simple_map (in module pudl.constants)

 	fuel_receipts_costs() (in module pudl.transform.eia923)

 	fuel_receipts_costs_eia923() (in module pudl.output.eia923)

 	FUEL_STRINGS (in module pudl.transform.ferc1)

 	fuel_type_aer_eia923 (in module pudl.constants)

 	fuel_type_eia860_coal_strings (in module pudl.constants)

 	fuel_type_eia860_gas_strings (in module pudl.constants)

 	fuel_type_eia860_hydro_strings (in module pudl.constants)

 	fuel_type_eia860_nuclear_strings (in module pudl.constants)

 	fuel_type_eia860_oil_strings (in module pudl.constants)

 	fuel_type_eia860_other_strings (in module pudl.constants)

 	fuel_type_eia860_simple_map (in module pudl.constants)

 	fuel_type_eia860_solar_strings (in module pudl.constants)

 	fuel_type_eia860_waste_strings (in module pudl.constants)

 	fuel_type_eia860_wind_strings (in module pudl.constants)

 	fuel_type_eia923 (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_coal_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_gas_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_oil_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_other_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_simple_map (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_waste_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_coal_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_gas_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_hydro_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_nuclear_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_oil_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_other_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_simple_map (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_solar_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_waste_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_wind_strings (in module pudl.constants)

 	FUEL_UNIT_STRINGS (in module pudl.transform.ferc1)

 	fuel_units_eia923 (in module pudl.constants)

G

 	
 	gen_allocated_eia923() (pudl.output.pudltabl.PudlTabl method)

 	gen_eia923() (pudl.output.pudltabl.PudlTabl method)

 	gen_original_eia923() (pudl.output.pudltabl.PudlTabl method)

 	gen_plants_ba() (in module pudl.transform.ferc714)

 	gen_plants_ba_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	generate_datapkg_bundle() (in module pudl.etl)

 	generate_metadata() (in module pudl.load.metadata)

 	generate_rolling_avg() (in module pudl.helpers)

 	generation() (in module pudl.transform.eia923)

 	generation_eia923() (in module pudl.output.eia923)

 	generation_fuel() (in module pudl.transform.eia923)

 	generation_fuel_eia923() (in module pudl.output.eia923)

 	generators() (in module pudl.transform.eia860)

 	generators_eia860() (in module pudl.output.eia860)

 	GenericExtractor (class in pudl.extract.excel)

 	gens_eia860() (pudl.output.pudltabl.PudlTabl method)

 	georef_counties() (pudl.output.ferc714.Respondents method)

 	georef_respondents() (pudl.output.ferc714.Respondents method)

 	get() (pudl.dfc.DataFrameCollection method)

 	(pudl.workspace.resource_cache.AbstractCache method)

 	(pudl.workspace.resource_cache.GoogleCloudStorageCache method)

 	(pudl.workspace.resource_cache.LayeredCache method)

 	(pudl.workspace.resource_cache.LocalFileCache method)

 	get_all_columns() (pudl.extract.excel.Metadata method)

 	get_all_pages() (pudl.extract.excel.Metadata method)

 	get_all_utils() (in module pudl.analysis.service_territory)

 	get_autoincrement_columns() (in module pudl.load.metadata)

 	get_column_map() (pudl.extract.excel.Metadata method)

 	get_data_columns() (in module pudl.analysis.spatial)

 	get_data_frame() (pudl.extract.epacems.EpaCemsDatastore method)

 	get_dataframe() (pudl.extract.epaipm.EpaIpmDatastore method)

 	get_datapackage_descriptor() (pudl.workspace.datastore.Datastore method)

 	get_datapkg_fks() (in module pudl.load.metadata)

 	get_dataset_name() (pudl.extract.excel.Metadata method)

 	get_db_plants_eia() (in module pudl.glue.ferc1_eia)

 	get_db_plants_ferc1() (in module pudl.glue.ferc1_eia)

 	get_db_utils_eia() (in module pudl.glue.ferc1_eia)

 	get_dbc_map() (in module pudl.extract.ferc1)

 	get_defaults() (in module pudl.workspace.setup)

 	get_dependent_tables() (in module pudl.load.metadata)

 	get_dependent_tables_from_list() (in module pudl.load.metadata)

 	get_descriptor() (pudl.workspace.datastore.ZenodoFetcher method)

 	get_dir() (pudl.extract.ferc1.Ferc1Datastore method)

 	get_doi() (pudl.workspace.datastore.ZenodoFetcher method)

 	get_dtypes() (pudl.extract.eia860.Extractor static method)

 	(pudl.extract.eia860m.Extractor static method)

 	(pudl.extract.eia861.Extractor static method)

 	(pudl.extract.eia923.Extractor static method)

 	(pudl.extract.excel.GenericExtractor static method)

 	get_ferc1_meta() (in module pudl.extract.ferc1)

 	get_fields() (in module pudl.extract.ferc1)

 	get_file() (pudl.extract.ferc1.Ferc1Datastore method)

 	get_file_name() (pudl.extract.excel.Metadata method)

 	get_filters() (pudl.extract.epacems.EpaCemsPartition method)

 	get_flattened_etl_parameters() (in module pudl.etl)

 	get_fuel_cost_avg_eiaapi() (in module pudl.output.eia923)

 	get_json_string() (pudl.workspace.datastore.DatapackageDescriptor method)

 	
 	get_key() (pudl.extract.epacems.EpaCemsPartition method)

 	get_known_datasets() (pudl.workspace.datastore.Datastore method)

 	(pudl.workspace.datastore.ZenodoFetcher method)

 	get_layer() (in module pudl.output.censusdp1tract)

 	get_local_path() (pudl.workspace.resource_cache.PudlResourceKey method)

 	get_lost_plants_eia() (in module pudl.glue.ferc1_eia)

 	get_lost_utils_eia() (in module pudl.glue.ferc1_eia)

 	get_mapped_plants_eia() (in module pudl.glue.ferc1_eia)

 	get_mapped_plants_ferc1() (in module pudl.glue.ferc1_eia)

 	get_mapped_utils_eia() (in module pudl.glue.ferc1_eia)

 	get_mapped_utils_ferc1() (in module pudl.glue.ferc1_eia)

 	get_monthly_file() (pudl.extract.epacems.EpaCemsPartition method)

 	get_partitions() (pudl.workspace.datastore.DatapackageDescriptor method)

 	get_plant_map() (in module pudl.glue.ferc1_eia)

 	get_plant_states() (in module pudl.output.epacems)

 	get_plant_years() (in module pudl.output.epacems)

 	get_pudl_dtype() (in module pudl.helpers)

 	get_pudl_dtypes() (in module pudl.helpers)

 	get_raw_df() (in module pudl.extract.ferc1)

 	get_resource() (pudl.workspace.datastore.ZenodoFetcher method)

 	get_resource_key() (pudl.workspace.datastore.ZenodoFetcher method)

 	get_resource_path() (pudl.workspace.datastore.DatapackageDescriptor method)

 	get_resources() (pudl.workspace.datastore.DatapackageDescriptor method)

 	(pudl.workspace.datastore.Datastore method)

 	get_response() (in module pudl.output.eia923)

 	get_sheet_name() (pudl.extract.excel.Metadata method)

 	get_skipfooter() (pudl.extract.excel.Metadata method)

 	get_skiprows() (pudl.extract.excel.Metadata method)

 	get_table_meta() (in module pudl.output.pudltabl)

 	get_table_names() (pudl.dfc.DataFrameCollection method)

 	get_table_settings() (pudl.extract.epaipm.EpaIpmDatastore method)

 	get_tabular_data_resource() (in module pudl.load.metadata)

 	get_territory_fips() (in module pudl.analysis.service_territory)

 	get_territory_geometries() (in module pudl.analysis.service_territory)

 	get_unique_resource() (pudl.workspace.datastore.Datastore method)

 	get_unmapped_plants_eia() (in module pudl.glue.ferc1_eia)

 	get_unmapped_plants_ferc1() (in module pudl.glue.ferc1_eia)

 	get_unmapped_utils_eia() (in module pudl.glue.ferc1_eia)

 	get_unmapped_utils_ferc1() (in module pudl.glue.ferc1_eia)

 	get_unmapped_utils_with_plants_eia() (in module pudl.glue.ferc1_eia)

 	get_unpartitioned_tables() (in module pudl.load.metadata)

 	get_utility_map() (in module pudl.glue.ferc1_eia)

 	get_working_eia_dates() (in module pudl.helpers)

 	get_zipfile_resource() (pudl.workspace.datastore.Datastore method)

 	gf_eia923() (pudl.output.pudltabl.PudlTabl method)

 	gf_eia923_agg (in module pudl.validate)

 	gf_eia923_coal_heat_content (in module pudl.validate)

 	gf_eia923_gas_heat_content (in module pudl.validate)

 	gf_eia923_oil_heat_content (in module pudl.validate)

 	glue() (in module pudl.glue.ferc1_eia)

 	glue_pudl_tables (in module pudl.constants)

 	GoogleCloudStorageCache (class in pudl.workspace.resource_cache)

 	grab_clean_split() (in module pudl.glue.eia_epacems)

 	grab_fuel_state_monthly() (in module pudl.output.eia923)

 	grab_n_clean_epa_orignal() (in module pudl.glue.eia_epacems)

 	green_pricing() (in module pudl.transform.eia861)

 	green_pricing_eia861() (pudl.output.pudltabl.PudlTabl method)

H

 	
 	harmonize_eia_epa_orispl() (in module pudl.transform.epacems)

 	harvesting() (in module pudl.transform.eia)

 	hash_csv() (in module pudl.load.metadata)

 	heat_rate_by_gen() (in module pudl.analysis.mcoe)

 	
 	heat_rate_by_unit() (in module pudl.analysis.mcoe)

 	historical_distribution() (in module pudl.validate)

 	historical_histogram() (in module pudl.validate)

 	hr_by_gen() (pudl.output.pudltabl.PudlTabl method)

 	hr_by_unit() (pudl.output.pudltabl.PudlTabl method)

I

 	
 	id_certification() (in module pudl.transform.ferc714)

 	id_certification_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	IDX_GENS (in module pudl.analysis.allocate_net_gen)

 	IDX_PM_FUEL (in module pudl.analysis.allocate_net_gen)

 	IGNORE_COLS (in module pudl.extract.epacems)

 	impute() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	impute_ferc714_hourly_demand_matrix() (in module pudl.analysis.state_demand)

 	impute_latc_tnn() (in module pudl.analysis.timeseries_cleaning)

 	impute_latc_tubal() (in module pudl.analysis.timeseries_cleaning)

 	index (pudl.analysis.timeseries_cleaning.Timeseries attribute)

 	init() (in module pudl.workspace.setup)

 	
 	initialize_parser() (in module pudl.workspace.setup_cli)

 	insert_run_length() (in module pudl.analysis.timeseries_cleaning)

 	interchange_ba() (in module pudl.transform.ferc714)

 	interchange_ba_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	intersect_indexes() (in module pudl.validate)

 	iqr_of_diff_of_relative_median_prediction() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	is_doi() (in module pudl.helpers)

 	is_optimally_cached() (pudl.workspace.resource_cache.LayeredCache method)

 	is_read_only() (pudl.workspace.resource_cache.AbstractCache method)

 	items() (pudl.dfc.DataFrameCollection method)

 	iterate_multivalue_dict() (in module pudl.helpers)

K

 	
 	keywords_by_data_source (in module pudl.constants)

L

 	
 	lambda_description() (in module pudl.transform.ferc714)

 	lambda_description_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	lambda_hourly_ba() (in module pudl.transform.ferc714)

 	lambda_hourly_ba_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	LayeredCache (class in pudl.workspace.resource_cache)

 	licenses (in module pudl.constants)

 	limit_by_state (pudl.output.ferc714.Respondents attribute)

 	load_counties() (in module pudl.analysis.state_demand)

 	load_curves() (in module pudl.transform.epaipm)

 	
 	load_eia861_state_total_sales() (in module pudl.analysis.state_demand)

 	load_excel_file() (pudl.extract.excel.GenericExtractor method)

 	load_ferc714_county_assignments() (in module pudl.analysis.state_demand)

 	load_ferc714_hourly_demand_matrix() (in module pudl.analysis.state_demand)

 	load_ventyx_hourly_state_demand() (in module pudl.analysis.state_demand)

 	local_to_utc() (in module pudl.analysis.state_demand)

 	LocalFileCache (class in pudl.workspace.resource_cache)

 	logger (in module pudl.convert.datapkg_to_rst)

 	lookup_state() (in module pudl.analysis.state_demand)

M

 	
 	main() (in module pudl.analysis.service_territory)

 	(in module pudl.analysis.state_demand)

 	(in module pudl.cli)

 	(in module pudl.convert.censusdp1tract_to_sqlite)

 	(in module pudl.convert.datapkg_to_rst)

 	(in module pudl.convert.datapkg_to_sqlite)

 	(in module pudl.convert.epacems_to_parquet)

 	(in module pudl.convert.ferc1_to_sqlite)

 	(in module pudl.workspace.datastore)

 	(in module pudl.workspace.setup_cli)

 	make_ferc1_clf() (in module pudl.transform.ferc1)

 	make_url_cat_eiaapi() (in module pudl.output.eia923)

 	make_url_series_eiaapi() (in module pudl.output.eia923)

 	max_unit_id_by_plant() (in module pudl.output.eia860)

 	mcoe() (in module pudl.analysis.mcoe)

 	(pudl.output.pudltabl.PudlTabl method)

 	mcoe_coal_capacity_factor (in module pudl.validate)

 	mcoe_coal_heat_rate (in module pudl.validate)

 	mcoe_fuel_cost_per_mmbtu (in module pudl.validate)

 	mcoe_fuel_cost_per_mwh (in module pudl.validate)

 	mcoe_gas_capacity_factor (in module pudl.validate)

 	mcoe_gas_heat_rate (in module pudl.validate)

 	median_of_rolling_median_offset() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	median_prediction() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	melt_ferc714_hourly_demand_matrix() (in module pudl.analysis.state_demand)

 	merge_data() (in module pudl.convert.merge_datapkgs)

 	merge_datapkgs() (in module pudl.convert.merge_datapkgs)

 	merge_dicts() (in module pudl.helpers)

 	merge_meta() (in module pudl.convert.merge_datapkgs)

 	mergers() (in module pudl.transform.eia861)

 	mergers_eia861() (pudl.output.pudltabl.PudlTabl method)

 	Metadata (class in pudl.extract.excel)

 	METADATA (pudl.extract.excel.GenericExtractor attribute)

 	missing_respondents() (in module pudl.extract.ferc1)

 	
 module

 	pudl

 	pudl.analysis

 	pudl.analysis.allocate_net_gen

 	pudl.analysis.mcoe

 	pudl.analysis.service_territory

 	pudl.analysis.spatial

 	pudl.analysis.state_demand

 	pudl.analysis.timeseries_cleaning

 	pudl.cli

 	pudl.constants

 	pudl.convert

 	pudl.convert.censusdp1tract_to_sqlite

 	pudl.convert.datapkg_to_rst

 	pudl.convert.datapkg_to_sqlite

 	pudl.convert.epacems_to_parquet

 	pudl.convert.ferc1_to_sqlite

 	pudl.convert.merge_datapkgs

 	pudl.dfc

 	pudl.etl

 	pudl.extract

 	pudl.extract.eia860

 	pudl.extract.eia860m

 	pudl.extract.eia861

 	pudl.extract.eia923

 	pudl.extract.epacems

 	pudl.extract.epaipm

 	pudl.extract.excel

 	pudl.extract.ferc1

 	pudl.extract.ferc714

 	pudl.glue

 	pudl.glue.eia_epacems

 	pudl.glue.ferc1_eia

 	pudl.helpers

 	pudl.load

 	pudl.load.csv

 	pudl.load.metadata

 	pudl.output

 	pudl.output.censusdp1tract

 	pudl.output.eia860

 	pudl.output.eia923

 	pudl.output.epacems

 	pudl.output.ferc1

 	pudl.output.ferc714

 	pudl.output.pudltabl

 	pudl.transform

 	pudl.transform.eia

 	pudl.transform.eia860

 	pudl.transform.eia861

 	pudl.transform.eia923

 	pudl.transform.epacems

 	pudl.transform.epaipm

 	pudl.transform.ferc1

 	pudl.transform.ferc714

 	pudl.validate

 	pudl.workspace

 	pudl.workspace.datastore

 	pudl.workspace.resource_cache

 	pudl.workspace.setup

 	pudl.workspace.setup_cli

 	
 	month_year_to_date() (in module pudl.helpers)

N

 	
 	name (pudl.workspace.resource_cache.PudlResourceKey attribute)

 	need_fix_inting (in module pudl.constants)

 	nerc_region (in module pudl.constants)

 	net_energy_load_ba() (in module pudl.transform.ferc714)

 	net_energy_load_ba_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	net_metering() (in module pudl.transform.eia861)

 	
 	net_metering_eia861() (pudl.output.pudltabl.PudlTabl method)

 	no_null_cols() (in module pudl.validate)

 	no_null_rows() (in module pudl.validate)

 	non_net_metering() (in module pudl.transform.eia861)

 	non_net_metering_eia861() (pudl.output.pudltabl.PudlTabl method)

 	normalize_balancing_authority() (in module pudl.transform.eia861)

 	num_layers() (pudl.workspace.resource_cache.LayeredCache method)

O

 	
 	observed_respondents() (in module pudl.extract.ferc1)

 	OFFSET_CODES (in module pudl.transform.ferc714)

 	oob_to_nan() (in module pudl.helpers)

 	operational_data() (in module pudl.transform.eia861)

 	operational_data_eia861() (pudl.output.pudltabl.PudlTabl method)

 	organize_cols() (in module pudl.helpers)

 	
 	output_formats (in module pudl.constants)

 	overlay() (in module pudl.analysis.spatial)

 	own_eia860() (pudl.output.pudltabl.PudlTabl method)

 	ownership() (in module pudl.transform.eia860)

 	ownership_eia860() (in module pudl.output.eia860)

 	OWNERSHIP_PLANT_GEN_ID_DUPES (in module pudl.transform.eia860)

P

 	
 	PACKAGE_PATH (pudl.extract.ferc1.Ferc1Datastore attribute)

 	parse_command_line() (in module pudl.analysis.service_territory)

 	(in module pudl.cli)

 	(in module pudl.convert.censusdp1tract_to_sqlite)

 	(in module pudl.convert.datapkg_to_rst)

 	(in module pudl.convert.datapkg_to_sqlite)

 	(in module pudl.convert.epacems_to_parquet)

 	(in module pudl.convert.ferc1_to_sqlite)

 	(in module pudl.workspace.datastore)

 	ParseKeyValues (class in pudl.workspace.datastore)

 	parseN() (pudl.extract.ferc1.FERC1FieldParser method)

 	plant_in_service() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plant_in_service_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	PLANT_KIND_STRINGS (in module pudl.transform.ferc1)

 	plant_region_map() (in module pudl.transform.epaipm)

 	plants() (in module pudl.transform.eia860)

 	(in module pudl.transform.eia923)

 	plants_eia860() (in module pudl.output.eia860)

 	(pudl.output.pudltabl.PudlTabl method)

 	plants_hydro() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_hydro_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	plants_pumped_storage() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_pumped_storage_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	plants_small() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_small_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	plants_steam() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_steam_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	plants_steam_validate_ids() (in module pudl.transform.ferc1)

 	plants_utils_eia860() (in module pudl.output.eia860)

 	plants_utils_ferc1() (in module pudl.output.ferc1)

 	plot_all_territories() (in module pudl.analysis.service_territory)

 	plot_demand_scatter() (in module pudl.analysis.state_demand)

 	plot_demand_timeseries() (in module pudl.analysis.state_demand)

 	plot_flags() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	plot_historical_territory() (in module pudl.analysis.service_territory)

 	plot_vs_agg() (in module pudl.validate)

 	plot_vs_bounds() (in module pudl.validate)

 	plot_vs_self() (in module pudl.validate)

 	polygonize() (in module pudl.analysis.spatial)

 	predict() (pudl.transform.ferc1.FERCPlantClassifier method)

 	predict_state_hourly_demand() (in module pudl.analysis.state_demand)

 	prep_alloction_fraction() (in module pudl.analysis.allocate_net_gen)

 	prep_dir() (in module pudl.helpers)

 	prime_movers (in module pudl.constants)

 	prime_movers_eia923 (in module pudl.constants)

 	print_partitions() (in module pudl.workspace.datastore)

 	priority (pudl.output.ferc714.Respondents attribute)

 	process_final_page() (pudl.extract.eia923.Extractor static method)

 	(pudl.extract.excel.GenericExtractor static method)

 	process_raw() (pudl.extract.eia860.Extractor method)

 	(pudl.extract.eia860m.Extractor method)

 	(pudl.extract.eia861.Extractor method)

 	(pudl.extract.eia923.Extractor method)

 	(pudl.extract.excel.GenericExtractor method)

 	process_renamed() (pudl.extract.eia861.Extractor static method)

 	(pudl.extract.eia923.Extractor static method)

 	(pudl.extract.excel.GenericExtractor static method)

 	pu_eia860() (pudl.output.pudltabl.PudlTabl method)

 	pu_ferc1() (pudl.output.pudltabl.PudlTabl method)

 	
 pudl

 	module

 	
 pudl.analysis

 	module

 	
 pudl.analysis.allocate_net_gen

 	module

 	
 pudl.analysis.mcoe

 	module

 	
 pudl.analysis.service_territory

 	module

 	
 pudl.analysis.spatial

 	module

 	
 pudl.analysis.state_demand

 	module

 	
 pudl.analysis.timeseries_cleaning

 	module

 	
 pudl.cli

 	module

 	
 pudl.constants

 	module

 	
 pudl.convert

 	module

 	
 pudl.convert.censusdp1tract_to_sqlite

 	module

 	
 pudl.convert.datapkg_to_rst

 	module

 	
 pudl.convert.datapkg_to_sqlite

 	module

 	
 pudl.convert.epacems_to_parquet

 	module

 	
 pudl.convert.ferc1_to_sqlite

 	module

 	
 	
 pudl.convert.merge_datapkgs

 	module

 	
 pudl.dfc

 	module

 	
 pudl.etl

 	module

 	
 pudl.extract

 	module

 	
 pudl.extract.eia860

 	module

 	
 pudl.extract.eia860m

 	module

 	
 pudl.extract.eia861

 	module

 	
 pudl.extract.eia923

 	module

 	
 pudl.extract.epacems

 	module

 	
 pudl.extract.epaipm

 	module

 	
 pudl.extract.excel

 	module

 	
 pudl.extract.ferc1

 	module

 	
 pudl.extract.ferc714

 	module

 	
 pudl.glue

 	module

 	
 pudl.glue.eia_epacems

 	module

 	
 pudl.glue.ferc1_eia

 	module

 	
 pudl.helpers

 	module

 	
 pudl.load

 	module

 	
 pudl.load.csv

 	module

 	
 pudl.load.metadata

 	module

 	
 pudl.output

 	module

 	
 pudl.output.censusdp1tract

 	module

 	
 pudl.output.eia860

 	module

 	
 pudl.output.eia923

 	module

 	
 pudl.output.epacems

 	module

 	
 pudl.output.ferc1

 	module

 	
 pudl.output.ferc714

 	module

 	
 pudl.output.pudltabl

 	module

 	
 pudl.transform

 	module

 	
 pudl.transform.eia

 	module

 	
 pudl.transform.eia860

 	module

 	
 pudl.transform.eia861

 	module

 	
 pudl.transform.eia923

 	module

 	
 pudl.transform.epacems

 	module

 	
 pudl.transform.epaipm

 	module

 	
 pudl.transform.ferc1

 	module

 	
 pudl.transform.ferc714

 	module

 	
 pudl.validate

 	module

 	
 pudl.workspace

 	module

 	
 pudl.workspace.datastore

 	module

 	
 pudl.workspace.resource_cache

 	module

 	
 pudl.workspace.setup

 	module

 	
 pudl.workspace.setup_cli

 	module

 	pudl_out (pudl.output.ferc714.Respondents attribute)

 	PUDL_RIDS (in module pudl.extract.ferc1)

 	pudl_settings (pudl.output.ferc714.Respondents attribute)

 	pudl_tables (in module pudl.constants)

 	PudlResourceKey (class in pudl.workspace.resource_cache)

 	PudlTabl (class in pudl.output.pudltabl)

 	pull_resource_from_megadata() (in module pudl.load.metadata)

 	purchased_power() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	purchased_power_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	
 Python Enhancement Proposals

 	PEP 517, [1]

 	PEP 518, [1]

 	PEP 8, [1]

R

 	
 	references() (pudl.dfc.DataFrameCollection method)

 	relative_median_prediction() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	reliability() (in module pudl.transform.eia861)

 	reliability_eia861() (pudl.output.pudltabl.PudlTabl method)

 	remove_from_cache() (pudl.workspace.datastore.Datastore method)

 	remove_retired_generators() (in module pudl.analysis.allocate_net_gen)

 	RENAME_DICT (in module pudl.extract.epacems)

 	respondent_id() (in module pudl.transform.ferc714)

 	
 	respondent_id_ferc714() (pudl.output.pudltabl.PudlTabl method)

 	Respondents (class in pudl.output.ferc714)

 	rolling_iqr_of_diff() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	rolling_iqr_of_rolling_median_offset() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	rolling_median() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	rolling_median_offset() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	RST_TEMPLATE (in module pudl.convert.datapkg_to_rst)

 	rto_iso (in module pudl.constants)

S

 	
 	sales() (in module pudl.transform.eia861)

 	sales_eia861() (pudl.output.pudltabl.PudlTabl method)

 	score() (pudl.transform.ferc1.FERCPlantClassifier method)

 	sector_eia (in module pudl.constants)

 	self_union() (in module pudl.analysis.spatial)

 	service_territory() (in module pudl.transform.eia861)

 	service_territory_eia861() (pudl.output.ferc714.Respondents property)

 	(pudl.output.pudltabl.PudlTabl method)

 	set_defaults() (in module pudl.workspace.setup)

 	SETTINGS (pudl.extract.epaipm.EpaIpmDatastore attribute)

 	show_dupes() (in module pudl.extract.ferc1)

 	simplify_columns() (in module pudl.helpers)

 	simplify_strings() (in module pudl.helpers)

 	
 	simulate_nulls() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	slice_axis() (in module pudl.analysis.timeseries_cleaning)

 	spatial_coverage() (in module pudl.load.metadata)

 	split_tables() (in module pudl.glue.eia_epacems)

 	stack_generators() (in module pudl.analysis.allocate_net_gen)

 	STANDARD_UTC_OFFSETS (in module pudl.analysis.state_demand)

 	state (pudl.extract.epacems.EpaCemsPartition attribute)

 	state_tz_approx (in module pudl.constants)

 	STATES (in module pudl.analysis.state_demand)

 	store() (pudl.dfc.DataFrameCollection method)

 	summarize_demand() (pudl.output.ferc714.Respondents method)

 	summarize_flags() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	summarize_imputed() (pudl.analysis.timeseries_cleaning.Timeseries method)

T

 	
 	TABLE_ENCODING (in module pudl.extract.ferc714)

 	TABLE_FNAME (in module pudl.extract.ferc714)

 	table_map_ferc1_pudl (in module pudl.constants)

 	table_name (pudl.extract.epaipm.TableSettings attribute)

 	TableExistsError

 	TableSettings (class in pudl.extract.epaipm)

 	temporal_coverage() (in module pudl.load.metadata)

 	Timeseries (class in pudl.analysis.timeseries_cleaning)

 	to_dataframe() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	to_dict() (pudl.dfc.DataFrameCollection method)

 	TOKEN (pudl.workspace.datastore.ZenodoFetcher attribute)

 	transform() (in module pudl.transform.eia)

 	(in module pudl.transform.eia860)

 	(in module pudl.transform.eia861)

 	(in module pudl.transform.eia923)

 	(in module pudl.transform.epacems)

 	(in module pudl.transform.epaipm)

 	(in module pudl.transform.ferc1)

 	(in module pudl.transform.ferc714)

 	(pudl.transform.ferc1.FERCPlantClassifier method)

 	
 	TRANSIT_TYPE_DICT (in module pudl.constants)

 	transmission_joint() (in module pudl.transform.epaipm)

 	transmission_single() (in module pudl.transform.epaipm)

 	transport_modes_eia923 (in module pudl.constants)

 	TZ_CODES (in module pudl.transform.ferc714)

U

 	
 	unflag() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	unfold_tensor() (pudl.analysis.timeseries_cleaning.Timeseries method)

 	union() (pudl.dfc.DataFrameCollection method)

 	unpack_table() (in module pudl.transform.ferc1)

 	update() (pudl.dfc.DataFrameCollection method)

 	us_states (in module pudl.constants)

 	UTC_OFFSETS (in module pudl.analysis.state_demand)

 	utc_to_local() (in module pudl.analysis.state_demand)

 	
 	util_ids (pudl.output.ferc714.Respondents attribute)

 	UTILITIES (in module pudl.output.ferc714)

 	utilities() (in module pudl.transform.eia860)

 	utilities_eia860() (in module pudl.output.eia860)

 	utility_assn() (in module pudl.transform.eia861)

 	utility_assn_eia861() (pudl.output.pudltabl.PudlTabl method)

 	utility_data() (in module pudl.transform.eia861)

 	utility_data_eia861() (pudl.output.pudltabl.PudlTabl method)

 	utils_eia860() (pudl.output.pudltabl.PudlTabl method)

V

 	
 	validate_cache() (in module pudl.workspace.datastore)

 	validate_checksum() (pudl.workspace.datastore.DatapackageDescriptor method)

 	validate_params() (in module pudl.etl)

 	
 	validate_save_datapkg() (in module pudl.load.metadata)

 	vs_bounds() (in module pudl.validate)

 	vs_historical() (in module pudl.validate)

 	vs_self() (in module pudl.validate)

W

 	
 	weighted_quantile() (in module pudl.validate)

 	
 	working_partitions (in module pudl.constants)

X

 	
 	x (pudl.analysis.timeseries_cleaning.Timeseries attribute)

 	
 	xi (pudl.analysis.timeseries_cleaning.Timeseries attribute)

 	xlsx_maps_pkg (in module pudl.constants)

Y

 	
 	year (pudl.extract.epacems.EpaCemsPartition attribute)

 	
 	year_state_filter() (in module pudl.output.epacems)

Z

 	
 	ZenodoFetcher (class in pudl.workspace.datastore)

 	
 	zero_pad_zips() (in module pudl.helpers)

 _static/catalyst_logo-200x200.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 The Public Utility Data Liberation Project

