

The Public Utility Data Liberation Project

[image: Project Status: Active – The project has reached a stable, usable state and is being actively developed.]
 [https://www.repostatus.org/#active][image: Travis CI Build Status]
 [https://travis-ci.org/catalyst-cooperative/pudl][image: Read the Docs Build Status]
 [https://catalystcoop-pudl.readthedocs.io/en/latest/][image: Codecov Test Coverage]
 [https://codecov.io/gh/catalyst-cooperative/pudl][image: Codacy Grade]
 [https://app.codacy.com/app/zaneselvans/pudl][image: PyPI Version]
 [https://pypi.org/project/catalystcoop.pudl/][image: conda-forge Version]
 [https://anaconda.org/conda-forge/catalystcoop.pudl][image: Zenodo DOI]
 [https://zenodo.org/badge/latestdoi/80646423]PUDL [https://catalyst.coop/pudl/] makes US energy data easier to access
and work with. Hundreds of gigabytes of public information is published
by government agencies, but in many different formats that make it hard to
work with and combine. PUDL takes these spreadsheets, CSV files, and databases
and turns them into easy use
tabular data packages [https://https://frictionlessdata.io/docs/tabular-data-package/]
that can populate a database, or be used directly with Python, R, Microsoft
Access, and many other tools.

The project currently integrates data from:

	EIA Form 860 [https://www.eia.gov/electricity/data/eia860/]

	EIA Form 923 [https://www.eia.gov/electricity/data/eia923/]

	The EPA Continuous Emissions Monitoring System (CEMS) [https://ampd.epa.gov/ampd/]

	The EPA Integrated Planning Model (IPM) [https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6]

	FERC Form 1 [https://www.ferc.gov/docs-filing/forms/form-1/data.asp]

The project is especially meant to serve researchers, activists, journalists,
and policy makers that might not otherwise be able to afford access to this
data from existing commercial data providers.

Getting Started

Just want to play with some example data? Install
Anaconda [https://www.anaconda.com/distribution/]
(or miniconda [https://docs.conda.io/en/latest/miniconda.html]) with at
least Python 3.7. Then work through the following commands.

First, we create and activate conda environment named pudl. All the
required packages are available from the community maintained conda-forge
channel, and that channel is given priority, to simplify satisfying
dependencies. Note that PUDL currently requires Python 3.7, the most recently
available major version of Python. In addition to the catalystcoop.pudl
package, we’ll also install JupyterLab so we can work with the PUDL data
interactively.

$ conda create -y -n pudl -c conda-forge --strict-channel-priority python=3.7 catalystcoop.pudl jupyter jupyterlab pip
$ conda activate pudl

Now we create a data management workspace called pudl-work and download
some data. The workspace is a well defined directory structure that PUDL uses
to organize the data it downloads, processes, and outputs. You can run
pudl_setup --help and pudl_data --help for more information.

$ mkdir pudl-work
$ pudl_setup pudl-work
$ pudl_data --sources eia923 eia860 ferc1 epacems epaipm --years 2017 --states id

Now that we have the original data as published by the federal agencies, we can
run the ETL (Extract, Transform, Load) pipeline, that turns the raw data into
an well organized, standardized bundle of data packages. This involves a couple
of steps: cloning the FERC Form 1 into an SQLite database, extracting data from
that database and all the other sources and cleaning it up, outputting that
data into well organized CSV/JSON based data packages, and finally loading
those data packages into a local database.

PUDL provides a script to clone the FERC Form 1 database, controlled by a YAML
file which you can find in the settings folder. Run it like this:

$ ferc1_to_sqlite pudl-work/settings/ferc1_to_sqlite_example.yml

The main ETL process is controlled by the YAML file etl_example.yml which
defines what data will be processed. It is well commented – if you want to
understand what the options are, open it in a text editor, and create your own
version.

The data packages will be generated in a sub-directory in
pudl-work/datapackage named pudl-example (you can change this by
changing the value of pkg_bundle_name in the ETL settings file you’re
using. Run the ETL pipeline with this command:

$ pudl_etl pudl-work/settings/etl_example.yml

The generated data packages are made up of CSV and JSON files. They’re both
easy to parse programmatically, and readable by humans. They are also well
suited to archiving, citation, and bulk distribution. However, to make the
data easier to query and work with interactively, we typically load it into a
local SQLite database using this script, which combines several data packages
from the same bundle into a single unified structure:

$ datapkg_to_sqlite --pkg_bundle_name pudl-example

Now that we have a live database, we can easily work with it using a variety
of tools, including Python, pandas dataframes, and
Jupyter notebooks [https://jupyter.org]. This command will start up a local
Jupyter notebook server, and open a notebook of PUDL usage examples:

$ jupyter lab pudl-work/notebook/pudl_intro.ipynb

For more details, see the full PUDL documentation [https://catalystcoop-pudl.readthedocs.io/] on Read The Docs.

Contributing to PUDL

Find PUDL useful? Want to help make it better? There are lots of ways to
contribute!

	Please be sure to read our Code of Conduct [https://catalystcoop-pudl.readthedocs.io/en/latest/CODE_OF_CONDUCT.html]

	You can file a bug report, make a feature request, or ask questions in the
Github issue tracker [https://github.com/catalyst-cooperative/pudl/issues].

	Feel free to fork the project and make a pull request with new code,
better documentation, or example notebooks.

	Make a recurring financial contribution [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=PZBZDFNKBJW5E&source=url] to support
our work liberating public energy data.

	Hire us to do some custom analysis, and let us add the code the project.

	For more information check out our Contribution Guidelines [https://catalystcoop-pudl.readthedocs.io/en/latest/CONTRIBUTING.html]

Licensing

The PUDL software is released under the
MIT License [https://opensource.org/licenses/MIT].
The PUDL documentation [https://catalystcoop-pudl.readthedocs.io]
and the data packages we distribute are released under the
CC-BY-4.0 [https://creativecommons.org/licenses/by/4.0/] license.

Contact Us

For help with initial setup, usage questions, bug reports, suggestions to make
PUDL better and anything else that could conceivably be of use or interest to
the broader community of users, use the
PUDL issue tracker [https://github.com/catalyst-cooperative/pudl/issues].
on Github. For private communication about the project, you can email the
team: pudl@catalyst.coop

About Catalyst Cooperative

Catalyst Cooperative [https://catalyst.coop] is a small group of data
scientists and policy wonks. We’re organized as a worker-owned cooperative
consultancy. Our goal is a more just, livable, and sustainable world. We
integrate public data and perform custom analyses to inform public policy
making. Our focus is primarily on mitigating climate change and improving
electric utility regulation in the United States.

Do you work on renewable energy or climate policy? Have you found yourself
scraping data from government PDFs, spreadsheets, websites, and databases,
without getting something reusable? We build tools to pull this kind of
information together reliably and automatically so you can focus on your real
work instead — whether that’s political advocacy, energy journalism, academic
research, or public policy making.

	Web: https://catalyst.coop

	Newsletter: https://catalyst.coop/updates/

	Email: hello@catalyst.coop

	Twitter: @CatalystCoop [https://twitter.com/CatalystCoop]

Installation and Setup

System Requirements

Note

The PUDL data processing pipeline does a lot of work in-memory with
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] objects. The full EPA CEMS Hourly dataset is
nearly 100 GB uncompressed. To handle all of the data that is available via
PUDL we recommend that your system have at least:

	8 GB of memory

	100 GB of free disk space

Python 3.7+ (and conda)

PUDL requires Python 3.7 or later. In addition, while not strictly necessary,
we highly recommend using the most recent version of the Anaconda Python
distribution [https://www.anaconda.com/distribution/], or its smaller cousin
miniconda [https://conda.io/miniconda.html] (miniconda is nice if you
are fond of the command line and want a lightweight install).

Both Anaconda and miniconda provide conda, a command-line tool that helps
you manage your Python software environment, packages, and their dependencies.
PUDL provides an environment.yml file defining a software environment that
should work well for most users in conjunction with conda.

We recommend using conda because while PUDL is written entirely in Python,
it makes heavy use of Python’s open data science stack including packages like
numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy], scipy [https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy], pandas [https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas], and sklearn which depend on
extensions written in C and C++. These extensions can be difficult to build
locally when installed with pip, but conda provides pre-compiled
platform specific binaries.

Installing the Package

PUDL and all of its dependencies are available via conda on the community
manged conda-forge [https://conda-forge.org/] channel, and we recommend
installing PUDL within its own conda environment like this:

$ conda create -y -n pudl -c conda-forge --strict-channel-priority python=3.7 catalystcoop.pudl pip

Then you activate that conda environment to use it:

$ conda activate pudl

Once you’ve activated that environment, you may want to install additional
software within it, for example if you want to use Jupyter notebooks to work
with PUDL interactively:

$ conda install jupyter jupyterlab

You may also want to update your global conda settings:

$ conda config --add channels conda-forge
$ conda config --set channel_priority strict

PUDL is also available via the official
Python Package Index [https://pypi.org] (PyPI) and be installed with
pip like this:

$ pip install catalystcoop.pudl

Note

pip will only install the dependencies required for PUDL to work as a
development library and command line tool. If you want to check out the
source code from Github for development purposes, see the
Development Setup documentation.

In addition to making the pudl package available for import in Python,
installing catalystcoop.pudl provides the following command line tools:

	pudl_setup

	pudl_data

	ferc1_to_sqlite

	pudl_etl

	datapkg_to_sqlite

	epacems_to_parquet

For information on how to use these scripts, each can be run with the
--help option. ferc1_to_sqlite and pudl_etl are configured with
YAML files. Examples are provided with the catalystcoop.pudl package, and
deployed by running pudl_setup as described below. Additional inormation
about the settings files can be found in our documentation on
Settings Files

Creating a Workspace

PUDL needs to know where to store its big piles of inputs and outputs. It
also provides some example configuration files and
Jupyter [https://jupyter.org] notebooks. The pudl_setup script lets
PUDL know where all this stuff should go. We call this a “PUDL workspace”:

$ pudl_setup <PUDL_DIR>

Here <PUDL_DIR> is the path to the directory where you want PUDL to do its
business – this is where the datastore will be located, and any outputs that
are generated will end up. The script will also put a configuration file in
your home directory, called .pudl.yml that records the location of this
workspace and uses it by default in the future. If you run pudl_setup with
no arguments, it assumes you want to use the current directory.

The workspace is laid out like this:

	Directory / File

	Contents

	data/

	Raw data, automatically organized by source, year, etc.

	datapackage/

	Tabular data packages [https://frictionlessdata.io/specs/tabular-data-package/] generated by PUDL.

	environment.yml

	A file describing the PUDL
conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html].

	notebook/

	Interactive Jupyter [https://jupyter.org]
notebooks that use PUDL.

	parquet/

	Apache Parquet [https://parquet.apache.org/] files
generated by PUDL.

	settings/

	Example configuration files for controlling PUDL scripts.

	sqlite/

	sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] databases generated by PUDL.

The PUDL conda Environment

In addition to creating a conda environment using the command line
arguments referred to above you can specify an environment in a file, usually
named environment.yml. We deploy a basic version of this file into a
PUDL workspace when it’s created, as listed above.

Create the Environment

Because you won’t have the environment.yml file until after you’ve
installed PUDL, you will probably create your PUDL environment on the command
line as described above. To do the same thing using an environment file, you’d
run:

$ conda env create --name pudl --file environment.yml

You may want to periodically update PUDL and the packages it depends on
by running the following commands in the directory with environment.yml
in it:

$ conda update conda
$ conda env update pudl

If you get an error No such file or directory: environment.yml, it
probably means you aren’t in the same directory as the environment.yml
file.

Activate the Environment

conda allows you to set up different software environments for different
projects. However, this means you need to tell conda which environment you
want to be using at any given time. To select a particular conda
environment (like the one named pudl that you just created) use conda
activate followed by the name of the environment you want to use:

$ conda activate pudl

After running this command you should see an indicator (like (pudl)) in
your command prompt, signaling that the environment is in use.

See also

Managing Environments [https://conda.io/docs/user-guide/tasks/manage-environments.html], in the conda documentation.

Basic Usage

PUDL implements a data processing pipeline. This pipeline takes raw data
provided by public agencies in a variety of formats and integrates it together
into a single (more) coherent whole. In the data-science world this is often
called “ETL” which stands for “Extract, Transform, Load.”

	Extract the data from its original source formats and into
pandas.DataFrame objects for easy manipulation.

	Transform the extracted data into tidy tabular data structures, applying
a variety of cleaning routines, and creating connections both within and
between the various datasets.

	Load the data into a standardized output, in our case CSV/JSON based
Tabular Data Packages [https://frictionlessdata.io/specs/tabular-data-package/], and potentially an SQLite database.

The PUDL python package is organized into these steps as well, with
pudl.extract and pudl.transform subpackages that contain dataset
specific modules like pudl.extract.ferc1 and
pudl.transform.eia923. The Load step is handled by the pudl.load,
subpackage, which contains modules that deal separately with generating CSVs
containing the data, and JSON files containing the metadata.

We have also begun building a data validation step with the
pudl.validate module, to catch any inadvertent data corruption and
as-of-yet unfixed reporting errors.

The ETL pipeline is coordinated by the top-level pudl.etl module, which
has a command line interface accessible via the pudl_etl script that is
installed by the PUDL Python package. The script reads a YAML file as input.
An example is provided in the settings folder that is created when you run
pudl_setup (see: Creating a Workspace).

To run the ETL pipeline for the example, from within your PUDL workspace you
would need to run four commands, which
download the original data, then
clone the FERC Form 1 database, convert
that and other raw data into datapackages, and loads those datapackages into an
SQLite database, respectively:

$ pudl_data --sources eia923 eia860 ferc1 epacems epaipm --years 2017 --states id
$ ferc1_to_sqlite settings/ferc1_to_sqlite_example.yml
$ pudl_etl settings/etl_example.yml
$ datapkg_to_sqlite --pkg_bundle_name pudl-example

These commands should result in a bunch of Python logging [https://docs.python.org/3/library/logging.html#module-logging] output,
describing what the script is doing, and some outputs in the sqlite and
datapackage directories within your workspace. In particular, you should
see new files at sqlite/ferc1.sqlite and sqlite/pudl.sqlite, and a new
directory at datapackage/pudl-example containing several datapackage
directories, one for each of the ferc1, eia (Forms 860 and 923),
epacems-eia, and epaipm datasets.

Under the hood, these scripts are extracting data from the datastore, including
spreadsheets, CSV files, and binary DBF files, generating a SQLite database
containing the raw FERC Form 1 data, and combining it all into
pudl-example, which is a bundle of tabular datapackages [https://frictionlessdata.io/specs/tabular-data-package/]. that can be used
together to create a database (or other things).

Each of the data packages which are part of the bundle have metadata describing
their structure, stored in a file called datapackage.json The data itself
is stored in a bunch of CSV files (some of which may be gzip [https://docs.python.org/3/library/gzip.html#module-gzip] compressed)
in the data/ directories of each data package.

You can use the pudl_etl script to process more or different data by
copying and editing the settings/etl_example.yml file, and running the
script again with your new settings file as an argument. Comments in the
example settings file explain the available parameters.

If you want to re-run pudl_etl and replace an existing bundle of data
packages, you can use --clobber. If you want to generate a new data
packages with a new or modified settings file, you can change the name for
--pkg_bundle_name which will generate a new datapackage/{your new name}
directory and will store your data packages there.

Creating a Datastore

The input data that PUDL processes comes from a variety of US government
agencies. These agencies typically make the data available on their websites
or via FTP without really planning for programmatic access.

The pudl_data script helps you obtain and organize this data locally, for
use by the rest of the PUDL system. It uses the routines defined in the
pudl.workspace.datastore module. For details on what data is available,
for what time periods, and how much of it there is, see the
Data Catalog.

For example, if you wanted to download the 2018 EPA CEMS Hourly data for
Colorado:

$ pudl_data --sources epacems --states CO --years 2018

If you do not specify years, the script will retrieve all available data. So
to get everything for EIA Form 860 and EIA Form 923 you would run:

$ pudl_data --sources eia860 eia923

The script will download from all sources in parallel, so if you have a fast
internet connection and need a lot of data, doing it all in one go makes sense.
To pull down all the available data for all the sources (10+ GB) you would
run:

$ pudl_data --sources eia860 eia923 epacems ferc1 epaipm

For more detailed usage information, see:

$ pudl_data --help

The downloaded data will be used by the script to populate a datastore under
the data directory in your workspace, organized by data source, form, and
date:

data/eia/form860/
data/eia/form923/
data/epa/cems/
data/epa/ipm/
data/ferc/form1/

If the download fails (e.g. the FTP server times out), this command can be run
repeatedly until all the files are downloaded. It will not try and re-download
data which is already present locally, unless you use the --clobber option.
Depending on which data sources, how many years or states you have requested
data for, and the speed of your internet connection, this may take minutes to
hours to complete, and can consume 20+ GB of disk space even when the data is
compressed.

Cloning the FERC Form 1 DB

FERC Form 1 is… special.

The Form 1 data is published in a particularly inaccessible
format (proprietary binary FoxPro database [https://en.wikipedia.org/wiki/FoxPro] files),
and the data itself is unclean and poorly organized. As a result, very few
people are currently able to use it at all, and we have not yet integrated the
vast majority of the available data into PUDL. This also means it’s useful to
just provide programmatic access to the bulk raw data, independent of the
cleaner subset of the data included within PUDL.

To provide that access, we’ve broken the pudl.extract.ferc1` process
down into two distinct steps:

	Clone the entire FERC Form 1 database from FoxPro into a local
file-based sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] database. This includes 116 distinct tables,
with thousands of fields, covering the time period from 1994 to the
present.

	Pull a subset of the data out of that database for further processing and
integration into the PUDL data packages and sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] database.

If you want direct access to the original FERC Form 1 database, you can just do
the database cloning, and connect directly to the resulting database. This has
become especially useful since Microsoft recently discontinued the database
driver that until late 2018 had allowed users to load the FoxPro database files
into Microsoft Access.

In any case, cloning the original FERC database is the first step in the PUDL
ETL process. This can be done with the ferc1_to_sqlite script (which is an
entrypoint into the pudl.convert.ferc1_to_sqlite module) which is
installed as part of the PUDL Python package. It takes its instructions from a
YAML file, an example of which is included in the settings directory in
your PUDL workspace. Once you’ve created a datastore you can
try this example:

$ ferc1_to_sqlite settings/ferc1_to_sqlite_example.yml

This should create an SQLite database that you can find in your workspace at
sqlite/ferc1.sqlite By default, the script pulls in all available years of
data, and all but 3 of the 100+ database tables. The excluded tables
(f1_footnote_tbl, f1_footnote_data and f1_note_fin_stmnt) contain
unreadable binary data, and increase the overall size of the database by a
factor of ~10 (to ~8 GB rather than 800 MB). If for some reason you need access
to those tables, you can create your own settings file and un-comment those
tables in the list of tables that it directs the script to load.

Note

This script pulls all of the FERC Form 1 data into a single database,
but FERC distributes a separate database for each year. Virtually all
the database tables contain a report_year column that indicates which
year they came from, preventing collisions between records in the merged
multi-year database. One notable exception is the f1_respondent_id
table, which maps respondent_id to the names of the respondents. For
that table, we have allowed the most recently reported record to take
precedence, overwriting previous mappings if they exist.

Sadly, the FERC Form 1 database is not particularly… relational. The only
foreign key relationships that exist map respondent_id fields in the
individual data tables back to f1_respondent_id. In theory, most of the
data tables use report_year, respondent_id, row_number,
spplmnt_num and report_prd as a composite primary key (According to
this FERC Form 1 database schema from 2015.

In practice, there are several thousand records (out of ~12 million), including
some in almost every table, that violate the uniqueness constraint on those
primary keys. Since there aren’t many meaningful foreign key relationships
anyway, rather than dropping the records with non-unique natural composite
keys, we chose to preserve all of the records and use surrogate
auto-incrementing primary keys in the cloned SQLite database.

Published Data Packages

We’ve chosen tabular data packages [https://frictionlessdata.io/specs/tabular-data-package/] as the main distribution format for PUDL because they:

	are based on a free and open standard that should work on any platform,

	are relatively easy for both humans and computers to understand,

	are easy to archive and distribute,

	provide rich metadata describing their contents,

	do not force users into any particular platform.

We our hope this will allow the data to reach the widest possible audience.

See also

The Frictionless Data [https://frictionlessdata.io/] software and
specifications, a project of
the Open Knowledge Foundation [https://okfn.org]

Downloading Data Packages

Note

As of catalystcoop.pudl v0.2.0 we have not yet made our first data
release. For the moment you still need to generate your own data packages.
However, as soon as v0.2.0 is released, we will start working on a data
release, and hope to be able to include the DOI and a link to the Zenodo
archive here as of v0.2.1.

Our intent is to automate the creation of a standard bundle of data packages
containing all of the currently integrated data. Users who aren’t working with
Python, or who don’t want to set up and run the data processing pipeline
themselves will be able to just download and use the data packages directly.
Each data release will be issued a DOI, and archived at Zenodo, and may be
made available in other ways as well.

Zenodo

Every PUDL software release is
automatically archived and issued a digital object id (DOI) [https://guides.github.com/activities/citable-code/] by
Zenodo [https://zenodo.org/] through an integration with
Github [https://github.com]. The overarching DOI for the entire PUDL
project is 10.5281/zenodo.3404014 [https://doi.org/10.5281/zenodo.3404014],
and each release will get its own (versioned) DOI.

On a quarterly basis, we will also upload a standard set of data packages to
Zenodo alongside the PUDL release that was used to generate them, and the
packages will also be issued citeable DOIs so they can be easily referenced in
research and other publications. Our goal is to make replication of any
analyses that depend on the released code and published data as easy to
replicate as possible.

Other Sites?

Are there other data archiving and access platforms that you’d like to see the
pudl data packages published to? If so feel free to
create an issue on Github [https://github.com/catalyst-cooperative/pudl/issues]
to let us know about it, and explain what it would add to the project. Other
sites we’ve thought about include:

	Open EI [https://openei.org/wiki/Main_Page]

	data.world [https://data.world/]

Using Data Packages

Once you’ve downloaded or generated your own tabular data packages you can use
them to do analysis on almost any platform. For now, we are primarily using
the data packages to populate a local SQLite database.

Open an issue on Github [https://github.com/catalyst-cooperative/pudl/issues] and let us know if you have another example we can add.

SQLite

If you want to access the data via SQL, we have provided a script that loads
a bundle of data packages into a local sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] database, e.g.:

$ datapkg_to_sqlite --pkg_bundle_name pudl-example

Python, Pandas, and Jupyter

You can read the datapackages into pandas.DataFrame for interactive
in-memory use within
JupyterLab [https://jupyterlab.readthedocs.io/en/stable/],
or for programmatic use in your own Python modules. Several example Jupyter
notebooks are deployed into your PUDL workspace notebook directory by the
pudl_setup script.

Todo

Update pudl_intro.ipynb to provide an example of reading the example
datapackages directly.

$ jupyter lab notebook/pudl_intro.ipynb

If you’re using Python and need to work with larger-than-memory data,
especially the EPA CEMS Hourly dataset, we recommend checking out
the Dask project [https://dask.org], which extends the interface to
pandas.DataFrame objects enabling serialized, parallel and distributed
processing tasks. It can also speed up processing for in-memory tasks,
especially if you have a powerful system with multiple cores, a solid state
disk, and plenty of memory.

The R programming language

Todo

Get someone who uses R to give us an example here… maybe we can get
someone from OKFN to do it?

Microsoft Access / Excel

If you’d rather do spreadsheet based analysis, here’s how you can pull the
datapackages into Microsoft Access and Excel.

Todo

Document process for pulling data packages or datapackage bundles into
Microsoft Access / Excel

Other Platforms

Want to submit another example? Check out the documentation on
contributing. Wish there was an example here for your favorite
data analysis tool, but don’t know what it would look like? Feel free to
open a Github issue [https://github.com/catalyst-cooperative/pudl/issues]
requesting it.

Cloud Based Access

As the volume of data integrated into PUDL continues to increase, asking users
to either run the processing pipeline themselves, or to download hundreds of
gigabytes of data to do their own analyses will be become more challenging.

Instead we are working on automatically deploying each data release in cloud
computing environments that allow many users to remotely access the same data,
as well as computational resources required to work with that data. We hope
that this will minimize the technical and administrative overhead associated
with using PUDL.

Pangeo

Our focus right now is on the Pangeo [https://pangeo.io] platform, which
solves a similar problem for within the Earth science research community.
Pangeo uses a JupyterHub [https://jupyterhub.readthedocs.io/en/stable/]
deployment, and includes commonly used scientific software packages and a
shared domain specific data repository, which users may access remotely via
JupyterLab.

BigQuery

We are also looking at making the published data packages available for live
querying by inserting them into Google’s
BigQuery data warehouse [https://cloud.google.com/bigquery/].

Other Options

Are there other cloud platforms we should consider? Feel free to
create an issue on Github [https://github.com/catalyst-cooperative/pudl/issues] and let us know!

Data Catalog

Contents

	Data Catalog

	Available Data

	EIA Form 860

	EIA Form 923

	EPA CEMS Hourly

	EPA IPM

	FERC Form 1

	Work in Progress

	EIA Form 861

	ISO/RTO LMP

	Future Data

	EIA Water Usage

	FERC Form 714

	FERC EQR

	MSHA Mines and Production

	PHMSA Natural Gas Pipelines

	Transmission and Distribution Systems

Available Data

Todo

Write up more extensive descriptions of each dataset, what’s in them, what
the ETL process looks like for each of them, etc. Maybe use this page as an
index, with each dataset having its own catalog page. We’ve got a lot of
this information written up elsewhere and should be able to cut-and-paste.

EIA Form 860

	Source URL

	https://www.eia.gov/electricity/data/eia860/

	Source Format

	Microsoft Excel (.xls/.xlsx)

	Source Years

	2001-2017

	Size (Download)

	127 MB

	Size (Uncompressed)

	247 MB

	PUDL Code

	eia860

	Years Liberated

	2011-2017

	Records Liberated

	~500,000

	Issues

	open issues labeled epacems [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aeia860]

All of the data reported to the EIA on Form 860 is being pulled into the
PUDL database for the years 2011-2017.

We are working on integrating the 2009-2010 EIA 860 data, which has a similar
format. This will give us the same coverage in both EIA 860 and EIA 923, which
is good since the two datasets are tightly integrated.

Currently we are extending the 2011 EIA 860 data back to 2009 as needed to
integrate it with EIA 923.

EIA Form 923

	Source URL

	https://www.eia.gov/electricity/data/eia923/

	Source Format

	Microsoft Excel (.xls/.xlsx)

	Source Years

	2001-2017

	Size (Download)

	196 MB

	Size (Uncompressed)

	299 MB

	PUDL Code

	eia923

	Years Liberated

	2009-2017

	Records Liberated

	~2 million

	Issues

	open issues labeled epacems [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aeia923]

Nearly all of EIA Form 923 is being pulled into the PUDL database, for years
2009-2017. Earlier data is available from EIA, but the reporting format for
earlier years is substantially different from the present day, and will require
more work to integrate. Monthly year to date releases are not yet being
integrated.

EPA CEMS Hourly

	Source URL

	ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly

	Source Format

	Comma Separated Value (.csv)

	Source Years

	1995-2018

	Size (Download)

	7.6 GB

	Size (Uncompressed)

	~100 GB

	PUDL Code

	epacems

	Years Liberated

	1995-2018

	Records Liberated

	~1 billion

	Issues

	open issues labeled epacems [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aepacems]

All of the EPA’s hourly Continuous Emissions Monitoring System (CEMS) data is
available. It is by far the largest dataset in PUDL at the moment, with hourly
records for thousands of plants covering decades. Note that the ETL process
can easily take all day for the full dataset. PUDL also provides a script that
converts the raw EPA CEMS data into Apache Parquet files, which can be read
and queried very efficiently from disk. For usage details run:

$ epacems_to_parquet --help

Thanks to Karl Dunkle Werner [https://github.com/karldw] for contributing
much of the EPA CEMS Hourly ETL code.

EPA IPM

	Source URL

	https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6

	Source Format

	Microsoft Excel (.xlsx)

	Source Years

	N/A

	Size (Download)

	14 MB

	Size (Uncompressed)

	14 MB

	PUDL Code

	epaipm

	Years Liberated

	N/A

	Records Liberated

	~650,000

	Issues

	open issues labeled epacems [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aepaipm]

Todo

Get Greg Schivley to write up a description of the EPA IPM dataset.

FERC Form 1

	Source URL

	https://www.ferc.gov/docs-filing/forms/form-1/data.asp

	Source Format

	FoxPro Database (.DBC/.DBF)

	Source Years

	1994-2018

	Size (Download)

	1.4 GB

	Size (Uncompressed)

	2.5 GB

	PUDL Code

	ferc1

	Years Liberated

	1994-2018 (raw), 2004-2017 (parboiled)

	Records Liberated

	~12 million (raw), ~270,000 (parboiled)

	Issues

	open issues labeled [https://github.com/catalyst-cooperative/pudl/issues?q=is%3Aissue+is%3Aopen+label%3Aferc1]

We have integrated a subset of the FERC Form 1 data, mostly pertaining to power
plants, their capital & operating expenses, and fuel consumption, for
2004-2017. More work will be required to integrate the rest of the years and
data. However we make all of the FERC Form 1 data available (7.2 GB of data
in 116 tables, going back to 1994) in its raw form via an SQLite database. See
Cloning FERC Form 1 for details.

We continue to improve the integration between the FERC Form 1 plants and the
EIA plants and generators, many of which represent the same utility assets.
Over time if there’s demand we may pull in and clean up additional FERC Form 1
tables.

When we integrate the 2018 FERC Form 1 data, we will also attempt to extend
coverage for already integrated tables as far back as 1994.

Work in Progress

Thanks to a grant from the Alfred P. Sloan Foundation Energy & Environment
Program [https://sloan.org/programs/research/energy-and-environment], we
have support to integrate the following new datasets.

EIA Form 861

	Source URL

	https://www.eia.gov/electricity/data/eia861/

	Source Format

	Microsoft Excel (.xls/.xlsx)

	Source Years

	2001-2017

	Size (Download)

	–

	Size (Uncompressed)

	–

	PUDL Code

	eia861

	Years Liberated

	–

	Records Liberated

	–

	Issues

	open issues labeled epacems [https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aeia861]

This form includes information about utility demand side management programs,
distribution systems, total sales by customer class, net generation, ultimate
disposition of power, and other information. This is a smaller dataset (~100s
of MB) distributed as Microsoft Excel spreadsheets.

ISO/RTO LMP

Locational marginal electricity pricing information from the various grid
operators (e.g. MISO, CAISO, NEISO, PJM, ERCOT…). At high time resolution,
with many different delivery nodes, this will be a very large dataset (hundreds
of GB). The format for the data is different for each of the ISOs. Physical
location of the delivery nodes is not always publicly available.

Future Data

There’s a huge variety and quantity of data about the US electric utility
system available to the public. The data listed above is just the beginning!
Other data we’ve heard demand for are listed below. If you’re interested in
using one of them, and would like to add it to PUDL, check out our
contribution guidelines. If there are other datasets you think
we should be looking at integration, don’t hesitate to open an issue on Github [https://github.com/catalyst-cooperative/pudl/issues] requesting the data and
explaining why it would be useful.

EIA Water Usage

EIA Water [https://www.eia.gov/electricity/data/water/] records water use by
thermal generating stations in the US.

FERC Form 714

FERC Form 714 [https://www.ferc.gov/docs-filing/forms/form-714/data.asp]
includes hourly loads, reported by load balancing authorities annually. This is
a modestly sized dataset, in the 100s of MB, distributed as Microsoft Excel
spreadsheets.

FERC EQR

The FERC EQR [https://www.ferc.gov/docs-filing/eqr/q2-2013/data/database.asp]
Also known as the Electricity Quarterly Report or Form 920, this dataset
includes the details of many transactions between different utilities, and
between utilities and merchant generators. It covers ancillary services as well
as energy and capacity, time and location of delivery, prices, contract length,
etc. It’s one of the few public sources of information about renewable energy
power purchase agreements (PPAs). This is a large (~100s of GB) dataset,
composed of a very large number of relatively clean CSV files, but it requires
fuzzy processing to get at some of the interesting and only indirectly
reported attributes.

MSHA Mines and Production

The MSHA Mines & Production [https://arlweb.msha.gov/OpenGovernmentData/OGIMSHA.asp] dataset describes
coal production by mine and operating company, along with statistics about
labor productivity and safety. This is a smaller dataset (100s of MB) available
as relatively clean and well structured CSV files.

PHMSA Natural Gas Pipelines

The PHMSA Natural Gas Pipelines [https://cms.phmsa.dot.gov/data-and-statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-liquids]
dataset, published by the Pipeline and Hazardous Materials Safety
Administration (which is part of the US Dept. of Transportation) collects data
about the natural gas transmission and distribution system, including their
age, length, diameter, materials, and carrying capacity.

Transmission and Distribution Systems

In order to run electricity system operations models and cost optimizations,
you need some kind of model of the interconnections between generation and
loads. There doesn’t appear to be a generally accepted, publicly available set
of these network descriptions (yet!).

Settings Files

Several of the scripts provided as part of PUDL require more arguments than can
be easily managed on the command line, and it’s useful to preserve a record of
how the data processing pipeline was run, so they read their settings from YAML
files, examples of which are included in the distribution.

ferc1_to_sqlite

	Parameter

	Description

	ferc1_to_sqlite_refyear

	A single 4-digit year to use as the reference for
inferring FERC Form 1 database’s structure.

	ferc1_to_sqlite_years

	A list of years to be included in the cloned FERC
Form 1 database. These years must be present in the
datastore, and available from FERC (1994 onward).

	ferc1_to_sqlite_tables

	A list of strings indicating what tables to load.
The list of acceptable tables can be found in the
the example settings file, and corresponds to the
values found in the ferc1_dbf2tbl dictionary
in pudl.constants.

pudl_etl

The pudl_etl script requires a YAML settings file. In the repository this
example file is lives in src/pudl/package_data/settings. This example file
(etl_example.yml) is deployed onto a user’s system in the
pudl_out/settings directory when the pudl_setup script is run. Once
this file is in the settings directory, users can modify or copy it and have
multiple versions to use with pudl_etl for different scenarios.

This settings file is meant to be edited to enable users to set the scope of
data that they would like to use in PUDL. Most datasets can be stand-alone data
packages. If you only want to use FERC Form 1, you can remove the other data
package descriptors, or alter their parameters such that no data would be
loaded. The settings are verified early on in the ETL process so if you got
something wrong, you should get an assertion error quickly.

While PUDL largely keeps datasets disentangled for ETL purposes (enabling
stand-alone ETL) the EPA CEMS and EIA datasets are exceptions. EPA CEMS cannot
be loaded without EIA – it relies on IDs that come from EIA 860. Similarly,
EIA Forms 860 and 923 are very tightly interdependent. You can load only EIA
860, but the settings verification will automatically add in a few 923 tables
that are needed for 860.

The settings verification also removes empty datasets and data packages – the
data packages described in the settings file that do not include any years or
states, which would generate an empty data package.

Structure of the ETL Settings File

The general structure of the settings file and the names of the keys of the
dictionaries should not be changed, but the values of those dictionaries
should be edited. There are two high-level elements of the settings file:
pkg_bundle_name and pkg_bundle_settings. The pkg_bundle_name will
be the directory that the bundle of packages described in the settings file.
The elements and structure of the pkg_bundle_settings is described below:

pkg_bundle_settings
 ├── name : name of data package
 │ title : short title of data package
 │ description : longer description of data package
 │ datasets
 │ ├── dataset name
 │ │ ├── dataset etl parameter like states : list of states
 │ │ └── dataset etl parameter like years : list of years
 │ └── dataset name
 │ ├── dataset etl parameter like states : list of states
 │ └── dataset etl parameter like years : list of years
 └── another data package...

The dataset names must not be changed. The dataset names enabled include: eia,
ferc1, epacems, glue and epaipm. Any other dataset name will raise assertion
errors.

Dataset ETL parameters (like years, states, tables), will only register if they
are a part of its dataset. If you put some FERC etl parameter in an EIA dataset
dictionary, FERC will not be loaded as a part of that dataset.

Contributing to PUDL

PUDL is an open source project that has thus far been supported by a
combination of volunteer efforts and grant funding.
The work is currently being coordinated by the members of Catalyst Cooperative [https://catalyst.coop]. PUDL is meant to serve a wide variety of public
interests including academic research, climate advocacy, data journalism, and
public policymaking.

For more on the motivation and history of the project, have a look at
this background info. Please also review our code of
conduct.

How to Get Involved

We welcome just about any kind of contribution to the project. Alone we’ll
never be able to understand every use case or integrate all the available data.
The project will serve the community better if other folks get involved.

There are lots of ways to contribute – it’s not all about code!

	Ask questions on Github using the issue tracker [https://github.com/catalyst-cooperative/pudl/issues].

	Suggest new data and features [https://github.com/catalyst-cooperative/pudl/issues/new?template=feature_request.md] that would be useful.

	File bug reports [https://github.com/catalyst-cooperative/pudl/issues/new?template=bug_report.md] on Github.

	Help expand and improve the documentation, or write usage examples.

	Give us feedback on overall usability – what’s confusing?

	Tell us a story about how you’re using of the data.

	Point us at interesting publications about
energy data, or energy system modeling.

	Cite PUDL if you use the software or data in your own work.

	Share your Jupyter notebooks and other analyses that use PUDL.

	Hire Catalyst to do analysis for your organization based on the PUDL data.

	Contribute code via pull requests [https://help.github.com/en/articles/about-pull-requests]. See the developer setup for more details.

Code of Conduct

We want to make the PUDL project welcoming to contributors with different
levels of experience and diverse personal backgrounds. If you’re interested in
contributing please read our Code of Conduct, which is
based on the Contributor Covenant [https://www.contributor-covenant.org/].

We Use Github

Github is the primary platform we use to manage the project, integrate
contributions, write and publish documentation, answer user questions, automate
testing & deployment, etc. Signing up for a Github account [https://github.com/join] (even if you don’t intend to write code) will
allow you to participate in online discussions and track projects that you’re
interested in.

Ask Questions on Github

Asking (and answering) questions is a valuable contribution!

As noted in How to support open-source software and stay sane [https://www.nature.com/articles/d41586-019-02046-0] It’s much more
efficient to ask and answer questions in a public forum because then other
users and contributors who are having the same problem can find answers without
having to re-ask the same question. The forum we’re using is our Github issues [https://github.com/catalyst-cooperative/pudl/issues].

Even if you feel like you have a basic question, we want you to feel
comfortable asking for help in public – we (Catalyst) only recently came to
this work as activists and policy wonks – so it’s easy to remember when it all
seemed frustrating and alien! Sometimes it still does. We want people to use
the software and data to do good things in the world. We want you to be able to
access it. Using a public forum also enables the community of users to help
each other!

Make Suggestions on GitHub

Don’t hesitate to open an issue with a feature request [https://github.com/catalyst-cooperative/pudl/issues/new?template=feature_request.md],
or a pointer to energy data that needs liberating, or a reference to
documentation that’s out of date, or unclear, or missing. Understanding how
people are using the software, and how they would like to be using the
software is very valuable, and will help us make it more useful and usable.

Development Setup

If you want to contribute code or documentation directly, you’ll need to create
your own fork of the project on Github, and set up some version of the
development environment described below, before making pull requests to submit
new code, documentation, or examples of use.

Note

If you’re new to git and Github, you may want to check out:

	The Github Workflow [https://guides.github.com/introduction/flow/]

	Collaborative Development Models [https://help.github.com/en/articles/about-collaborative-development-models]

	Forking a Repository [https://help.github.com/en/articles/fork-a-repo]

	Cloning a Repository [https://help.github.com/articles/cloning-a-repository/]

Install Python 3.7

We use
Anaconda [https://www.anaconda.com/distribution/] or
miniconda [https://docs.conda.io/en/latest/miniconda.html] to manage our
software environments. While using conda isn’t strictly required, it does
make everything much easier to have everyone on the same platform.

Fork and Clone the PUDL Repository

On the main page of the PUDL repository [https://github.com/catalyst-cooperative/pudl] you should see a Fork button in the upper right hand corner.
Forking the repository [https://help.github.com/en/articles/fork-a-repo]
makes a copy of it in your personal (or organizational) account on Github that
is independent of, but linked to, the original “upstream” project.

Depending on your operating system and the git client you’re using to access
Github, the exact cloning process might be different, but if you’re using a
UNIX-like terminal, cloning the repository [https://help.github.com/articles/cloning-a-repository/] from your fork will look like this (with your own
Github username or organizational name in place of USERNAME of course):

$ git clone https://github.com/USERNAME/pudl.git

This will download the whole history of the project, including the most recent
version, and put it in a local directory called pudl.

Repository Organization

Inside your newly cloned local repository, you should see the following:

	Directory / File

	Contents

	docs/

	Documentation source files for Sphinx [https://www.sphinx-doc.org/en/master/] and Read The Docs [https://readthedocs.io].

	src/

	Package source code, isolated to avoid unintended imports.

	results/

	A graveyard of old Jupyter Notebooks and outputs. Ignore!

	scripts/

	Development scripts not distributed with the package.

	test/

	Modules for use with PyTest [http://docs.pytest.org/en/latest/].

	environment.yml

	File defining the pudl conda environment.

	MANIFEST.in

	Template describing files included in the python package.

	pyproject.toml

	Configuration for development tools used with the project.

	setup.py

	Python build and packaging script.

	tox.ini

	Configuration for the Tox [https://tox.readthedocs.io/en/latest/] build and test framework.

Create and activate the pudl-dev conda environment

Inside the newly cloned repository, you should see an environment.yml file,
which specifies the pudl-dev conda environment. You can create that
environment locally from within the main repository directory by running:

$ conda update conda
$ conda config --set channel_priority strict
$ conda env create --name pudl-dev --file environment.yml
$ conda activate pudl-dev

Install PUDL for development

The catalystcoop.pudl package isn’t part of the pudl-dev environment
since you’re going to be editing it. To install the local version that now
exists in your cloned repository using pip, from the main repository
directory (containing setup.py) run:

$ pip install --editable ./

Install PUDL QA/QC tools

We use automated tools to apply uniform coding style and formatting across the
project codebase. This reduces merge conflicts, makes the code easier to read,
and helps catch bugs before they are committed. These tools are part of the
pudl conda environment, and their configuration files are checked into the
Github repository, so they should be installed and ready to go if you’ve cloned
the pudl repo and are working inside the pudl conda environment.

These tools can be run at three different stages in development:

	inside your text editor or IDE [https://realpython.com/python-ides-code-editors-guide/], while you are writing code or documentation,

	before you make a new commit to the repository using Git’s
pre-commit hook scripts [https://pre-commit.com/],

	when the tests are run – either locally or on a
continuous integration (CI) [https://en.wikipedia.org/wiki/Continuous_integration] platform
(PUDL uses Travis CI [https://travis-ci.org/catalyst-cooperative/pudl]).

See also

Real Python Code Quality Tools and Best Practices [https://realpython.com/python-code-quality/] gives a good overview of available linters and
static code analysis tools.

flake8

Flake8 [http://flake8.pycqa.org/en/latest/] is a popular Python
linting [https://en.wikipedia.org/wiki/Lint_(software)] framework, with a
large selection of plugins. We use it to run the following checks:

	PyFlakes [https://github.com/PyCQA/pyflakes], which checks Python code
for correctness,

	pycodestyle [http://pycodestyle.pycqa.org/en/latest/] which checks
whether code complies with PEP 8 [https://www.python.org/dev/peps/pep-0008] formatting guidelines,

	mccabe [https://github.com/PyCQA/mccabe] a tool that measures
code complexity [https://en.wikipedia.org/wiki/Cyclomatic_complexity]
to highlight functions that need to be simplified or reorganized.

	pydocstyle [http://www.pydocstyle.org/en/4.0.0/] checks that Python
docstrings comply with PEP 257 [https://www.python.org/dev/peps/pep-0257] (via the flake8-docstrings plugin).

	pep8-naming [https://github.com/PyCQA/pep8-naming] checks that variable
names comply with Python naming conventions.

	flake8-builtins [https://github.com/gforcada/flake8-builtins] checks to
make sure you haven’t accidentally clobbered any reserved Python names with
your own variables.

doc8

Doc8 [https://github.com/PyCQA/doc8] is a lot like flake8, but for Python
documentation written in the reStructuredText format and built by
Sphinx [https://www.sphinx-doc.org/en/master/]. This is the de-facto
standard for Python documentation. The doc8 tool checks for syntax errors and
other formatting issues in the documentation source files under the docs/
directory.

autopep8

Instead of just alerting you that there’s a style issue in your Python code,
autopep8 [https://github.com/hhatto/autopep8] tries to fix it
automatically, applying consistent formatting rules based on PEP 8 [https://www.python.org/dev/peps/pep-0008].

isort

Similarly isort [https://isort.readthedocs.io/en/latest/] consistently
groups and orders Python import statements in each module.

Python Editors

Many of the tools outlined above can be run automatically in the background
while you are writing code or documentation, if you are using an editor that
works well with for Python development. A couple of popular options are the
free Atom editor [https://atom.io/] developed by Github, and the less free
Sublime Text editor [https://www.sublimetext.com/]. Both of them have
many community maintained addons and plugins.

See also

Real Python Guide to Code Editors and IDEs [https://realpython.com/python-ides-code-editors-guide/]

Catalyst primarily uses the Atom editor, with the following plugins and
settings. These plugins require that the tools described above are installed
on your system – which is done automatically in the pudl conda environment.

	atom-beautify [https://atom.io/packages/atom-beautify]
set to “beautify on save,” with autopep8 as the beautifier and formatter,
and set to “sort imports.”

	linter [https://atom.io/packages/linter] the base linter package used by
all Atom linters.

	linter-flake8 [https://atom.io/packages/linter-flake8] set to use
.flake8 as the project config file.

	python-autopep8 [https://atom.io/packages/python-autopep8] to actually
do the work of tidying up.

	python-indent [https://atom.io/packages/python-indent] to autoindent your
code as you write, in accordance with PEP 8 [https://www.python.org/dev/peps/pep-0008].

Git Pre-commit Hooks

Git hooks let you automatically run scripts at various points as you manage
your source code. “Pre-commit” hook scripts are run when you try to make a new
commit. These scripts can review your code and identify bugs, formatting
errors, bad coding habits, and other issues before the code gets checked in.
This gives you the opportunity to fix those issues first.

Pretty much all you need to do is enable pre-commit hooks:

$ pre-commit install

The scripts that run are configured in the .pre-commit-config.yaml file.

In addition to autopep8, isort, flake8, and doc8, the
pre-commit hooks also run
bandit [https://bandit.readthedocs.io/en/latest/] (a tool for identifying
common security issues in Python code) and several other checks that keep you
from accidentally committing large binary files, leaving
debugger breakpoints [https://realpython.com/python-debugging-pdb/]
in your code, forgetting to resolve merge conflicts, and other gotchas that can
be hard for humans to catch but are easy for a computer.

Note

If you want to make a pull request, it’s important that all these checks
pass – otherwise the build will fail, since these same
checks are tun by the tests on Travis.

See also

The pre-commit project [https://pre-commit.com/]: A framework for
managing and maintaining multi-language pre-commit hooks.

Install and Validate the Data

In order to work on PUDL development, you’ll probably need to have a bunch of
the data available locally. Follow the instructions in Creating a Datastore to set
up a local data management environment and download some data locally, then
run the ETL pipeline to generate some data packages and use them to populate a local SQLite database with as much
PUDL data as you can stand (for development, we typically load all of the
available data for ferc1, eia923, eia860, and epaipm, datasets,
but only a single state’s worth of data for the much larger epacems
hourly data.)

Using Tox to Validate PUDL

If you’ve done all of the above, you should be able to use tox to run our
test suite, and perform data validation. For example, to validate the data
stored in your PUDL SQLite database, you would simply run:

$ tox -v -e validate

Running the Tests

We also use tox to run PyTest against a packaged and separately installed
version of the local repository package. Take a peek inside tox.ini to
see what test environments are available. To run the same tests that will be
run on Travis CI when you make a pull request, you can run:

$ tox -v -e travis -- --fast

This will run the linters and pre-commit checks on all the code, make sure that
the docs can be built by Sphinx, and run the ETL process on a single year of
data. The --fast is passed through to PyTest by tox because it is
after the --. That test will also attempt to download a year of data into
a temporary directory. If you want to skip the download step and use your
already downloaded datastore, you can point the tests at it with
--pudl_in=AUTO:

$ tox -v -e travis -- --fast --pudl_in=AUTO

Additional details can be found in Building and Testing PUDL.

Making a Pull Request

Before you make a pull request, please check that:

	Your code passes all of the Travis tests by running them with tox

	You can generate a new complete bundle of data packages, including all the
available data (with the exception of epacems – all the years of a
couple of states is sufficient for testing.)

	Those data packages can be used to populate an SQLite database locally,
using the datapkg_to_sqlite script.

	The data validation tests can be run against that SQLite database, using
tox -v -e validate as outlined above.

	If you’ve added new data or substantial new code, please also include new
tests and data validation. See the modules under test and
test/validate for examples.

Then you can push the new code to your fork of the PUDL repository on Github,
and from there, you can make a Pull Request inviting us to review your code and
merge your improvements in with the main repository!

Building and Testing PUDL

The PUDL Project uses PyTest [https://pytest.org] to test our code, and
Tox [https://tox.readthedocs.io] to ensure the tests are run in a
controlled environment. We run the tests locally, and on
Travis CI [https://travis-ci.org/catalyst-cooperative/pudl/].

Test Data

We use the same testing framework to validate the data products being generated
by PUDL. This makes running the tests a little more complicated than normal. In
addition to specifying what tests should be run, you must specify how much data
should be used, and where that data can be found.

Data Quantity:

	For “fast” tests we use the most recent year of data that’s available for all
data sources, with the exception of EPA CEMS Hourly, for which we only
do the most recent year of data for a single state.

	For “full” tests we process all of the data that we expect to work, again
with the exception of EPA CEMS Hourly for which we do only a single state
(across all years).

Data Source:

The tests can use data from three different sources, depending on what you’re
testing. They can:

	download a fresh copy of the original data,

	use an existing local datastore skipping the download step, or

	use already processed local data, in the case of post-ETL data validation.

Because
FTP doesn’t work on Travis [https://docs.travis-ci.com/user/common-build-problems/#ftpsmtpother-protocol-do-not-work],
and the FERC Form 1 and EPA CEMS Hourly data can only be downloaded
over FTP, we also keep a small amount of data for those sources in the PUDL
Github repository and use it to populate the datastore for continuous
integration. We download fresh data for the EIA and other data sources that are
available via HTTPS.

Running PyTest

The PyTest suite is organized into two main categories. ETL tests and
data validation tests.

ETL Tests

The ETL tests run the data processing pipeline on either the most recent year
of data, or all working years of data. The tests should be marked with
pytest.mark decorators called pytest.mark.etl. Most of the ETL test
functions are stored in the test/etl_test.py module, but they rely heavily
on fixtures defined in test/conftest.py. As mentioned above, the data to
be used in the ETL tests can come from several different places. You can also
specify where the data packages output by the tests should be written.

To run the ETL tests using just the most recent year of data (--fast) and
download a fresh copy of that data to a temporary location (the default
behavior), you would run:

$ pytest test/etl_test.py --fast

To use an already downloaded copy of the input data, generated a ferc1
database, in your default PUDL workspace (which is
specified in $HOME/.pudl.yml), you would run:

$ pytest test/etl_test.py --fast --pudl_in=AUTO --live_ferc_db=AUTO

To specify a particular pudl_in directory, containing a data directory
and datastore, you would use:

$ pytest test/etl_test.py --fast --pudl_in=path/to/pudl_in

To change where the output of the ETL pipeline is written, use the
--pudl_out option. By default it will use a temporary directory created by
pytest. As with --pudl_in you can specify AUTO if you want the
output to go to your default pudl_out (as specified in $HOME/.pudl.yml.

$ pytest test/etl_test.py --fast --pudl_in=AUTO --pudl_out=my/new/outdir

You may also want to consider using --disable-warnings to avoid seeing a
bunch of clutter from underlying libraries and deprecated uses.

Data Validation Tests

The data validation tests are organized into datasource specific modules under
test/validate. They test the quality and internal consistency of the data
that is output by the PUDL ETL pipeline. Currently they only work on the full
dataset, and do not have a --fast option. While it is possible to run the
full ETL process and output it in a temporary directory, to then be used by the
data validation tests, that takes a long time, and you don’t get to keep the
processed data afterward. Typically we validate outputs that we’re hoping to
keep around, so we advise running the data validation on an generated PUDL
SQLite database.

To point the tests at already processed data, use the --live_pudl_db and
--live_ferc_db options. The --pudl_in and --pudl_out options work
the same as above. E.g.

$ pytest --live_pudl_db=AUTO --live_ferc_db=AUTO --pudl_in=AUTO --pudl_out=AUTO test/validate

Data Validation Notebooks

We maintain and test a collection of Jupyter Notebooks that use the same
functions as the data validation tests and also produce some visualizations of
the data to make it easier to understand what’s wrong when validation fails.
These notebooks are stored in test/notebooks and they can be validated
with:

$ pytest --nbval-lax test/notebooks

The notebooks can only be run when the output of the ETL process is available.

If the data validation tests are failing for some reason, you may want to
launch those notebooks in Jupyter to get a better sense of what’s gong on. They
are integrated into the test suite to ensure that they remain functional as the
project evolves.

Running Tox

Tox [https://tox.readthedocs.io/en/latest/] is a system for automating
Python packaging and testing processes. When pytest is run as described
above, it has access to the whole PUDL repository (including files that might
not be deployed on a user’s system by the packaging script), and it also sees
whatever python packages you happen to have installed in your local environment
(via pip or conda) which again, may not be anything like what an end
user has on their system when they install pudl.

To ensure that we are testing pudl as it will be installed for a user who
is using pip or conda, Tox packages up the code as specified in
setup.py, installs it in a virtual environment, and then runs the same
pytest tests, but against that version of PUDL, giving us much more
confidence that it will also work if someone else installs it. The behavior of
Tox is controlled by the tox.ini file in the main repository directory. It
describes several test environments:

	linters: Static code analyses that catch syntax errors and style issues.

	etl: Run the pytest tests in test/etl_test.py using the
data specified on the command line (see below).

	validate: Runs the data validation and output tests and validates the
distributed notebooks. Requires existing PUDL outputs.

	docs: Builds the documentation using
Sphinx [https://www.sphinx-doc.org/en/master/] based on the docstrings
embedded in our code and any additional resources that we have integrated
under the docs directory, using the same setup as our documentation on
ReadTheDocs [https://readthedocs.org/projects/catalyst-cooperative-pudl/]

	travis: Runs the tests included in the linters, docs and etl
tests.

Todo

Modify the data validation tests to work on a single year of data, so they
can be run on Travis and also quickly locally.

Command line arguments like --fast and --pudl_in=AUTO will be passed in
to pytest by Tox if you add them after -- on the command line. E.g.
to have Tox run the ETL tests using the most recent year of data, using the
data you already have on hand in your local datastore you would do:

$ tox -e etl -- --fast --pudl_in=AUTO

There are other test environments defined in tox.ini – including one for
each of the individual linters (flake8, doc8, pre-commit,
bandit, etc.) which are bundled together into the single linters test
environment for convenience. There are also build and release test
environments that are used to generate and transmit the pudl distribution to
the Python Package Index for publication.

To see what each of these Tox environments is actually doing, you can look at
the commands section for each of them in tox.ini.

Generating the Documentation

Sphinx [https://www.sphinx-doc.org/] is a system for
semi-automatically generating Python documentation, based on doc strings and
other content stored in the docs directory.
Read The Docs [https://readthedocs.io] is a platform that automatically
re-runs Sphinx for your project every time you make a commit to Github, and
publishes the results online so that you always have up to date docs. It also
archives docs for all of your previous releases so folks using them can see how
things work for their version of the software, even if it’s not the most
recent.

Sphinx is tightly integrated with the Python programming language and needs to
be able to import and parse the source code to do its job. Thus, it also needs
to be able to create an appropriate python environment. This process is
controlled by docs/conf.py.

However, the resources available on Read The Docs are not as extensive as on
Travis, and it can’t really build many of the scientific libraries we depend
on from scratch. Package “mocking” allows us to fake-out the system so that the
imports succeed, even if difficult to compile packages like scipy aren’t
really installed.

If you are editing the documentation, and need to regenerate the outputs as you
go to see your changes reflected locally, from the main directory of the
repository you can run:

$ sphinx-build -b html docs docs/_build/html

This will only update any files that have been changed since the last time the
documentation was generated. If you need to regenerate all of the documentation
from scratch, then you should remove the existing outputs first:

$ rm -rf docs/_build
$ sphinx-build -b html docs docs/_build/html

To run the doc8 [http://https://github.com/PyCQA/doc8]
reStructuredText linter and re-generate the documentation from scratch, you can
use the Tox docs test environment:

$ tox -e docs

Note that this will also attempt to regenerate the sphinx.autodoc files
in docs/api for modules that are meant to be documented, using the
sphinx-apidoc command – this should catch any new modules or subpackages
that are added to the repository, and may result in new files that need to be
committed to the Github repository in order for them to show up on Read The
Docs.

Python Packaging

In order to distribute a ready-to-use package to others via the Python Package
Index and conda-forge we need to encapsulate it with some metadata and
enumerate its dependencies. There are several files that guide this process.

setup.py

The setup.py script in the top level of the repository coordinates the
packaging process, using setuptools which is part of the Python standard
library. setup.py is really just a single function call, to
setuptools.setup(), and the parameters of that function are
metadata related to the Python package. Most of them are relatively self
explanatory – like the name of the package, the license it’s being released
under, search keywords, etc. – but a few are more arcane:

	use_scm_version: Instead of having a hard-coded version that’s stored in
the repository somewhere, handed off to the packaging script, and often ends
up being out of date, pull the version from the source code management (SCM)
system, in our case git (and Github). To make a release we will first need
to tag a particular revision [https://help.github.com/en/articles/creating-releases] in git
with a version like v0.1.0.

	python_requires='>=3.7, <3.8.0a0': Specifies the version or versions of
Python on which the package is expected to run. We require at least Python
3.7, and it’s accepted best practice to preclude packages from getting
installed on the next major version up, since major versions tend to break
things. So we require a version less than Python 3.8.

	setup_requires=['setuptools_scm']: What other packages need to be
installed in order for the packaging script to run? Because we are obtaining
the package version from our SCM (git/Github) we need the special package
that lets us do that magic, which is named
setuptools_scm [https://github.com/pypa/setuptools_scm]. This
automatically generated version number can then be accessed in the package
metadata, as is done our top-level __init__.py file:

__version__ = pkg_resources.get_distribution(__name__).version

This is convoluted, but also a currently accepted best practice. The changes
to the Python packaging & build system being implemented as a result of
PEP 517 [https://www.python.org/dev/peps/pep-0517] and PEP 518 [https://www.python.org/dev/peps/pep-0518] should improve the situation.

	install_requires: lists all the other packages that need to be installed
before pudl can be installed. These are our package dependencies. This
list plays a role similar to the environment.yml file in the main
pudl repository, but it depends on pip not conda – in the
packaging system we do not have access to conda. It turns out this makes
our lives difficult because of the kind of Python packages we depend on. More
on this below.

	extras_require: a dictionary describing optional packages that can
be conditionally installed depending on the expected usage of the install.

Todo

Explain the contents of extras_require

	packages=find_packages('src'): The packages parameter takes a list of
all the python packages to be included in the distribution that is being
packaged. The setuptools.find_packages function automatically
searches whatever directories it is given for any packages and all of their
subpackages. All of the code we want to distribute to users lives under the
src directory.

	package_dir={'': 'src'}: this tells the packaging to treat any modules or
packages found in the src directory as part of the root package of
the distribution. This is a vestigial parameter that pertains to the
distutils [https://docs.python.org/3/library/distutils.html#module-distutils] which are the predecessor to setuptools… but the
system still depends on them deep down inside. In our case, we don’t have any
modules that aren’t part of any package – everything is within pudl.

	include_package_data=True: This tells the packaging system to include any
non-python files that it finds in the directories it has been told to
package. In our case this is all the stuff inside package_data including
example settings files, metadata, glue, etc.

	entry_points: This parameter tells the packaging what executable scripts
should be installed on the user’s system, and which modules:functions
implement those scripts.

MANIFEST.in

In addition to generating a version number automatically based on our git
repository, setuptools_scm pulls every single file tracked by the
repository and every other random file sitting in the working repository
directory into the distribution. This is… not what we want. MANIFEST.in
allows us to specify in more detail which files should be included and
excluded. Mostly we are just including the python package and supporting data,
which exist under the src/pudl directory.

pyproject.toml

The adoption of PEP 517 [https://www.python.org/dev/peps/pep-0517] and PEP 518 [https://www.python.org/dev/peps/pep-0518] has opened up the possibility of
using build and packaging systems besides setuptools. The new system
uses pyproject.toml to specify the build system requirements. Other tools
related to the project can also store their settings in this file making it
easier to see how everything is set up, and avoiding the proliferation of
different configuration files for e.g. PyTest, Tox, Flake8, Travis,
ReadTheDocs, bandit…

Data and ETL Design Guidelines

Some technical norms and expectations that we strive to adhere to, and hope
that contributors can also follow.

Also, we’re all learning as we go – if you have suggestions for best practices
we might want to adopt, let us know!

Input vs. Output Data

It’s important to differentiate between the original data we’re attempting
to provide easy access to, and analyses or data products that are derived from
that original data. The original data is meant to be archived and re-used as an
alternative to other users re-processing the raw data from various public
agencies.

Minimize Data Alteration

We are trying to provide a uniform, easy-to-use interface to existing public
data. We want to provide access to the original data, insofar as that is
possible, while still having it be uniform and easy-to-use. Some alteration is
unavoidable and other changes make the data much more usable, but these should
be made with care and documentation.

	Make sure data is available at its full, original resolution.
Don’t aggregate the data unnecessarily when it is brought into PUDL. However,
creating tools to aggregate it in derived data products is very useful.

Todo

Need fuller enumeration of data alteration / preservation principles.

Examples of Acceptable Changes

	Converting all power plant capacities to MW, or all generation to MWh.

	Assigning uniform NA values.

	Standardizing datetime [https://docs.python.org/3/library/datetime.html#module-datetime] types.

	Re-naming columns to be the same across years and datasets.

	Assigning simple fuel type codes when the original data source uses free-form
strings that are not programmatically usable.

Examples of Unacceptable Changes

	Applying an inflation adjustment to a financial variable like fuel cost.
There are a variety of possible inflation indices users might want to use,
so that transformation should be applied in the output layer that sits on
top of the original data.

	Aggregating data that has date/time information associated with it into a
time series, when the individual records do not pertain to unique timesteps.
For example, the EIA Form 923 Fuel Receipts and Costs table lists fuel
deliveries by month, but each plant might receive several deliveries from the
same supplier of the same fuel type in a month – the individual delivery
information should be retained.

	Computing heat rates for generators in an original table that contains both
fuel heat content and net electricity generation, since the heat rate would
be a derived value, and not part of the original data.

Make Tidy Data

The best practices in data organization go by different names in data science,
statistics, and database design, but they all try to minimize data duplication
and ensure an easy to transform uniform structure that can be used for a wide
variety of purposes – at least in the source data (i.e. database tables or the
published data packages).

	Each column in a table represents a single, homogeneous variable.

	Each row in a table represents a single observation – i.e. all of the
variables reported in that row pertain to the same case/instance of
something.

	Don’t store the same value in more than one pace – each piece of data should
have an authoritative source.

	Don’t store derived values in the archived data sources.

Reading on Tidy Data

	Tidy Data [https://vita.had.co.nz/papers/tidy-data.pdf]
A paper on the benefits of organizing data into single variable,
homogeneously typed columns, and complete single observation records.
Oriented toward the R programming language, but the ideas apply universally
to organizing data. (Hadley Wickham, The Journal of Statistical Software,
2014)

	Good enough practices in scientific computing [https://doi.org/10.1371/journal.pcbi.1005510]
A whitepaper from the organizers of
Software and Data Carpentry [https://carpentries.org/]
on good habits to ensure your work is
reproducible and reusable — both by yourself and others!
(Greg Wilson et al., PLOS Computational Biology, 2017)

	Best practices for scientific computing [https://doi.org/10.1371/journal.pbio.1001745]
An earlier version of the above whitepaper aimed at a more technical,
data-oriented set of scientific users.
(Greg Wilson et al., BLOS Biology, 2014)

	A Simple Guide to Five Normal Forms [http://www.bkent.net/Doc/simple5.htm]
A classic 1983 rundown of database normalization. Concise, informal, and
understandable, with a few good illustrative examples. Bonus points for the
ASCII art.

Use Simple Data Types

The Frictionless Data
TableSchema [https://frictionlessdata.io/specs/table-schema/]
standard includes a modest selection of data types, which are meant to be very
widely usable in other contexts. Make sure that whatever data type you’re using
is included within that specification, but also be as specific as possible
within that collection of options.

This is one aspect of a broader “least common denominator” strategy that is
common within the open data. This strategy is also behind our decision to
distribute the processed data as CSV files (with metadata stored as JSON).
Frictionless Data
makes the case [https://frictionlessdata.io/docs/csv/] for CSV files
in their documentation.

Use Consistent Units

Different data sources often use different units to describe the same type of
quantities. Rather than force users to do endless conversions while using the
data, we try to convert similar quantities into the same units during ETL. For
example, we typically convert all electrical generation to MWh, plant
capacities to MW, and heat content to MMBTUs (though, MMBTUs are awful:
seriously M=1000 because Roman numerals? So MM is a million, despite the fact
that M/Mega is a million in SI. And a BTU [https://en.wikipedia.org/wiki/British_thermal_unit] is… the amount of
energy required to raise the temperature of one an avoirdupois pound of water
by 1 degree Farenheit?! What century even is this?).

Silo the ETL Process

It should be possible to run the ETL process on each data source independently,
and with any combination of data sources included. This allows users to include
only the data need. In some cases like the EIA 860 and
EIA 923 data, two data sources may be so intertwined that
keeping them separate doesn’t really make sense, but that should be the
exception, not the rule.

Separate Data from Glue

The glue that relates different data sources to each other should be applied
after or alongside the ETL process, and not as a mandatory part of ETL. This
makes it easy to pull individual data sources in and work with them even when
the glue isn’t working, or doesn’t yet exist.

Partition Big Data

Our goal is that users should be able to run the ETL process on a decent
laptop. However, some of the utility datasets are hundreds of gigabytes in size
(e.g. EPA CEMS, FERC EQR,
ISO/RTO LMP). Many users will not need to use the entire
dataset for the work they are doing. Allow them to pull in only certain years,
or certain states, or other sensible partitions of the data if need be, so that
they don’t run out of memory or disk space, or have to wait hours while data
they don’t need is being processed.

Naming Conventions

There are only two hard problems in computer science: caching,
naming things, and off-by-one errors.

Use Consistent Names

If two columns in different tables record the same quantity in the same units,
give them the same name. That way if they end up in the same dataframe for
comparison it’s easy to automatically rename them with suffixes indicating
where they came from. For example net electricity generation is reported to
both FERC Form 1 and EIA 923, so we’ve
named columns net_generation_mwh in each of those data sources. Similarly,
give non-comparable quantities reported in different data sources different
column names. This helps make it clear that the quantities are actually
different.

Follow Existing Conventions

We are trying to use consistent naming conventions for the data tables,
columns, data sources, and functions. Generally speaking PUDL is a collection
of subpackages organized by purpose (extract, transform, load, analysis,
output, datastore…), containing a module for each data source. Each data source
has a short name that is used everywhere throughout the project, composed of
the reporting agency and the form number or another identifying abbreviation:
ferc1, epacems, eia923, eia8601, etc. See the naming
conventions document for more details.

Complete, Continuous Time Series

Most of the data in PUDL are time series, ranging from hourly to annual in
resolution.

	Assume and provide contiguous time series. Otherwise there are just too
many possible combinations of cases to deal with. E.g. don’t expect things to
work if you pull in data from 2009-2010, and then also from 2016-2018, but
not 2011-2015.

	Assume and provide complete time series. In data that is indexed by date
or time, ensure that it is available as a complete time series, even if some
values are missing (and thus NA). Many time series analyses only work when
all the timesteps are present.

Integrating a New Dataset

If you’re already working with US energy system data in Python, or have been
thinking about doing so, and would like to have the added benefit of access to
all the other information that’s already part of PUDL, you might consider
adding a new data source. That way other people can use the data too, and we
can all share the responsibility for ensuring that the code continues to work,
and improves over time.

In general the process for adding a new data source looks like this:

	Add the new data source to the pudl.workspace.datastore` module and
the pudl_data script.

	Define well normalized data tables for the new data source in the
metadata, which is stored in
src/pudl/package_data/meta/datapackage/datapackage.json.

	Add a module to the pudl.extract subpackage that generates raw
dataframes containing the new data source’s information from whatever its
original format was.

	Add a module to the pudl.transform subpackage that takes those raw
dataframes, cleans them up, and re-organizes them to match the new database
table definitions.

	If necessary, add a module to the pudl.load subpackage that takes
these clean, transformed dataframes and exports them to data packages.

	If appropriate, create linkages in the table schemas between the tabular
resources so they can be used together. Often this means creating some
skinny “glue” tables that link one set of unique entity IDs to another.

	Update the pudl.etl module so that it includes your new data source
as part of the ETL (Extract, Transform, Load) process, and any necessary
code to the pudl.cli entrypoint module.

	Add an output module for the new data source to the pudl.output
subpackage.

	Write some unit tests for the new data source, and add them to the
pytest suite in the test directory.

Add dataset to the datastore

Scripts

This means editing the pudl.workspace.datastore module and the
pudl_data script so that they can acquire the data from the
reporting agencies, and organize it locally in advance of the ETL process.
New data sources should be organized under data/<agency>/<source>/ e.g.
data/ferc/form1 or data/eia/form923. Larger data sources that are
available as compressed zipfiles can be left zipped to save local disk space,
since pandas can read zipfiles directly.

Organization

The exact organization of data within the source directory may vary, but should
be as uniform as possible. For data which is compiled annually, we typically
make one subdirectory for each year, but some data sources provide all the data
in one file for all years (e.g. the MSHA mine info).

User Options

The datastore update script can be run at the command line to pull down new
data, or to refresh old data if it’s been updated. Someone running the script
should be able to specify subsets of the data to pull or refresh – e.g. a set
of years, or a set of states – especially in the case of large datasets. In
some cases, opening several download connections in parallel may dramatically
reduce the time it takes to acquire the data (e.g. pulling don the EPA CEMS
dataset over FTP). The pudl.constants module contains several
dictionaries which define what years etc. are available for each data source.

Describe Table Metadata

Add table description into resources in the the mega-data: the metadata file
that contains all of the PUDL table descriptions
(src/pudl/package_data/meta/datapackage/datapackage.json). The resource
descriptions must conform to the Frictionless Data specifications [https://frictionlessdata.io/specs/],
specifically the specifications for a tabular data resource [https://frictionlessdata.io/specs/tabular-data-resource/].
The table schema specification [https://frictionlessdata.io/specs/table-schema/] will be particularly helpful.

There is also a dictionary in the megadata called “autoincrement”, which is
used for compiling table names that require an auto incremented id column when
exporting to a database. This is for tables with no natural primary key. The id
column is not required for the datapackages but when exporting to a database,
we will read this dictionary in the `datapkg_to_sqlite script to determine
which tables need these auto increment id column. Make sure your tables are
normalized – see Design Guidelines below.

Extract the data from its original format.

The raw inputs to the extract step should be the pointers to the datastore and
any parameters on grabbing the dataset (i.e. the working years, locational
constraints if applicable). The outcome of the extract module should be a
dictionary of dataframes with keys that correspond to the original datasource
table/tab/file name with each row corresponding to one record. These raw
dataframes should not be largely altered from their original structures in this
step, with the exception of creating records. For example, the EIA 923 often
reports a year’s worth of monthly data in one row and the extract step
transforms the single row into twelve monthly records. If possible, attempt to
keep the dataset in its most compressed format on disk during the extract step.
For large data sources stored in zip files (e.g. epacems), there is no need to
unzip the files as pandas is able to read directly from zipped files. For
extracting data from other databases (as opposed to CSV files, spreadsheets,
etc.) you may need to populate a live database locally, and read from it (e.g.
the FERC Form 1 database, which we clone into postgres from the FoxPro/DBF
format used by FERC).

Transform the data into clean normalized dataframes.

The inputs to the transform step should be the dictionary of raw dataframes and
any dataset constraints (i.e. working years, tables, and geographical
constraints). The output should be a dictionary of transformed dataframes which
look exactly like what you want to end up in the database tables. The key of
the dictionary should be the name of the database tables as defined in the
models. Largely, there is one function per data table. If one database table
needs any information such as the index from another table (see
fuel_receipts_costs_eia923 and coalmine_eia923 for an example), this
will require the transform functions to be called in a particular order but the
process is largely the same. All the organization of the data into normalized
tables happens in the transform step.

During this step, any cleaning of the original data is done. This includes
operations like:

	Standardizing units and unit conversions,

	Casting to appropriate data types (string, int, float, date…),

	Conversion to appropriate NA or NaN values for missing data,

	Coding of categorical variables (e.g. fuel type)

	Coding/categorization of freeform strings (e.g. fuel types in FERC Form 1)

	Correction of glaring reporting errors if possible (e.g. when someone
reports MWh instead of kWh for net generation, or BTU instead of MMBTU)

Load the data into the datapackages

Each of the dataframes that comes out of the transform step represents a
resource that needs to be loaded into the datapackage. Pandas has a native
pandas.DataFrame.to_csv() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv] method for exporting a dataframe to a CSV
file, which is used to output the data to disk.

Because we have not yet taken advantage the new pandas extension arrays, and
Python doesn’t have a native NA value for integers, just before the dataframes
are written to disk we convert any integer NA sentinel values using a little
helper function pudl.helpers.fix_int_na().

Glue the new data to existing data

We refer to the links between different data sources as the “glue”. The glue
The glue should be able to be thoroughly independent from the ingest of the
dataset (there should be no PUDL glue id’s in any of the datasource tables and
there should be no foreign key relationships from any of the glue tables to the
datasource specific tables). These connector keys can be added in the output
functions but having them be integral to the database ingestion would make the
glue a dependency for adding new datasources, which we want to avoid. The
process for adding glue will be very different depending on the datasets you’re
trying to glue together. The EIA and FERC plants and utilities are currently
mapped by hand in a spreadsheet and pulled into tables. The FERC and EIA units
ids that will end up living in a glue table will be created through the
datazipper. There should be one module in the glue subpackage for each
inter-dataset glue (i.e. ferc1_eia or cems_eia) as well as table definitions
in the models.glue.py module. If possible, there should be foreign key
constraints from the underlying dataset entity tables (i.e. plants_entity_eia)
to the glue tables so that we do not accidentally store glue that does not
refer to the underlying dataset.

Create an output module

The pudl.output subpackage compiles interesting information from the
database in tabular form for interactive use in dataframes, or for export. Each
data source should have its own module in the output subpackage, and within
that module there should be a function allowing the output of each of the core
tables in the database which come from that data source. These tabular outputs
can and should be denormalized, and include additional information a user might
commonly want to work with – for example including the names of plants and
utilities rather than just their IDs. In addition to those data source specific
tabular output modules, there’s also pudl.output.pudltabl.PudlTabl, a
tabular output class. This class can be used to pull and store subsets of the
data from the database, and can also use modules within the analysis subpackage
to calculate interesting derived quantities, and provide it as a tabular
output. See the pudl.analysis.mcoe module as an example for how this
works.

Write some tests

Test cases need to be created for each new dataset, verifying that the ETL
process works, and sanity checking the data itself. This is somewhat different
than traditional software testing, since we’re not just testing our code –
we’re also trying to make sure that the data is in good shape. Those
exhaustive tests are currently only run locally. See Building and Testing PUDL for more
details.

Code Standards

	We are trying to keep our own code entirely written in Python.

	PUDL should work on Linux, Mac OS X, or Windows – don’t hard code anything
that is platform specific, unless you make it work for all platforms.

	Intent is only to support the most recent actively used version or two of
Python (Currently Python 3.7).

	Assuming that most if not all users will be using conda to maanage their
Python software environment.

	Make sure the tests run locally, including the linters. See Building and Testing PUDL
for more information.

	Don’t decrease the overall test coverage – if you introduce new code it
also needs to be exercised by the tests. See Building and Testing PUDL for details.

	Write good docstrings, using the Google docstring [https://www.sphinx-doc.org/en/latest/usage/extensions/example_google.html] format.

	PUDL should work for use in application development or for interactive
analysis (e.g. Jupyter Notebooks).

See also

	Development Setup

	Building and Testing PUDL

Project Management

The people working on PUDL are distributed all over North America.
Collaboration takes place online. We make extensive use of Github’s project
management tools.

Issues and Project Tracking

We use Github issues [https://github.com/catalyst-cooperative/pudl/issues]
to track bugs, enhancements, support requests, and just about any other work
that goes into the project. The issues are organized into several different
streams of work, using Github projects [https://github.com/catalyst-cooperative/pudl/projects]

We are happy to accept pull requests that improve our existing code, expand the
data that’s available via PUDL, and and make our documentation more readable
and complete. Feel free to report bugs, comment on existing issues, suggest
other data sources that might be worth integrating, or ask questions about how
to use PUDL if you can’t find the answer in our documentation.

Release Management

We are developing and releasing software, but we’re also using that software to
process and publish data. Our goal is to make the data pipeline as easily and
reliably replicable as possible.

Whenever we tag a release on Github, the repository is archived on Zenodo [https://zenodo.org] and issued a DOI. Then the package is uploaded to the
Python Package Index for distribution. Our goal is to make a software release
at least once a quarter.

Data releases will also be archived on Zenodo, and consist of a software
release, a collection of input files, and the resulting data packages. The goal
is to make the data package output reproducible given the archived input files
and software release, with a single command. Our goal is to make data releases
quarterly as well.

User Support

We don’t (yet) have funding to do user support, so it’s currently all community
and volunteer based. In order to ensure that others can find the answers to
questions that have already been asked, we try to do all support in public
using Github issues.

Naming Conventions

In the PUDL codebase, we aspire to follow the naming and other conventions
detailed in PEP 8 [https://www.python.org/dev/peps/pep-0008].

	Imperative verbs (.e.g connect) should precede the object being acted upon
(e.g. connect_db), unless the function returns a simple value (e.g. datadir).

	No duplication of information (e.g. form names).

	lowercase, underscores separate words.

	Helper functions (functions used within a single module only) should be
preceded by an underscore.

	When the object is a table, use the full table name (e.g. ingest_fuel_ferc1).

	When dataframe outputs are built from multiple tables, identify the type of
information being pulled (e.g. “plants”) and the source of the tables (e.g.
eia or ferc1). When outputs are built from a single table, simply use
the table name (e.g. boiler_fuel_eia923).

Glossary of Abbreviations

General Abbreviations

	Abbreviation

	Definition

	abbr

	abbreviation

	assn

	association

	avg

	average (mean)

	bbl

	barrel (quantity of liquid fuel)

	capex

	capital expense

	corr

	correlation

	db

	database

	df & dfs

	dataframe & dataframes

	dir

	directory

	epxns

	expenses

	info

	information

	mcf

	thousand cubic feet (volume of gas)

	mmbtu

	million British Thermal Units

	mw

	Megawatt

	mwh

	Megawatt Hours

	num

	number

	opex

	operating expense

	pct

	percent

	ppm

	parts per million

	ppb

	parts per billion

	q

	(fiscal) quarter

	qty

	quantity

	util & utils

	utility & utilities

	us

	United States

	usd

	US Dollars

Data Source Specific Abbreviations

	Abbreviation

	Definition

	frc_eia923

	Fuel Receipts and Costs (EIA Form 923)

	gen_eia923

	Generation (EIA Form 923)

	gf_eia923

	Generation Fuel (EIA Form 923)

	gens_eia923

	Generators (EIA Form 923)

	utils_eia860

	Utilities (EIA Form 860)

	own_eia860

	Ownership (EIA Form 860)

Data Extraction Functions

The lower level namespace uses an imperative verb to identify the action the
function performs followed by the object of extraction (e.g.
get_eia860_file). The upper level namespace identifies the dataset where
extraction is occurring.

Output Functions

When dataframe outputs are built from multiple tables, identify the type of
information being pulled (e.g. plants) and the source of the tables (e.g.
eia or ferc1). When outputs are built from a single table, simply use
the table name (e.g. boiler_fuel_eia923).

Table Names

See this article [http://www.vertabelo.com/blog/technical-articles/naming-conventions-in-database-modeling]
on database naming conventions.

	Table names in snake_case

	The data source or label (e.g. “plant_id_pudl”) should follow the thing it is
describing

Columns and Field Names

	total should come at the beginning of the name (e.g.
total_expns_production)

	Identifiers should be structured type + _id_ + source where
source is the agency or organization that has assigned the ID. (e.g.
plant_id_eia)

	The data source or label (e.g. plant_id_pudl) should follow the thing it
is describing

	Units should be appended to field names where applicable (e.g.
net_generation_mwh). This includes “per unit” signifiers (e.g. _pct
for percent, _ppm for parts per million, or a generic _per_unit when
the type of unit varies, as in columns containing a heterogeneous collection
of fuels)

	Financial values are assumed to be in US Dollars.

	_id indicates the field contains a usually numerical reference to
another table, which will not be intelligible without looking up the value in
that other table.

	The suffix _code indicates the field contains a short abbreviation from
a well defined list of values, that probably needs to be looked up if you
want to understand what it means.

	The suffix _type (e.g. fuel_type) indicates a human readable category
from a well defined list of values. Whenever possible we try to use these
longer descriptive names rather than codes.

	_name indicates a longer human readable name, that is likely not well
categorized into a small set of acceptable values.

	_date indicates the field contains a Date object.

	_datetime indicates the field contains a full Datetime object.

	_year indicates the field contains an integer 4-digit year.

	capacity refers to nameplate capacity (e.g. capacity_mw)– other
specific types of capacity are annotated.

	Regardless of what label utilities are given in the original data source
(e.g. operator in EIA or respondent in FERC) we refer to them as
utilities in PUDL.

Project Background

The project grew out of frustration with how difficult it is to make use of
public data about the US electricity system. In our own climate activism and
policy work we found that many non-profit organizations, academic researchers,
grassroots climate activists, energy journalists, smaller businesses, and even
members of the public sector were scraping together the same data repeatedly,
for one campaign or project at a time, without accumulating many shared,
reusable resources. We decided to try and create a platform that would serve
the many folks who have a stake in our electricity and climate policies, but
may not have the financial resources to obtain commercially integrated data.

Our energy systems affect everyone, and they are changing rapidly. We hope this
shared resource will improve the efficiency, quality, accessibility and
transparency of research & analysis related to US energy systems.

These ideas have been explored in more depth in papers from Stefan Pfenninger
at ETH Zürich and some of the other organizers of the European Open Energy
Modeling Initiative [https://openmod-initiative.org/] and Open Power System
Data [https://open-power-system-data.org/] project.

Reading

	The importance of open data and software: Is energy research lagging behind? [https://doi.org/10.1016/j.enpol.2016.11.046] (Energy Policy, 2017) Open
community modeling frameworks have become common in many scientific
disciplines, but not yet in energy. Why is that, and what are the
consequences?

	Opening the black box of energy modeling: Strategies and lessons learned [https://doi.org/10.1016/j.esr.2017.12.002] (Energy Strategy Reviews,
2018). A closer look at the benefits available from using shared, open energy
system models, including less duplicated effort, more transparency, and
better research reproducibility.

	Open Power System Data: Frictionless Data for Open Power System Modeling [https://doi.org/10.1016/j.apenergy.2018.11.097] (Applied Energy, 2019). An
explanation of the motivation and process behind the European OPSD project,
which is analogous to our PUDL project, also making use of Frictionless Data
Packages.

	Open Data for Electricity Modeling [https://www.bmwi.de/Redaktion/EN/Publikationen/Studien/open-Data-for-electricity-modeling.html]
(BWMi, 2018). A white paper exploring the legal and technical issues
surrounding the use of public data for academic energy system modeling.
Primarily focused on the EU, but more generally applicable. Based on a BWMi
hosted workshop Catalyst took part in during September, 2018.

We also want to bring best practices from the world of software engineering and
data science to energy research and advocacy communities. These papers by Greg
Wilson and some of the other organizers of the
Software and Data Carpentries [https://carpetries.org] are good accessible
introductions, aimed primarily at an academic audience:

	Best practices for scientific computing [https://doi.org/10.1371/journal.pbio.1001745] (PLOS Biology, 2014)

	Good enough practices in scientific computing [https://doi.org/10.1371/journal.pcbi.1005510] (PLOS Computational
Biology, 2017)

Acknowledgments

Thanks to everyone who has helped make this project a reality!

Open Source Contributions

We’ve been lucky to have some financial support for PUDL over the last 3+
years, but a lot of the work has still been done on a volunteer basis, both
by members of Catalyst Cooperative and open source contributors, including:

	Karl Dunkle Werner [https://karldw.org/], a PhD student at UC Berkeley,
who did a lot of the integration work for EPA CEMS Hourly.

	Greg Schivley [https://gschivley.github.io/], a recently minted PhD from
Carnegie Mellon University, who has pointed us at lots of great open data
resources, and integrated the EPA IPM data.

	Priya Donti [https://priyadonti.com/], a PhD student at Carnegie Mellon
University, for user experience and documentation feedback.

	Josh Rhodes [https://sites.google.com/site/joshdr83/],
Brianna Cote, and Vibrant Clean Energy [https://vibrantcleanenergy.com]
for submitting Github issues and offering valuable user feedback.

Grant Funding

The Alfred P. Sloan Foundation Energy & Environment Program [https://sloan.org/programs/energy-and-environment] has funded one year of concerted work on
PUDL aimed at serving the academic research community (May 2019 - April 2020).
Many thanks to Will Driscoll for providing feedback on and edits to our Sloan
proposal.

The PUDL project has also received support from
The Flora Family Foundation [https://www.florafamily.org/] to make the
processed data available in Published Data Packages.

Partnerships

We wouldn’t be here today without a long list of partners who have helped us
along the way.

We’re thankful for the opportunity to participate as a pilot project in the
Frictionless Data Reproducible Research [https://frictionlessdata.io/reproducible-research/]
program of the Open Knowledge Foundation [https://okfn.org]. Open Knowledge
also supported Catalyst to attend CSV,Conf,v4 [https://csvconf.com/2019] in
Portland, Oregon.

Our initial 2017 work on PUDL was done as part of a project to enable
refinancing and early retirement of uneconomic coal plants, in collaboration
with The Climate Policy Initiative Climate Finance Program [https://climatepolicyinitiative.org/climate-finance/].
(See these white papers [https://energyinnovation.org/publication/managing-the-utility-financial-transition-from-coal-to-clean-2] for some of the results.)

The EU based
Open Energy Modeling Initiative [https://openmod-initiative.org/] and
Open Power System Data [https://open-power-system-data.org/] projects have
taught us a lot about how to wrangle this data for research purposes, and the
importance of the legal and licensing dimension of the work.

Thanks to Matt Wassen and Jeff Deal at
Appalachian Voices [http://appvoices.org/] for giving us a copy of their
archive of FERC Form 1 data that’s no longer available online.

Clean Energy Action [http://cleanenergyaction.org] in
Boulder, Colorado gave several of us our first chance to get paid to do energy
policy and data analysis work, organizing around Xcel Energy’s Colorado coal
plants.

The Rocky Mountain Farmers Union [https://rmfu.org] and their
Cooperative Development Center [https://www.rmfu.org/what-we-do/cooperation/]
helped us incorporate as a worker cooperative in Colorado, and continue to
offer us affordable legal support.

Networking and Moral Support

	Harriet Moyer-Aptekar

	Uday Varadarajan

	Ron Lehr

	Eric Gimon

	Leslie Glustrom

	Bill Stevenson

The MIT License

Copyright 2017-2019 Catalyst Cooperative and the Climate Policy Initiative

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Catalyst Cooperative Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, gender identity and expression, level of
experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at
pudl@catalyst.coop.
The project team will review and investigate all complaints, and will respond
in a way that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the
Contributor Covenant [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4/

pudl

	pudl package
	Subpackages
	pudl.analysis package
	Submodules

	Module contents

	pudl.convert package
	Submodules

	Module contents

	pudl.extract package
	Submodules

	Module contents

	pudl.glue package
	Submodules

	Module contents

	pudl.load package
	Submodules

	Module contents

	pudl.output package
	Submodules

	Module contents

	pudl.transform package
	Submodules

	Module contents

	pudl.workspace package
	Submodules

	Module contents

	Submodules
	pudl.cli module

	pudl.constants module

	pudl.etl module

	pudl.helpers module

	pudl.validate module

	Module contents

pudl package

Subpackages

	pudl.analysis package
	Submodules
	pudl.analysis.mcoe module

	Module contents

	pudl.convert package
	Submodules
	pudl.convert.datapkg_to_sqlite module

	pudl.convert.epacems_to_parquet module

	pudl.convert.ferc1_to_sqlite module

	pudl.convert.flatten_datapkgs module

	Module contents

	pudl.extract package
	Submodules
	pudl.extract.eia860 module

	pudl.extract.eia923 module

	pudl.extract.epacems module

	pudl.extract.epaipm module

	pudl.extract.ferc1 module

	Module contents

	pudl.glue package
	Submodules
	pudl.glue.ferc1_eia module

	Module contents

	pudl.load package
	Submodules
	pudl.load.csv module

	pudl.load.metadata module

	Module contents

	pudl.output package
	Submodules
	pudl.output.eia860 module

	pudl.output.eia923 module

	pudl.output.export module

	pudl.output.ferc1 module

	pudl.output.glue module

	pudl.output.pudltabl module

	Module contents

	pudl.transform package
	Submodules
	pudl.transform.eia module

	pudl.transform.eia860 module

	pudl.transform.eia923 module

	pudl.transform.epacems module

	pudl.transform.epaipm module

	pudl.transform.ferc1 module

	Module contents

	pudl.workspace package
	Submodules
	pudl.workspace.datastore module

	pudl.workspace.datastore_cli module

	pudl.workspace.setup module

	pudl.workspace.setup_cli module

	Module contents

Submodules

	pudl.cli module

	pudl.constants module

	pudl.etl module

	pudl.helpers module

	pudl.validate module

Module contents

The Public Utility Data Liberation (PUDL) Project.

pudl.analysis package

Submodules

	pudl.analysis.mcoe module

Module contents

Modules providing programmatic analyses that make use of PUDL data.

The pudl.analysis subpackage is a collection of modules which implement
various systematic analyses using the data compiled by PUDL. Over time this
should grow into a rich library of tools that show how the data can be put to
use. We may also generate post-analysis datapackages for distribution at some
point.

pudl.analysis.mcoe module

A module with functions to aid generating MCOE.

	
pudl.analysis.mcoe.capacity_factor(pudl_out, min_cap_fact=0, max_cap_fact=1.5)

	Calculate the capacity factor for each generator.

Capacity Factor is calculated by using the net generation from eia923 and
the nameplate capacity from eia860. The net gen and capacity are pulled
into one dataframe, then the dates from that dataframe are pulled out to
determine the hours in each period based on the frequency. The number of
hours is used in calculating the capacity factor. Then records with
capacity factors outside the range specified by min_cap_fact and
max_cap_fact are dropped.

	
pudl.analysis.mcoe.fuel_cost(pudl_out)

	Calculate fuel costs per MWh on a per generator basis for MCOE.

Fuel costs are reported on a per-plant basis, but we want to estimate them
at the generator level. This is complicated by the fact that some plants
have several different types of generators, using different fuels. We have
fuel costs broken out by type of fuel (coal, oil, gas), and we know which
generators use which fuel based on their energy_source_code and reported
prime_mover. Coal plants use a little bit of natural gas or diesel to get
started, but based on our analysis of the “pure” coal plants, this amounts
to only a fraction of a percent of their overal fuel consumption on a
heat content basis, so we’re ignoring it for now.

For plants whose generators all rely on the same fuel source, we simply
attribute the fuel costs proportional to the fuel heat content consumption
associated with each generator.

For plants with more than one type of generator energy source, we need to
split out the fuel costs according to fuel type – so the gas fuel costs
are associated with generators that have energy_source_code gas, and the
coal fuel costs are associated with the generators that have
energy_source_code coal.

	
pudl.analysis.mcoe.heat_rate_by_gen(pudl_out)

	Convert by-unit heat rate to by-generator, adding fuel type & count.

	
pudl.analysis.mcoe.heat_rate_by_unit(pudl_out)

	Calculate heat rates (mmBTU/MWh) within separable generation units.

Assumes a “good” Boiler Generator Association (bga) i.e. one that only
contains boilers and generators which have been completely associated at
some point in the past.

The BGA dataframe needs to have the following columns:
- report_date (annual)
- plant_id_eia
- unit_id_pudl
- generator_id
- boiler_id

The unit_id is associated with generation records based on report_date,
plant_id_eia, and generator_id. Analogously, the unit_id is associtated
with boiler fuel consumption records based on report_date, plant_id_eia,
and boiler_id.

Then the total net generation and fuel consumption per unit per time period
are calculated, allowing the calculation of a per unit heat rate. That
per unit heat rate is returned in a dataframe containing:
- report_date
- plant_id_eia
- unit_id_pudl
- net_generation_mwh
- total_heat_content_mmbtu
- heat_rate_mmbtu_mwh

	
pudl.analysis.mcoe.mcoe(pudl_out, min_heat_rate=5.5, min_fuel_cost_per_mwh=0.0, min_cap_fact=0.0, max_cap_fact=1.5)

	Compile marginal cost of electricity (MCOE) at the generator level.

Use data from EIA 923, EIA 860, and (eventually) FERC Form 1 to estimate
the MCOE of individual generating units. The calculation is performed at
the time resolution, and for the period indicated by the pudl_out object.
that is passed in.

	Parameters

	
	pudl_out – a PudlTabl object, specifying the time resolution and
date range for which the calculations should be performed.

	min_heat_rate – lowest plausible heat rate, in mmBTU/MWh. Any MCOE
records with lower heat rates are presumed to be invalid, and are
discarded before returning.

	max_cap_fact (min_cap_fact,) – minimum & maximum generator capacity
factor. Generator records with a lower capacity factor will be
filtered out before returning. This allows the user to exclude
generators that aren’t being used enough to have valid.

	min_fuel_cost_per_mwh – minimum fuel cost on a per MWh basis that is
required for a generator record to be considered valid. For some
reason there are now a large number of $0 fuel cost records, which
previously would have been NaN.

	Returns

	a dataframe organized by date and generator,
with lots of juicy information about the generators – including fuel
cost on a per MWh and MMBTU basis, heat rates, and net generation.

	Return type

	pandas.DataFrame

pudl.convert package

Submodules

	pudl.convert.datapkg_to_sqlite module

	pudl.convert.epacems_to_parquet module

	pudl.convert.ferc1_to_sqlite module

	pudl.convert.flatten_datapkgs module

Module contents

Tools for converting datasets between various formats in bulk.

It’s often useful to be able to convert entire datasets in bulk from one format
to another, both independent of and within the context of the ETL pipeline.
This subpackage collects those tools together in one place.

Currently the tools use a mix of idioms, referring either to a particular
dataset and a particular format, or two formats. Some of them read from the
original raw data as organized by the pudl.workspace package (e.g.
pudl.convert.ferc1_to_sqlite or pudl.convert.epacems_to_parquet),
and others convert the entire collection of data from an output datapackage
into another format (e.g. pudl.convert.datapackage_to_sqlite).

pudl.convert.datapkg_to_sqlite module

Convert a set of datapackages to SQLite database.

This script will convert a bundle of datapackages into one SQLite database.
First, it flattens that datapackages into one datapackage named ‘pudl-all’.
Then, it converts that flattened pudl datapackage into a SQLite database.

You will need to give the name of the directory which contains datapackages
that you want to flatten and convert. This directory needs to be in your
“PUDL_OUT” and “datapackage” directory. To see more info on directory setup see
the pudl_setup script (pudl_setup –help for more details).

	
pudl.convert.datapkg_to_sqlite.main()

	Convert a set of datapackages to a sqlite database.

	
pudl.convert.datapkg_to_sqlite.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.convert.datapkg_to_sqlite.pkg_to_sqlite_db(pudl_settings, pkg_bundle_name, pkg_name=None)

	Turn a data package into a sqlite database.

	Parameters

	
	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary filled with settings that mostly
describe paths to various resources and outputs.

	pkg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of data package. this can be the flattened
datapackge (by default named ‘pudl-all’) or any of the sub-
datapackages.

	pkg_bundle_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the directory where the bundle
of datapackages live that you want to convert.

pudl.convert.epacems_to_parquet module

A script for converting the EPA CEMS dataset from gzip to Apache Parquet.

The original EPA CEMS data is available as ~12,000 gzipped CSV files, one for
each month for each state, from 1995 to the present. On disk they take up
about 7.3 GB of space, compressed. Uncompressed it is closer to 100 GB. That’s
too much data to work with in memory.

Apache Parquet is a compressed, columnar datastore format, widely used in Big
Data applications. It’s an open standard, and is very fast to read from disk.
It works especially well with both Dask dataframes (a parallel / distributed
computing extension of Pandas) and Apache Spark (a cloud based Big Data
processing pipeline system.)

Since pulling 100 GB of data into postgres takes a long time, and working with
that data en masse isn’t particularly pleasant on a laptop, this script can be
used to convert the original EPA CEMS data to the more widely usable Apache
Parquet format for use with Dask, either on a multi-core workstation or in an
interactive cloud computing environment like Pangeo.

	For more information on working with these systems check out:
	
	https://tomaugspurger.github.io/modern-1-intro

	https://dask.pydata.org

	https://pangio.io

	
pudl.convert.epacems_to_parquet.create_cems_schema()

	Make an explicit Arrow schema for the EPA CEMS data.

Make changes in the types of the generated parquet files by editing this
function.

Note that parquet’s internal representation doesn’t use unsigned numbers or
16-bit ints, so just keep things simple here and always use int32 and
float32.

	Returns

	An Arrow schema for the EPA CEMS data.

	Return type

	pyarrow.schema

	
pudl.convert.epacems_to_parquet.epacems_to_parquet(epacems_years, epacems_states, data_dir, out_dir, pkg_dir, compression='snappy', partition_cols=('year', 'state'))

	Take transformed EPA CEMS dataframes and output them as Parquet files.

We need to do a few additional manipulations of the dataframes after they
have been transformed by PUDL to get them ready for output to the Apache
Parquet format. Mostly this has to do with ensuring homogeneous data types
across all of the dataframes, and downcasting to the most efficient data
type possible for each of them. We also add a ‘year’ column so that we can
partition the datset on disk by year as well as state.

	Parameters

	
	epacems_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of years from which we are trying to read
CEMs data

	epacems_states (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of years from which we are trying to read
CEMs data

	data_dir (path-like) – Path to the top directory of the PUDL datastore.

	out_dir (path-like) – The directory in which to output the Parquet files

	pkg_dir (path-like) – The directory in which to output…

	compression (type?) –

	partition_cols (type?) –

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Raised if an output directory is not specified.

Todo

Return to

	
pudl.convert.epacems_to_parquet.main()

	Convert zipped EPA CEMS Hourly data to Apache Parquet format.

	
pudl.convert.epacems_to_parquet.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.convert.epacems_to_parquet.year_from_operating_datetime(df)

	Add a ‘year’ column based on the year in the operating_datetime.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A DataFrame containing EPA CEMS data.

	Returns

	A DataFrame containing EPA CEMS data with a ‘year’
column.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.convert.ferc1_to_sqlite module

A script for cloning the FERC Form 1 database into SQLite.

This script generates a SQLite database that is a clone/mirror of the original
FERC Form1 database. We use this cloned database as the starting point for the
main PUDL ETL process. The underlying work in the script is being done in
pudl.extract.ferc1.

	
pudl.convert.ferc1_to_sqlite.main()

	Clone the FERC Form 1 FoxPro database into SQLite.

	
pudl.convert.ferc1_to_sqlite.parse_command_line(argv)

	Parse command line arguments. See the -h option.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, including caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.convert.flatten_datapkgs module

This module takes a bundle of datapackages and flattens them.

Because we have enabled the generation of multiple data packages as a part of a
data package “bundle”, we need to squish the multiple data packages together in
order to put all of the pudl data into one data package. This is especailly
useful for converting the data package to a SQLite database or any other format.

	The module does two main things:
	
	squish the csv’s together

	squish the metadata (datapackage.json) files together

The CSV squishing is pretty simple and is all being done in
flatten_data_packages_csvs. We are assuming and enforcing that if two data
packages include the same dataset, that dataset has the same ETL parameters
(years, tables, states, etc.). The metadata is slightly more complicated to
compile because each element of the metadata is structured differently. Most of
that work is being done in flatten_data_package_metadata.

	
pudl.convert.flatten_datapkgs.check_for_matching_parameters(pkg_bundle_dir, pkg_name)

	Check to see if the ETL parameters for datasets are the same across dp’s.

	Parameters

	
	pkg_bundle_dir (path-like) – the subdirectory where the bundle of data
packages live

	pkg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name you choose for the flattened data package.

	
pudl.convert.flatten_datapkgs.compile_data_packages_metadata(pkg_bundle_dir, pkg_name='pudl-all')

	Grab the metadata from each of your dp’s.

	Parameters

	
	pkg_bundle_dir (path-like) – the subdirectory where the bundle of data
packages live

	pkg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name you choose for the flattened data package.

	Returns

	pkg_descriptor_elements

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.convert.flatten_datapkgs.flatten_data_package_metadata(pkg_bundle_dir, pkg_name='pudl-all')

	Convert a bundle of PULD data package metadata into one file.

	Parameters

	
	pkg_bundle_dir (path-like) – the subdirectory where the bundle of data
packages live

	pkg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name you choose for the flattened data package.

	Returns

	pkg_descriptor

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.convert.flatten_datapkgs.flatten_data_packages_csvs(pkg_bundle_dir, pkg_name='pudl-all')

	Copy the CSVs into a new data package directory.

	Parameters

	
	pkg_bundle_dir (path-like) – the subdirectory where the bundle of data
packages live

	pkg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name you choose for the flattened data package.

	
pudl.convert.flatten_datapkgs.flatten_pudl_datapackages(pudl_settings, pkg_bundle_name, pkg_name='pudl-all')

	Combines a collection of PUDL data packages into one.

	Parameters

	
	pkg_bundle_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the subdirectory where the bundle of
data packages live. Normally, this name will have been generated in
generate_data_packages.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary filled with settings that mostly
describe paths to various resources and outputs.

	pkg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name you choose for the flattened data package.

	Returns

	a dictionary of the data package validation report.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.convert.flatten_datapkgs.get_all_sources(pkg_descriptor_elements)

	Grab list of all of the datasets in a data package bundle.

	
pudl.convert.flatten_datapkgs.get_same_source_meta(pkg_descriptor_elements, title)

	Grab the the source metadata of the same dataset from all datapackages.

pudl.extract package

Submodules

	pudl.extract.eia860 module

	pudl.extract.eia923 module

	pudl.extract.epacems module

	pudl.extract.epaipm module

	pudl.extract.ferc1 module

Module contents

Modules implementing the “Extract” step of the PUDL ETL pipeline.

Each module in this subpackage implements data extraction for a single data
source from the PUDL Data Catalog. This process begins with
the original data as retrieved by the pudl.workspace subpackage, and
ends with a dictionary of “raw” pandas.DataFrame`s, that have been
minimally altered from the original data, and are ready for normalization and
data cleaning by the data source specific modules in the :mod:`pudl.transform
subpackage.

pudl.extract.eia860 module

Retrieve data from EIA Form 860 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 860 data.

	
pudl.extract.eia860.extract(eia860_years, data_dir)

	Creates a dictionary of DataFrames containing all the EIA 860 tables.

	Parameters

	
	eia860_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of data_years

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Top level datastore directory.

	Returns

	A dictionary of EIA 860 pages (keys) and DataFrames (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.eia860.get_eia860_column_map(page, year)

	Given a year and EIA860 page, returns info needed to slurp it from Excel.

The format of the EIA860 has changed slightly over the years, and so it
is not completely straightforward to pull information from the spreadsheets
into our analytical framework. This function looks up a map of the various
tabs in the spreadsheet by year and page, and returns the information
needed to name the data fields in a standardized way, and pull the right
cells from each year & page into our database.

	Parameters

	
	page (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string label indicating which page of the EIA860 we
are attempting to read in. Must be one of the following:
- ‘generation_fuel’
- ‘stocks’
- ‘boiler_fuel’
- ‘generator’
- ‘fuel_receipts_costs’
- ‘plant_frame’

	year (int [https://docs.python.org/3/library/functions.html#int]) – The year that we’re trying to read data for.

	Returns

	
	A tuple containing:
	
	int: sheet_name, an integer indicating which page in the worksheet
the data should be pulled from. 0 is the first page, 1 is the
second page, etc. For use by pandas.read_excel()

	int: skiprows, an integer indicating how many rows should be skipped
at the top of the sheet being read in, before the header row
that contains the strings which will be converted into column
names in the dataframe which is created by pandas.read_excel()

	dict: column_map, a dictionary that maps the names of the columns
in the year being read in, to the canonical EIA923 column names
(i.e. the column names as they are in 2014-2016). This
dictionary will be used by DataFrame.rename(). The keys are the
column names in the dataframe as read from older years, and the
values are the canonmical column names. All should be stripped
of leading and trailing whitespace, converted to lower case,
and have internal non-alphanumeric characters replaced with
underscores.

	pd.Index: all_columns, the column Index associated with the column
map – it includes all of the columns which might be present in
all of the years of data, for use in setting the column index of
the raw dataframe which is ultimately extracted, so we can
ensure that they all have the same columns, even if we’re only
loading a limited number of years.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.extract.eia860.get_eia860_file(yr, file, data_dir)

	Construct the appopriate path for a given EIA860 Excel file.

	Parameters

	
	year (int [https://docs.python.org/3/library/functions.html#int]) – The year that we’re trying to read data for.

	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string containing part of the file name for a given EIA
860 file (e.g. ‘Generat’)

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Top level datastore directory.

	Returns

	Path to EIA 860 spreadsheets corresponding to a given year.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the requested year is not in the list of working
 years for EIA 860.

	
pudl.extract.eia860.get_eia860_page(page, eia860_xlsx, years=(2011, 2012, 2013, 2014, 2015, 2016, 2017))

	Reads a table from several years of EIA860 data, returns a DataFrame.

	Parameters

	
	page (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string label indicating which page of the EIA860 we
are attempting to read in. The page argument must be exactly one of
the following strings:

	’boiler_generator_assn’

	’utility’

	’plant’

	’generator_existing’

	’generator_proposed’

	’generator_retired’

	’ownership’

	eia860_xlsx (pandas.io.excel.ExcelFile) – xlsx file of EIA Form 860 for
input year or years

	years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The set of years to read into the DataFrame.

	Returns

	A DataFrame of EIA 860 data from selected page, years.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	
	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the page string is not among the list of recognized
 EIA 860 page strings.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the year is not in the list of years that work for
 EIA 860.

	
pudl.extract.eia860.get_eia860_xlsx(years, filename, data_dir)

	Read in Excel files to create Excel objects.

Rather than reading in the same Excel files several times, we can just
read them each in once (one per year) and use the ExcelFile object to
refer back to the data in memory.

	Parameters

	
	years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The years that we’re trying to read data for.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – [‘enviro_assn’, ‘utilities’, ‘plants’, ‘generators’]

	Returns

	xlsx file of EIA Form 860 for input year(s)

	Return type

	pandas.io.excel.ExcelFile

pudl.extract.eia923 module

Retrieves data from EIA Form 923 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 923 data. Currenly only
years 2009-2016 work, as they share nearly identical file formatting.

	
pudl.extract.eia923.extract(eia923_years, data_dir)

	Creates a dictionary of DataFrames containing all the EIA 923 tables.

	Parameters

	
	eia860_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of data_years

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Top level datastore directory.

	Returns

	A dictionary containing EIA 860 pages (keys) and DataFrames of
data from each page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.eia923.get_eia923_column_map(page, year)

	Given a year and EIA923 page, returns info needed to slurp it from Excel.

The format of the EIA923 has changed slightly over the years, and so it
is not completely straightforward to pull information from the spreadsheets
into our analytical framework. This function looks up a map of the various
tabs in the spreadsheet by year and page, and returns the information
needed to name the data fields in a standardized way, and pull the right
cells from each year & page into our database.

	Parameters

	
	page (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string label indicating which page of the EIA923 we
are attempting to read in. Must be one of the following:
- ‘generation_fuel’
- ‘stocks’
- ‘boiler_fuel’
- ‘generator’
- ‘fuel_receipts_costs’
- ‘plant_frame’

	year (int [https://docs.python.org/3/library/functions.html#int]) – The year that we’re trying to read data for.

	Returns

	
	A tuple containing:
	
	int: sheet_name (int): An integer indicating which page in the
worksheet the data should be pulled from. 0 is the first page,
1 is the second page, etc. For use by pandas.read_excel()

	int: skiprows, an integer indicating how many rows should be
skipped at the top of the sheet being read in, before the
header row that contains the strings which will be converted
into column names in the dataframe which is created by
pandas.read_excel()

	int: skiprows, an integer indicating how many rows should be
skipped at the top of the sheet being read in, before the header
row that contains the strings which will be converted into column
names in the dataframe which is created by pandas.read_excel()

	dict: column_map, a dictionary that maps the names of the columns
in the year being read in, to the canonical EIA923 column names
(i.e. the column names as they are in 2014-2016). This
dictionary will be used by DataFrame.rename(). The keys are the
column names in the dataframe as read from older years, and the
values are the canonmical column names. All should be stripped
of leading and trailing whitespace, converted to lower case,
and have internal non-alphanumeric characters replaced with
underscores.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.extract.eia923.get_eia923_file(yr, data_dir)

	Construct the appopriate path for a given year’s EIA923 Excel file.

	Parameters

	
	year (int [https://docs.python.org/3/library/functions.html#int]) – The year that we’re trying to read data for.

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Top level datastore directory.

	Returns

	path to EIA 923 spreadsheets corresponding to a given year.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pudl.extract.eia923.get_eia923_page(page, eia923_xlsx, years=(2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017))

	Reads a table from given years of EIA923 data, returns a DataFrame.

	Parameters

	
	page (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string label indicating which page of the EIA923 we
are attempting to read in. The page argument must be exactly one of
the following strings:

	’generation_fuel’

	’stocks’

	’boiler_fuel’

	’generator’

	’fuel_receipts_costs’

	’plant_frame’

	eia923_xlsx (pandas.io.excel.ExcelFile) – xlsx file of EIA Form 923 for
input year(s)

	years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The set of years to read into the dataframe.

	Returns

	A dataframe containing the data from the selected
page and selected years from EIA 923.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Convert 2 assert statements to AssertionError

	
pudl.extract.eia923.get_eia923_xlsx(years, data_dir)

	Reads in Excel files to create Excel objects.

Rather than reading in the same Excel files several times, we can just
read them each in once (one per year) and use the ExcelFile object to
refer back to the data in memory.

	Parameters

	
	years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The years that we’re trying to read data for.

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Top level datastore directory.

	Returns

	xlsx file of EIA Form 923 for input year(s)

	Return type

	pandas.io.excel.ExcelFile

pudl.extract.epacems module

Retrieve data from EPA CEMS hourly zipped CSVs.

This modules pulls data from EPA’s published CSV files.

	
pudl.extract.epacems.extract(epacems_years, states, data_dir)

	Coordinate the extraction of EPA CEMS hourly DataFrames.

	Parameters

	
	epacems_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of years from which we are trying to read
CEMS data

	states (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of states from which we are trying to read CEMS
data

	data_dir (path-like) – Path to the top directory of the PUDL datastore.

	Yields

	dict – a dictionary of States (keys) and DataFrames of CEMS data (values)

Todo

This is really slow. Can we do some parallel processing?

	
pudl.extract.epacems.read_cems_csv(filename)

	Reads one CEMS CSV file.

Note that some columns are not read. See epacems_columns_to_ignores.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file to be read

	Returns

	A DataFrame containing the contents of the CSV file.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.extract.epaipm module

Retrieve data from EPA’s Integrated Planning Model (IPM) v6.

Unlike most of the PUDL data sources, IPM is not an annual timeseries. This
file assumes that only v6 will be used as an input, so there are a limited
number of files.

	
pudl.extract.epaipm.create_dfs_epaipm(files, data_dir)

	Makes dictionary of pages (keys) to dataframes (values) for epaipm tabs.

	Parameters

	
	files (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of epaipm files

	data_dir (path-like) – Path to the top directory of the PUDL datastore.

	Returns

	dictionary of pages (key) to dataframes (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.epaipm.extract(epaipm_tables, data_dir)

	Extracts data from IPM files.

	Parameters

	
	epaipm_tables (iterable) – A tuple or list of table names to extract

	data_dir (path-like) – Path to the top directory of the PUDL datastore.

	Returns

	dictionary of DataFrames with extracted (but not yet transformed)
data from each file.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.epaipm.get_epaipm_file(filename, read_file_args, data_dir)

	Reads in files to create dataframes.

No need to use ExcelFile objects with the IPM files because each file
is only a single sheet.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – [‘single_transmission’, ‘joint_transmission’]

	read_file_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of arguments for pandas read_*

	data_dir (path-like) – Path to the top directory of the PUDL datastore.

	Returns

	an xlsx file of EPA IPM data

	Return type

	pandas.io.excel.ExcelFile

	
pudl.extract.epaipm.get_epaipm_name(file, data_dir)

	Returns the appropriate EPA IPM excel file.

	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file that we’re trying to read data for.

	data_dir (path-like) – Path to the top directory of the PUDL datastore.

	Returns

	The path to EPA IPM spreadsheet.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

pudl.extract.ferc1 module

Tools for extracting data from the FERC Form 1 FoxPro database for use in PUDL.

FERC distributes the annual responses to Form 1 as binary FoxPro database
files. This format is no longer widely supported, and so our first challenge in
accessing the Form 1 data is to convert it into a modern format. In addition,
FERC distributes one database for each year, and these databases are not
explicitly linked together. Over time the structure has changed as new tables
and fields have been added. In order to be able to use the data to do analyses
across many years, we need to bring all of it into a unified structure. However
it appears that these changes are only entirely additive – the most recent
versions of the DB contain all the tables and fields that existed in earlier
versions.

PUDL uses the most recently released year of data as a template, and infers the
structure of the FERC Form 1 database based on the strings embedded within the
binary files, pulling out the names of tables and their constituent columns.
The structure of the database is also informed by information we found on the
FERC website, including a mapping between the table names, DBF file names,
and the pages of the Form 1 (add link to file, which should distributed with
the docs) that the data was gathered from, as well as a diagram of the
structure of the database as it existed in 2015 (add link/embed image).

Using this inferred structure PUDL creates an SQLite database mirroring the
FERC database using sqlalchemy. Then we use a python package called
dbfread <https://dbfread.readthedocs.io/en/latest/> to extract the data from
the DBF tables, and insert it virtually unchanged into the SQLite database.
However, we do compile a master table of the all the respondent IDs and
respondent names, which all the other tables refer to. Unlike the other tables,
this table has no report_year and so it represents a merge of all the years
of data. In the event that the name associated with a given respondent ID has
changed over time, we retain the most recently reported name.

Ths SQLite based compilation of the original FERC Form 1 databases can
accommodate all 100+ tables from all the published years of data (beginning in
1994). Including all the data through 2017, the database takes up more than
7GB of disk space. However, almost 90% of that “data” is embeded binary files
in two tables. If those tables are excluded, the database is less than 800MB
in size.

The process of cloning the FERC Form 1 database(s) is coordinated by a script
called ferc1_to_sqlite implemented in pudl.convert.ferc1_to_sqlite
which is controlled by a YAML file. See the example file distributed with the
package here (link!).

Once the cloned SQLite database has been created, we use it as an input into
the PUDL ETL pipeline, and we extract a small subset of the available tables
for further processing and integration with other data sources like the EIA 860
and EIA 923.

	
class pudl.extract.ferc1.FERC1FieldParser(table, memofile=None)

	Bases: dbfread.field_parser.FieldParser

A custom DBF parser to deal with bad FERC Form 1 data types.

	
parseN(field, data)

	Augments the Numeric DBF parser to account for bad FERC data.

There are a small number of bad entries in the backlog of FERC Form 1
data. They take the form of leading/trailing zeroes or null characters
in supposedly numeric fields, and occasionally a naked ‘.’

Accordingly, this custom parser strips leading and trailing zeros and
null characters, and replaces a bare ‘.’ character with zero, allowing
all these fields to be cast to numeric values.

	Parameters

	
	() (data) –

	() –

	() –

Todo

Zane revisit

	
pudl.extract.ferc1.accumulated_depreciation(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of the fields of accumulated_depreciation_ferc1.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the accumulated_depreciation_ferc1.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing all
accumulated_depreciation_ferc1 records.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.add_sqlite_table(table_name, sqlite_meta, dbc_map, data_dir, refyear=2017, bad_cols=())

	Adds a new Table to the FERC Form 1 database schema.

Creates a new sa.Table object named table_name and add it to the
database schema contained in sqlite_meta. Use the information in the
dictionary dbc_map to translate between the DBF filenames in the
datastore (e.g. F1_31.DBF), and the full name of the table in the
FoxPro database (e.g. f1_fuel) and also between truncated column
names extracted from that DBF file, and the full column names extracted
from the DBC file. Read the column datatypes out of each DBF file and use
them to define the columns in the new Table object.

	Parameters

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new table to be added to the
database schema.

	sqlite_meta (sa.schema.MetaData) – The database schema to which the
newly defined Table will be added.

	dbc_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of dictionaries

	bad_cols (iterable of 2-tuples) – A list or other iterable containing
pairs of strings of the form (table_name, column_name), indicating
columns (and their parent tables) which should not be cloned
into the SQLite database for some reason.

	
pudl.extract.ferc1.dbc_filename(year, data_dir)

	Given a year, returns the path to the master FERC Form 1 .DBC file.

	Parameters

	year (int [https://docs.python.org/3/library/functions.html#int]) – The year that we’re trying to read data for

	Returns

	the file path to the master FERC Form 1 .DBC file for the year

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pudl.extract.ferc1.dbf2sqlite(tables, years, refyear, pudl_settings, bad_cols=())

	Clone the FERC Form 1 Databsae to SQLite.

	Parameters

	
	tables (iterable) – What tables should be cloned?

	years (iterable) – Which years of data should be cloned?

	refyear (int [https://docs.python.org/3/library/functions.html#int]) – Which database year to use as a template.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing paths and database URLs
used by PUDL.

	bad_cols (iterable of tuples) – A list of (table, column) pairs
indicating columns that should be skipped during the cloning
process. Both table and column are strings in this case, the
names of their respective entities within the database metadata.

	Returns

	None

	
pudl.extract.ferc1.define_sqlite_db(sqlite_meta, dbc_map, data_dir, tables={'f1_106_2009': 'F1_106_2009', 'f1_106a_2009': 'F1_106A_2009', 'f1_106b_2009': 'F1_106B_2009', 'f1_208_elc_dep': 'F1_208_ELC_DEP', 'f1_231_trn_stdycst': 'F1_231_TRN_STDYCST', 'f1_324_elc_expns': 'F1_324_ELC_EXPNS', 'f1_325_elc_cust': 'F1_325_ELC_CUST', 'f1_331_transiso': 'F1_331_TRANSISO', 'f1_338_dep_depl': 'F1_338_DEP_DEPL', 'f1_397_isorto_stl': 'F1_397_ISORTO_STL', 'f1_398_ancl_ps': 'F1_398_ANCL_PS', 'f1_399_mth_peak': 'F1_399_MTH_PEAK', 'f1_400_sys_peak': 'F1_400_SYS_PEAK', 'f1_400a_iso_peak': 'F1_400A_ISO_PEAK', 'f1_429_trans_aff': 'F1_429_TRANS_AFF', 'f1_acb_epda': 'F1_2', 'f1_accumdepr_prvsn': 'F1_3', 'f1_accumdfrrdtaxcr': 'F1_4', 'f1_adit_190_detail': 'F1_5', 'f1_adit_190_notes': 'F1_6', 'f1_adit_amrt_prop': 'F1_7', 'f1_adit_other': 'F1_8', 'f1_adit_other_prop': 'F1_9', 'f1_allowances': 'F1_10', 'f1_allowances_nox': 'F1_ALLOWANCES_NOX', 'f1_audit_log': 'F1_78', 'f1_bal_sheet_cr': 'F1_11', 'f1_capital_stock': 'F1_12', 'f1_cash_flow': 'F1_13', 'f1_cmmn_utlty_p_e': 'F1_14', 'f1_cmpinc_hedge': 'F1_CMPINC_HEDGE', 'f1_cmpinc_hedge_a': 'F1_CMPINC_HEDGE_A', 'f1_co_directors': 'F1_18', 'f1_codes_val': 'F1_76', 'f1_col_lit_tbl': 'F1_79', 'f1_comp_balance_db': 'F1_15', 'f1_construction': 'F1_16', 'f1_control_respdnt': 'F1_17', 'f1_cptl_stk_expns': 'F1_19', 'f1_csscslc_pcsircs': 'F1_20', 'f1_dacs_epda': 'F1_21', 'f1_dscnt_cptl_stk': 'F1_22', 'f1_edcfu_epda': 'F1_23', 'f1_elc_op_mnt_expn': 'F1_27', 'f1_elc_oper_rev_nb': 'F1_26', 'f1_elctrc_erg_acct': 'F1_24', 'f1_elctrc_oper_rev': 'F1_25', 'f1_electric': 'F1_28', 'f1_email': 'F1_EMAIL', 'f1_envrnmntl_expns': 'F1_29', 'f1_envrnmntl_fclty': 'F1_30', 'f1_footnote_data': 'F1_85', 'f1_footnote_tbl': 'F1_87', 'f1_fuel': 'F1_31', 'f1_general_info': 'F1_32', 'f1_gnrt_plant': 'F1_33', 'f1_hydro': 'F1_86', 'f1_ident_attsttn': 'F1_88', 'f1_important_chg': 'F1_34', 'f1_incm_stmnt_2': 'F1_35', 'f1_income_stmnt': 'F1_36', 'f1_leased': 'F1_90', 'f1_load_file_names': 'F1_80', 'f1_long_term_debt': 'F1_93', 'f1_misc_dfrrd_dr': 'F1_38', 'f1_miscgen_expnelc': 'F1_37', 'f1_mthly_peak_otpt': 'F1_39', 'f1_mtrl_spply': 'F1_40', 'f1_nbr_elc_deptemp': 'F1_41', 'f1_nonutility_prop': 'F1_42', 'f1_note_fin_stmnt': 'F1_43', 'f1_nuclear_fuel': 'F1_44', 'f1_officers_co': 'F1_45', 'f1_othr_dfrrd_cr': 'F1_46', 'f1_othr_pd_in_cptl': 'F1_47', 'f1_othr_reg_assets': 'F1_48', 'f1_othr_reg_liab': 'F1_49', 'f1_overhead': 'F1_50', 'f1_pccidica': 'F1_51', 'f1_plant': 'F1_92', 'f1_plant_in_srvce': 'F1_52', 'f1_privilege': 'F1_81', 'f1_pumped_storage': 'F1_53', 'f1_purchased_pwr': 'F1_54', 'f1_r_d_demo_actvty': 'F1_59', 'f1_reconrpt_netinc': 'F1_55', 'f1_reg_comm_expn': 'F1_56', 'f1_respdnt_control': 'F1_57', 'f1_respondent_id': 'F1_1', 'f1_retained_erng': 'F1_58', 'f1_rg_trn_srv_rev': 'F1_RG_TRN_SRV_REV', 'f1_row_lit_tbl': 'F1_84', 'f1_s0_checks': 'F1_S0_CHECKS', 'f1_s0_filing_log': 'F1_S0_FILING_LOG', 'f1_sale_for_resale': 'F1_61', 'f1_sales_by_sched': 'F1_60', 'f1_sbsdry_detail': 'F1_91', 'f1_sbsdry_totals': 'F1_62', 'f1_sched_lit_tbl': 'F1_77', 'f1_schedules_list': 'F1_63', 'f1_security': 'F1_SECURITY', 'f1_security_holder': 'F1_64', 'f1_slry_wg_dstrbtn': 'F1_65', 'f1_steam': 'F1_89', 'f1_substations': 'F1_66', 'f1_sys_error_log': 'F1_82', 'f1_taxacc_ppchrgyr': 'F1_67', 'f1_unique_num_val': 'F1_83', 'f1_unrcvrd_cost': 'F1_68', 'f1_utltyplnt_smmry': 'F1_69', 'f1_work': 'F1_70', 'f1_xmssn_adds': 'F1_71', 'f1_xmssn_elc_bothr': 'F1_72', 'f1_xmssn_elc_fothr': 'F1_73', 'f1_xmssn_line': 'F1_74', 'f1_xtraordnry_loss': 'F1_75'}, refyear=2017, bad_cols=())

	Defines a FERC Form 1 DB structure in a given SQLAlchemy MetaData object.

Given a template from an existing year of FERC data, and a list of target
tables to be cloned, convert that information into table and column names,
and data types, stored within a SQLAlchemy MetaData object. Use that
MetaData object (which is bound to the SQLite database) to create all the
tables to be populated later.

	Parameters

	
	sqlite_meta (sa.MetaData) – A SQLAlchemy MetaData object which is bound
to the FERC Form 1 SQLite database.

	dbc_map (dict of dicts) – A dictionary of dictionaries, of the kind
returned by get_dbc_map(), describing the table and column names
stored within the FERC Form 1 FoxPro database files.

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representing the full path to the top level of
the PUDL datastore containing the FERC Form 1 data to be used.

	tables (iterable of strings) – List or other iterable of FERC database
table names that should be included in the database being defined.
e.g. ‘f1_fuel’ and ‘f1_steam’

	refyear (integer) – The year of the FERC Form 1 DB to use as a template
for creating the overall multi-year database schema.

	bad_cols (iterable of 2-tuples) – A list or other iterable containing
pairs of strings of the form (table_name, column_name), indicating
columns (and their parent tables) which should not be cloned
into the SQLite database for some reason.

	Returns

	the effects of the function are stored inside sqlite_meta

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
pudl.extract.ferc1.drop_tables(engine)

	Drop all FERC Form 1 tables from the SQLite database.

Creates an sa.schema.MetaData object reflecting the structure of the
database that the passed in engine refers to, and uses that schema to
drop all existing tables.

Todo

Treat DB connection as a context manager (with/as).

	Parameters

	engine (sa.engine.Engine) – An SQL Alchemy SQLite database Engine
pointing at an exising SQLite database to be deleted.

	Returns

	None

	
pudl.extract.ferc1.extract(ferc1_tables=('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'plant_in_service_ferc1', 'purchased_power_ferc1', 'accumulated_depreciation_ferc1'), ferc1_years=(2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017), pudl_settings=None)

	Coordinates the extraction of all FERC Form 1 tables into PUDL.

	Parameters

	
	ferc1_tables (iterable of strings) – List of the FERC 1 database tables
to be loaded into PUDL. These are the names of the tables in the
PUDL database, not the FERC Form 1 database.

	ferc1_years (iterable of ints) – List of years for which FERC Form 1
data should be loaded into PUDL. Note that not all years for which
FERC data is available may have been integrated into PUDL yet.

	Returns

	A dictionary of pandas DataFrames, with the names of PUDL
database tables as the keys. These are the raw unprocessed dataframes,
reflecting the data as it is in the FERC Form 1 DB, for passing off to
the data tidying and cleaning fuctions found in the
pudl.transform.ferc1 module.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the year is not in the list of years for which FERC data
 is available

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the year is not in the list of working FERC years

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the FERC table requested is not integrated into PUDL

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If no ferc1_meta tables are found

	
pudl.extract.ferc1.fuel(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_fuel table records with plant names, >0 fuel.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_fuel table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_fuel records that have
plant_names and non-zero fuel amounts.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.get_dbc_map(year, data_dir, min_length=4)

	Extract names of all tables and fields from a FERC Form 1 DBC file.

Read the DBC file associated with the FERC Form 1 database for the given
year, and extract all printable strings longer than min_lengh.
Select those strings that appear to be database table names, and their
associated field for use in re-naming the truncated column names extracted
from the corresponding DBF files (those names are limited to having only 10
characters in their names.)

For more info see: https://github.com/catalyst-cooperative/pudl/issues/288

Todo

Ideally this routine shouldn’t refer to any particular year of data,
but right now it depends on the ferc1_dbf2tbl dictionary, which was
generated from the 2015 Form 1 database.

	Parameters

	
	year (int [https://docs.python.org/3/library/functions.html#int]) – The year of data from which the database table and column
names are to be extracted. Typically this is expected to be the
most recently available year of FERC Form 1 data.

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representing the full path to the top level of
the PUDL datastore containing the FERC Form 1 data to be used.

	min_length (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of consecutive printable
characters that should be considered a meaningful string and
extracted.

	Returns

	a dictionary whose keys are the long table names extracted
from the DBC file, and whose values are lists of pairs of values,
the first of which is the full name of each field in the table with
the same name as the key, and the second of which is the truncated
(<=10 character) long name of that field as found in the DBF file.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.extract.ferc1.get_dbf_path(table, year, data_dir)

	Given a year and table name, returns the path to its datastore DBF file.

	Parameters

	
	table (string) – The name of one of the FERC Form 1 data tables. For
example ‘f1_fuel’ or ‘f1_steam’

	year (int [https://docs.python.org/3/library/functions.html#int]) – The year whose data you wish to find.

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representing the full path to the top level of
the PUDL datastore containing the FERC Form 1 data to be used.

	Returns

	dbf_path, a (hopefully) OS independent path including the
filename of the DBF file corresponding to the requested year and
table name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pudl.extract.ferc1.get_ferc1_meta(pudl_settings)

	Grab the FERC1 db metadata and check for tables.

	
pudl.extract.ferc1.get_raw_df(table, dbc_map, data_dir, years=(1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018))

	Combines several years of a given FERC Form 1 DBF table into a dataframe.

	Parameters

	
	table (string) – The name of the FERC Form 1 table from which data is
read.

	dbc_map (dict of dicts) – A dictionary of dictionaries, of the kind
returned by get_dbc_map(), describing the table and column names
stored within the FERC Form 1 FoxPro database files.

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representing the full path to the top level of
the PUDL datastore containing the FERC Form 1 data to be used.

	min_length (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of consecutive printable

	years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years to be combined into a single DataFrame.

	Returns

	A DataFrame containing several years of FERC Form 1
data for the given table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.get_strings(filename, min_length=4)

	Extract printable strings from a binary and return them as a generator.

This is meant to emulate the Unix “strings” command, for the purposes of
grabbing database table and column names from the F1_PUB.DBC file that is
distributed with the FERC Form 1 data.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the DBC file from which to extract strings

	min_length (int [https://docs.python.org/3/library/functions.html#int]) – the minimum number of consecutive printable
characters that should be considered a meaningful string and
extracted.

	Yields

	str – result

Todo

Zane revisit

	
pudl.extract.ferc1.plant_in_service(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of the fields of plant_in_service_ferc1.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the plant_in_service_ferc1 table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing all plant_in_service_ferc1
records.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_hydro(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_hydro for records that have plant names.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_hydro table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_hydro records that have
plant names.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_pumped_storage(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_plants_pumped_storage records with plant names.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_plants_pumped_storage table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_plants_pumped_storage
records that have plant names.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_small(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_small for records with minimum data criteria.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_small table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_small records that have
plant names and non zero demand, generation, operations,
maintenance, and fuel costs.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.plants_steam(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame of f1_steam records with plant names, capacities > 0.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the f1_steam table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing f1_steam records that have
plant names and non-zero capacities.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.purchased_power(ferc1_meta, ferc1_table, ferc1_years)

	Creates a DataFrame the fields of purchased_power_ferc1.

	Parameters

	
	ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC
Form 1 database

	ferc1_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the FERC 1 database table to read, in
this case, the purchased_power_ferc1 table.

	ferc1_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – The range of years from which to read data.

	Returns

	A DataFrame containing all purchased_power_ferc1
records.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.extract.ferc1.show_dupes(table, dbc_map, years=(1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), pk=['respondent_id', 'report_year', 'report_prd', 'row_number', 'spplmnt_num'])

	Identify duplicate primary keys by year within a given FERC Form 1 table.

	Parameters

	
	table (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the original FERC Form 1 table to identify
duplicate records in.

	years (iterable) – a list or other iterable containing the years that
should be searched for duplicate records. By default it is all
available years of FERC Form 1 data.

	pk (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of strings identifying the columns in the FERC Form 1
table that should be treated as a composite primary key. By default
this includes: respondent_id, report_year, report_prd, row_number,
and spplmnt_num.

	Returns

	None

pudl.glue package

Submodules

	pudl.glue.ferc1_eia module

Module contents

Tools for integrating & reconciling different PUDL datasets with each other.

Many of the datasets integrated by PUDL report related information, but it’s
often not easy to programmatically relate the datasets to each other. The glue
subpackage provides tools for doing so, making all of the individual datasets
more useful, and enabling richer analyses.

In this subpackage there are two basic types of modules:

	those that implement general tools for connecting datasets together (like the
pudl.glue.zipper module which two tabular datasets based on a set of
mutually reported variables with no common IDs), and

	those that implement a connection between two specific datasets (like the
pudl.glue.ferc1_eia module).

In general we try to enable each dataset to be processed independently, and
optionally apply the glue to connect them to each other when both datasets for
which glue exists are being processed together.

pudl.glue.ferc1_eia module

Extract and transform glue tables between FERC Form 1 and EIA 860/923.

FERC1 and EIA report on the same plants and utilities, but have no embedded
connection. We have combed through the FERC and EIA plants and utilities to
generate id’s which can connect these datasets. The resulting fields in the PUDL
tables are plant_id_pudl and utility_id_pudl, respectively. This was done by
hand in a spreadsheet which is in the package_data/glue directory. When
mapping plants, we considered a plant a co-located collection of electricity
generation equipment. If a coal plant was converted to a natural gas unit, our
aim was to consider this the same plant. This module simply reads in the mapping
spreadsheet and converts it to a dictionary of dataframes.

Because these mappings were done by hand and for every one of FERC Form 1’s
reported plants, we are fairly certain that there are probably some incorrect
or incomplete mappings of plants. If you see a plant_id_pudl or
utility_id_pudl mapping that you think is incorrect, poke us on github about
it.

A thing to note about using the PUDL id’s is that they can change over time. The
spreadsheet uses MAX({all cells above}) to generate the PUDL id’s for the first
instance of every plant or utility, so when an id in the spreadsheet is changed,
every id below it is also changed.

Another note about these id’s: these id’s map our definition of plants, which is
not the most granular level of plant unit. The generators are typically the
smaller, more interesting unit. FERC does not typically report in units
(although it sometimes does), but it does often break up gas units from coal
units. EIA reports on the generator and boiler level. When trying to use these
PUDL id’s, consider the granularity that you desire and the potential
implications of using a co-located set of plant infrastructure as an id.

	
pudl.glue.ferc1_eia.glue(ferc1=False, eia=False)

	Generates a dictionary of dataframes for glue tables between FERC1, EIA.

That data is primarily stored in the plant_output and
utility_output tabs of package_data/glue/mapping_eia923_ferc1.xlsx in the
repository. There are a total of seven relations described in this data:

	utilities: Unique id and name for each utility for use across the
PUDL DB.

	plants: Unique id and name for each plant for use across the PUDL DB.

	utilities_eia: EIA operator ids and names attached to a PUDL
utility id.

	plants_eia: EIA plant ids and names attached to a PUDL plant id.

	utilities_ferc: FERC respondent ids & names attached to a PUDL
utility id.

	plants_ferc: A combination of FERC plant names and respondent ids,
associated with a PUDL plant ID. This is necessary because FERC does
not provide plant ids, so the unique plant identifier is a
combination of the respondent id and plant name.

	utility_plant_assn: An association table which describes which plants
have relationships with what utilities. If a record exists in this
table then combination of PUDL utility id & PUDL plant id does have
an association of some kind. The nature of that association is
somewhat fluid, and more scrutiny will likely be required for use in
analysis.

Presently, the ‘glue’ tables are a very basic piece of infrastructure for
the PUDL DB, because they contain the primary key fields for utilities and
plants in FERC1.

	Parameters

	
	ferc1 (bool [https://docs.python.org/3/library/functions.html#bool]) – Are we ingesting FERC Form 1 data?

	eia (bool [https://docs.python.org/3/library/functions.html#bool]) – Are we ingesting EIA data?

	Returns

	a dictionary of glue table DataFrames

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.load package

Submodules

	pudl.load.csv module

	pudl.load.metadata module

Module contents

Tools for handling the load set in pudl ETL.

pudl.load.csv module

A module with functions for loading the pudl database tables.

	
class pudl.load.csv.BulkCopy(table_name, pkg_dir, buffer=1073741824)

	Bases: contextlib.AbstractContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractContextManager]

Accumulate several DataFrames, then COPY FROM pandas to a CSV.

NOTE: You shoud use this class to load one table at a time. To load
different tables, use different instances of BulkCopy.

	Parameters

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exact name of the database table which the
DataFrame df is going to be used to populate. It will be used both
to look up an SQLAlchemy table object in the PUDLBase metadata
object, and to name the CSV file.

	buffer (int [https://docs.python.org/3/library/functions.html#int]) – Size of data to accumulate (in bytes) before actually
writing the data into postgresql. (Approximate, because we don’t
introspect memory usage ‘deeply’). Default 1 GB.

	pkg_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the directory into which the CSV file should be
saved, if it’s being kept.

Example

>>> with BulkCopy(my_table, my_engine) as p:
 for df in df_generator:
 p.add(df)

	
add(df)

	Adds a DataFrame to the accumulated list.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame to add to the accumulated list.

	Returns

	None

	
close()

	Output the accumulated tabular data to disk.

Todo

Return to

	
spill()

	Spill the accumulated dataframes into the datapackage.

	
pudl.load.csv.clean_columns_dump(table_name, pkg_dir, df)

	Output the cleaned columns to a CSV file.

	Parameters

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	pkg_dir (path-like) –

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) –

	Returns

	None

Todo

Incomplete Docstring

	
pudl.load.csv.csv_dump(df, table_name, keep_index, pkg_dir)

	Writes a dataframe to CSV and loads it into postgresql using COPY FROM.

The fastest way to load a bunch of records is using the database’s native
text file copy function. This function dumps a given dataframe out to a
CSV file, and then loads it into the specified table using a sqlalchemy
wrapper around the postgresql COPY FROM command, called postgres_copy.

Note that this creates an additional in-memory representation of the data,
which takes slightly less memory than the DataFrame itself.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame which is to be dumped to CSV and
loaded into the database. All DataFrame columns must have exactly
the same names as the database fields they are meant to populate,
and all column data types must be directly compatible with the
database fields they are meant to populate. Do any cleanup before
you call this function.

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exact name of the database table which the
DataFrame df is going to be used to populate. It will be used both
to look up an SQLAlchemy table object in the PUDLBase metadata
object, and to name the CSV file.

	keep_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the output CSV file contain an index?

	pkg_dir (path-like) – Path to the directory into which the CSV file
should be saved, if it’s being kept.

	Returns

	None

	
pudl.load.csv.dict_dump(transformed_dfs, data_source, need_fix_inting={'coalmine_eia923': ('mine_id_msha', 'county_id_fips'), 'fuel_receipts_costs_eia923': ('mine_id_pudl',), 'generation_fuel_eia923': ('nuclear_unit_id',), 'generators_eia860': ('turbines_num',), 'hourly_emissions_epacems': ('facility_id', 'unit_id_epa'), 'plants_eia860': ('utility_id_eia',), 'plants_entity_eia': ('zip_code',), 'plants_hydro_ferc1': ('construction_year', 'installation_year'), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_steam_ferc1': ('construction_year', 'installation_year')}, pkg_dir='')

	Wrapper for _csv_dump for each data source.

	Parameters

	
	transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in which
tables from datasets (keys) correspond to normalized DataFrames of
values from that table (values)

	datasource (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the datasource we are working with.

	need_fix_inting (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing table names (keys) and
column names for each table that need their null values cleaned up
(values).

	pkg_dir (path-like) – Path to the directory into which the CSV file
should be saved, if it’s being kept.

	Returns

	None

pudl.load.metadata module

Make me metadata!!!.

Lists of dictionaries of dictionaries of lists, forever. This module enables the
generation and use of the metadata for tabular data packages. This module also
saves and validates the datapackage once the metadata is compiled. The intented
use of the module is to use it after generating the CSV’s via etl.py.

On a basic level, based on the settings in the pkg_settings, tables and sources
associated with a data package, we are compiling information about the data
package. For the table metadata, we are pulling from the megadata
(pudl/package_data/meta/datapackage/datapackage.json). Most of the other
elements of the metadata is regenerated.

For most tables, this is a relatively straightforward process, but we are
attempting to enable partioning of tables (storing parts of a table in
individual CSVs). These partitioned tables are parts of a “group” which can be
read by frictionlessdata tools as one table. At each step the process, this
module needs to know whether to deal with the full partitioned table names or
the cononical table name.

	
pudl.load.metadata.compile_partitions(pkg_settings)

	Pull out the partitions from data package settings.

	Parameters

	pkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary containing package settings
containing top level elements of the data package JSON descriptor
specific to the data package

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.data_sources_from_tables_pkg(table_names, testing=False)

	Look up data sources based on a list of PUDL DB tables.

	Parameters

	
	tables_names (iterable) – a list of names of ‘seed’ tables, whose
dependencies we are seeking to find.

	testing (bool [https://docs.python.org/3/library/functions.html#bool]) – Connected to the test database (True) or live PUDl
database (False)?

	Returns

	The set of data sources for the list of PUDL table names.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.load.metadata.generate_metadata(pkg_settings, tables, pkg_dir, uuid_pkgs='23438866-e8b1-4f21-bccc-c01f6b011c6c')

	Generate metadata for package tables and validate package.

The metadata for this package is compiled from the pkg_settings and from
the “megadata”, which is a json file containing the schema for all of the
possible pudl tables. Given a set of tables, this function compiles
metadata and validates the metadata and the package. This function assumes
datapackage CSVs have already been generated.

See Frictionless Data for the tabular data package specification:
http://frictionlessdata.io/specs/tabular-data-package/

	Parameters

	
	pkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary containing package settings
containing top level elements of the data package JSON descriptor
specific to the data package including:
* name: short package name e.g. pudl-eia923, ferc1-test, cems_pkg
* title: One line human readable description.
* description: A paragraph long description.
* keywords: For search purposes.

	tables (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of tables that are included in this data package.

	pkg_dir (path-like) – The location of the directory for this package.
The data package directory will be a subdirectory in the
datapackage_dir directory, with the name of the package as the
name of the subdirectory.

	uuid_pkgs –

Todo

Return to (uuid_pkgs)

	Returns

	a datapackage. See frictionlessdata specs.
dict: a valition dictionary containing validity of package and any
errors that were generated during packaing.

	Return type

	datapackage.package.Package

	
pudl.load.metadata.get_autoincrement_columns(unpartitioned_tables)

	Grab the autoincrement columns for pkg tables.

	
pudl.load.metadata.get_dependent_tables_from_list_pkg(table_names, testing=False)

	Given a list of tables, find all the other tables they depend on.

Iterate over a list of input tables, adding them and all of their dependent
tables to a set, and return that set. Useful for determining which tables
need to be exported together to yield a self-contained subset of the PUDL
database.

	Parameters

	
	table_names (iterable) – a list of names of ‘seed’ tables, whose
dependencies we are seeking to find.

	testing (bool [https://docs.python.org/3/library/functions.html#bool]) – Connected to the test database (True) or live PUDl
database (False)?

	Returns

	The set of all the tables which any of the input
tables depends on, via ForeignKey constraints.

	Return type

	all_the_tables (set [https://docs.python.org/3/library/stdtypes.html#set])

	
pudl.load.metadata.get_dependent_tables_pkg(table_name, fk_relash)

	For a given table, get the list of all the other tables it depends on.

	Parameters

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The table whose dependencies we are looking for.

	() (fk_relash) –

Todo

Incomplete docstring.

	Returns

	the set of all the tables the specified table depends upon.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.load.metadata.get_foreign_key_relash_from_pkg(pkg_json)

	Generate a dictionary of foreign key relationships from pkging metadata.

This function helps us pull all of the foreign key relationships of all
of the tables in the metadata.

	Parameters

	datapackage_json_path (path-like) – Path to the datapackage.json
containing the schema from which the foreign key relationships
will be read

	Returns

	list of foreign key tables

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.load.metadata.get_repartitioned_tables(tables, partitions, pkg_settings)

	Get the re-partitioned tables.

	Parameters

	
	tables (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of tables that are included in this data package.

	partitions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	pkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary containing package settings
containing top level elements of the data package JSON descriptor
specific to the data package.

	Returns

	list of tables including full groups of

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.load.metadata.get_source_metadata(data_sources, pkg_settings)

	Grab sources for metadata.

	
pudl.load.metadata.get_tabular_data_resource(table_name, pkg_dir, partitions=False)

	Create a Tabular Data Resource descriptor for a PUDL table.

Based on the information in the database, and some additional metadata this
function will generate a valid Tabular Data Resource descriptor, according
to the Frictionless Data specification, which can be found here:
https://frictionlessdata.io/specs/tabular-data-resource/

	Parameters

	
	table_name (string) – table name for which you want to generate a
Tabular Data Resource descriptor

	pkg_dir (path-like) – The location of the directory for this package.
The data package directory will be a subdirectory in the
datapackage_dir directory, with the name of the package as the
name of the subdirectory.

	Returns

	A JSON object containing key
information about the selected table

	Return type

	Tabular Data Resource descriptor

	
pudl.load.metadata.get_unpartioned_tables(tables, pkg_settings)

	Get the tables w/out the partitions.

Because the partitioning key will always be the name of the table without
whatever element the table is being partitioned by, we can assume the names
of all of the un-partitioned tables to get a list of tables that is easier
to work with.

	Parameters

	
	tables (iterable) – list of tables that are included in this datapackage.

	pkg_settings (dictionary) –

	Returns

	tables_unpartioned is a set of un-partitioned tables

	Return type

	iterable

	
pudl.load.metadata.hash_csv(csv_path)

	Calculates a SHA-256 hash of the CSV file for data integrity checking.

	Parameters

	csv_path (path-like) – Path the CSV file to hash.

	Returns

	the hexdigest of the hash, with a ‘sha256:’ prefix.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pudl.load.metadata.package_files_from_table(table, pkg_settings)

	Determine which files should exist in a package cooresponding to a table.

We want to convert the datapackage tables and any information about package
partitioning into a list of expected files. For each table that is
partitioned, we want to add the partitions to the end of the table name.

	
pudl.load.metadata.prep_pkg_bundle_directory(pudl_settings, pkg_bundle_name, clobber=False)

	Create (or delete and create) data package directory.

	Parameters

	
	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary filled with settings that mostly
describe paths to various resources and outputs.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return a dictionary with package names (keys)
and a list with the data package metadata and report (values).

	pkg_bundle_name (string) – name of directory you want the bundle of
data packages to live. If this is set to None, the name will be
defaulted to be the pudl packge version.

	Returns

	path-like

	
pudl.load.metadata.pull_resource_from_megadata(table_name)

	Read a single data resource from the PUDL metadata library.

	Parameters

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the table / data resource whose JSON
descriptor we are reading.

	Returns

	a Tabular Data Resource Descriptor, as a JSON object.

	Return type

	json

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If table_name is not found exactly one time in the PUDL
 metadata library.

	
pudl.load.metadata.test_file_consistency(tables, pkg_settings, pkg_dir)

	Test the consistency of tables for packaging.

The purpose of this function is to test that we have the correct list of
tables. There are three different ways we could determine which tables are
being dumped into packages: a list of the tables being generated through
the ETL functions, the list of dependent tables and the list of CSVs in
package directory.

Currently, this function is supposed to be fed the ETL function tables
which are tested against the CSVs present in the package directory.

	Parameters

	
	pkg_name (string) – the name of the data package.

	tables (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of table names to be tested.

	pkg_dir (path-like) – the directory in which to check the consistency
of table files

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the tables in the CSVs and the ETL tables are not
 exactly the same list of tables.

Todo

Determine what to do with the dependent tables check.

	
pudl.load.metadata.validate_save_pkg(pkg_descriptor, pkg_dir)

	Validate a data package descriptor and save it to a json file.

	Parameters

	
	pkg_descriptor (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	pkg_dir (path-like) –

	Returns

	report

pudl.output package

Submodules

	pudl.output.eia860 module

	pudl.output.eia923 module

	pudl.output.export module

	pudl.output.ferc1 module

	pudl.output.glue module

	pudl.output.pudltabl module

Module contents

Useful post-processing and denormalized outputs based on PUDL.

The datapackages which are output by the PUDL ETL pipeline are well normalized
and suitable for use as relational database tables. This minimizes data
duplication and helps avoid many kinds of data corruption and the potential for
internal inconsistency. However, that’s not always the easiest kind of data to
work with. Sometimes we want all the names and IDs in a single dataframe or
table, for human readability. Sometimes you want the useful derived values.

This subpackage compiles a bunch of outputs we found we were commonly
generating, so that they can be done automatically and uniformly. They are
encapsulated within the pudl.output.pudltabl.PudlTabl class.

pudl.output.eia860 module

Functions for pulling data primarily from the EIA’s Form 860.

	
pudl.output.eia860.boiler_generator_assn_eia860(pudl_engine, pt, start_date=None, end_date=None)

	Pull all fields from the EIA 860 boiler generator association table.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	start_date (date) – Date to begin retrieving EIA 860 data.

	end_date (date) – Date to end retrieving EIA 860 data.

	Returns

	A DataFrame containing all the fields from the EIA
860 boiler generator association table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.generators_eia860(pudl_engine, pt, start_date=None, end_date=None)

	Pull all fields reported in the generators_eia860 table.

Merge in other useful fields including the latitude & longitude of the
plant that the generators are part of, canonical plant & operator names and
the PUDL IDs of the plant and operator, for merging with other PUDL data
sources.

Fill in data for adjacent years if requested, but never fill in earlier
than the earliest working year of data for EIA923, and never add more than
one year on after the reported data (since there should at most be a one
year lag between EIA923 and EIA860 reporting)

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	start_date (date) – the earliest EIA 860 data to retrieve or synthesize

	end_date (date) – the latest EIA 860 data to retrieve or synthesize

	Returns

	A DataFrame containing all the fields of the EIA 860
Generators table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.ownership_eia860(pudl_engine, pt, start_date=None, end_date=None)

	Pull a useful set of fields related to ownership_eia860 table.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	start_date (date) – date of the earliest data to retrieve

	end_date (date) – date of the latest data to retrieve

	Returns

	A DataFrame containing a useful set of fields related
to the EIA 860 Ownership table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.plants_eia860(pudl_engine, pt, start_date=None, end_date=None)

	Pulls all fields from the EIA Plants tables.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	start_date (date) – Date to begin retrieving EIA 860 data.

	end_date (date) – Date to end retrieving EIA 860 data.

	Returns

	A DataFrame containing all the fields of the EIA 860
Plants table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.plants_utils_eia860(pudl_engine, pt, start_date=None, end_date=None)

	Create a dataframe of plant and utility IDs and names from EIA 860.

Returns a pandas dataframe with the following columns:
- report_date (in which data was reported)
- plant_name (from EIA entity)
- plant_id_eia (from EIA entity)
- plant_id_pudl
- utility_id_eia (from EIA860)
- utility_name (from EIA860)
- utility_id_pudl

Note: EIA 860 data has only been integrated for 2011-2016. If earlier or
later years are requested, they will be filled in with data from the
first or last years.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (sqlalchemy.util._collections.immutabledict) – a sqlalchemy metadata
dictionary of pudl tables

	start_date (date) – Date to begin retrieving EIA 860 data.

	end_date (date) – Date to end retrieving EIA 860 data.

	Returns

	A DataFrame containing plant and utility IDs and
names from EIA 860.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia860.utilities_eia860(pudl_engine, pt, start_date=None, end_date=None)

	Pulls all fields from the EIA860 Utilities table.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (sqlalchemy.util._collections.immutabledict) – a sqlalchemy metadata
dictionary of pudl tables

	start_date (date) – Date to begin retrieving EIA 860 data.

	end_date (date) – Date to end retrieving EIA 860 data.

	Returns

	A DataFrame containing all the fields of the EIA 860
Utilities table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.output.eia923 module

Functions for pulling EIA 923 data out of the PUDl DB.

	
pudl.output.eia923.boiler_fuel_eia923(pudl_engine, pt, freq=None, start_date=None, end_date=None)

	Pull records from the boiler_fuel_eia923 table in a given data range.

Optionally, aggregate the records over some timescale – monthly, yearly,
quarterly, etc. as well as by fuel type within a plant.

If the records are not being aggregated, all of the database fields are
available. If they’re being aggregated, then we preserve the following
fields. Per-unit values are re-calculated based on the aggregated totals.
Totals are summed across whatever time range is being used, within a
given plant and fuel type.
* fuel_consumed_units (sum)
* fuel_mmbtu_per_unit (weighted average)
* total_heat_content_mmbtu (sum)
* sulfur_content_pct (weighted average)
* ash_content_pct (weighted average)

In addition, plant and utility names and IDs are pulled in from the EIA
860 tables.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all records from the EIA 923
Boiler Fuel table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.fuel_receipts_costs_eia923(pudl_engine, pt, freq=None, start_date=None, end_date=None)

	Pull records from fuel_receipts_costs_eia923 table in given date range.

Optionally, aggregate the records at a monthly or longer timescale, as well
as by fuel type within a plant, by setting freq to something other than
the default None value.

If the records are not being aggregated, then all of the fields found in
the PUDL database are available. If they are being aggregated, then the
following fields are preserved, and appropriately summed or re-calculated
based on the specified aggregation. In both cases, new total values are
calculated, for total fuel heat content and total fuel cost.
* plant_id_eia
* report_date
* fuel_type_code_pudl (formerly energy_source_simple)
* fuel_qty_units (sum)
* fuel_cost_per_mmbtu (weighted average)
* total_fuel_cost (sum)
* total_heat_content_mmbtu (sum)
* heat_content_mmbtu_per_unit (weighted average)
* sulfur_content_pct (weighted average)
* ash_content_pct (weighted average)
* moisture_content_pct (weighted average)
* mercury_content_ppm (weighted average)
* chlorine_content_ppm (weighted average)

In addition, plant and utility names and IDs are pulled in from the EIA
860 tables.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all records from the EIA 923
Fuel Receipts and Costs table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.generation_eia923(pudl_engine, pt, freq=None, start_date=None, end_date=None)

	Pull records from the boiler_fuel_eia923 table in a given data range.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all records from the EIA 923
Generation table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.eia923.generation_fuel_eia923(pudl_engine, pt, freq=None, start_date=None, end_date=None)

	Pull records from the generation_fuel_eia923 table in given date range.

Optionally, aggregate the records over some timescale – monthly, yearly,
quarterly, etc. as well as by fuel type within a plant.

If the records are not being aggregated, all of the database fields are
available. If they’re being aggregated, then we preserve the following
fields. Per-unit values are re-calculated based on the aggregated totals.
Totals are summed across whatever time range is being used, within a
given plant and fuel type.
* plant_id_eia
* report_date
* fuel_type_code_pudl
* fuel_consumed_units
* fuel_consumed_for_electricity_units
* fuel_mmbtu_per_unit
* fuel_consumed_mmbtu
* fuel_consumed_for_electricity_mmbtu
* net_generation_mwh

In addition, plant and utility names and IDs are pulled in from the EIA
860 tables.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a pandas timeseries offset alias. The original data is
reported monthly, so the best time frequencies to use here are
probably month start (freq=’MS’) and year start (freq=’YS’).

	start_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	end_date (date-like) – date-like object, including a string of the
form ‘YYYY-MM-DD’ which will be used to specify the date range of
records to be pulled. Dates are inclusive.

	Returns

	A DataFrame containing all records from the EIA 923
Generation Fuel table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.output.export module

Routines for exporting data from PUDL for use elsewhere.

Function names should be indicative of the format of the thing that’s being
exported (e.g. CSV, Excel spreadsheets, parquet files, HDF5).

	
pudl.output.export.annotated_xlsx(df, notes_dict, tags_dict, first_cols, sheet_name, xlsx_writer)

	Outputs an annotated spreadsheet workbook based on compiled dataframes.

Creates annotation tab and header rows for EIA 860, EIA 923, and FERC 1
fields in a dataframe. This is done using an Excel Writer object, which
must be created and saved outside the function, thereby allowing multiple
sheets and associated annotations to be compiled in the same Excel file.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe for which annotations are being
created

	notes_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with column names as keys and long
annotations as values

	tags_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of dictionaries with tag categories as
keys for outer dictionary and values are dictionaries with column
names as keys and values are tag within the tag category

	first_cols (list [https://docs.python.org/3/library/stdtypes.html#list]) – ordered list of columns that should come first in
outfile

	sheet_name (string) – name of data sheet in output spreadsheet

	xlsx_writer (pandas.ExcelWriter [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.ExcelWriter.html#pandas.ExcelWriter]) – this is an ExcelWriter object used to
accumulate multiple tabs, which must be created outside of
function, before calling the first time e.g.
“xlsx_writer = pd.ExcelWriter(‘outfile.xlsx’)”

	Returns

	which must be called outside the
function, after final use of function, for writing out to excel:
“xlsx_writer.save()”

	Return type

	xlsx_writer (pandas.ExcelWriter [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.ExcelWriter.html#pandas.ExcelWriter])

pudl.output.ferc1 module

Functions for pulling FERC Form 1 data out of the PUDL DB.

	
pudl.output.ferc1.fuel_by_plant_ferc1(pudl_engine, pt, thresh=0.5)

	Summarize FERC fuel data by plant for output.

This is mostly a wrapper around pudl.transform.ferc1.fuel_by_plant_ferc1
which calculates some summary values on a per-plant basis (as indicated
by utility_id_ferc1 and plant_name) related to fuel consumption.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	thresh (float [https://docs.python.org/3/library/functions.html#float]) – Minimum fraction of fuel (cost and mmbtu) required in
order for a plant to be assigned a primary fuel. Must be between
0.5 and 1.0. default value is 0.5.

	Returns

	A DataFrame with fuel use summarized by plant.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc1.fuel_ferc1(pudl_engine, pt)

	Pull a useful dataframe related to FERC Form 1 fuel information.

This function pulls the FERC Form 1 fuel data, and joins in the name of the
reporting utility, as well as the PUDL IDs for that utility and the plant,
allowing integration with other PUDL tables.

Also calculates the total heat content consumed for each fuel, and the
total cost for each fuel. Total cost is calculated in two different ways,
on the basis of fuel units consumed(e.g. tons of coal, mcf of gas) and
on the basis of heat content consumed. In theory these should give the
same value for total cost, but this is not always the case.

Todo

Check whether this includes all of the fuel_ferc1 fields…

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	Returns

	A DataFrame containing useful FERC Form 1 fuel
information.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc1.plants_steam_ferc1(pudl_engine, pt)

	Select and joins some useful fields from the FERC Form 1 steam table.

Select the FERC Form 1 steam plant table entries, add in the reporting
utility’s name, and the PUDL ID for the plant and utility for readability
and integration with other tables that have PUDL IDs.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	Returns

	A DataFrame containing useful fields from the FERC
Form 1 steam table.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.output.ferc1.plants_utils_ferc1(pudl_engine, pt)

	Build a dataframe of useful FERC Plant & Utility information.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – Engine for connecting to the
PUDL database.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	Returns

	A DataFrame containing useful FERC Form 1 Plant and
Utility information.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.output.glue module

Functions that pull glue tables from the PUDL DB for output.

The glue tables hold information that relates our different datasets to each
other, for example mapping the FERC plants to EIA generators, or the EIA
boilers to EIA generators, or EPA smokestacks to EIA generators.

	
pudl.output.glue.boiler_generator_assn(pudl_engine, pt, start_date=None, end_date=None)

	Pulls the more complete PUDL/EIA boiler generator associations.

	Parameters

	
	pudl_engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine]) – SQLAlchemy connection engine
for the PUDL DB.

	pt (immutabledict) – a sqlalchemy metadata dictionary of pudl tables

	start_date (date) – Date to begin retrieving data.

	end_date (date) – Date to end retrieving data.

	Returns

	A DataFrame containing the more complete PUDL/EIA
boiler generator associations.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

pudl.output.pudltabl module

This module provides a class enabling tabular compilations from the PUDL DB.

Many of our potential users are comfortable using spreadsheets, not databases,
so we are creating a collection of tabular outputs that contain the most
useful core information from the PUDL data packages, including additional keys
and human readable names for the objects (utilities, plants, generators) being
described in the table.

These tabular outputs can be joined with each other using those keys, and used
as a data source within Microsoft Excel, Access, R Studio, or other data
analysis packages that folks may be familiar with. They aren’t meant to
completely replicate all the data and relationships contained within the full
PUDL database, but should serve as a generally usable set of PUDL data
products.

The PudlTabl class can also provide access to complex derived values, like the
generator and plat level marginal cost of electricity (MCOE), which are defined
in the analysis module.

In the long run, this is a probably a kind of prototype for pre-packaged API
outputs or data products that we might want to be able to provide to users a la
carte.

Todo

Return to for update arg and returns values in functions below

	
class pudl.output.pudltabl.PudlTabl(freq=None, start_date=None, end_date=None, pudl_engine=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for compiling common useful tabular outputs from the PUDL DB.

	
bf_eia923(update=False)

	Pull EIA 923 boiler fuel consumption data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
bga(update=False)

	Pull the more complete EIA/PUDL boiler-generator associations.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
bga_eia860(update=False)

	Pull a dataframe of boiler-generator associations from EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
capacity_factor(update=False, min_cap_fact=None, max_cap_fact=None)

	Calculate and return generator level capacity factors.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
fbp_ferc1(update=False)

	Summarize FERC Form 1 fuel usage by plant.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
frc_eia923(update=False)

	Pull EIA 923 fuel receipts and costs data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
fuel_cost(update=False)

	Calculate and return generator level fuel costs per MWh.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
fuel_ferc1(update=False)

	Pull the FERC Form 1 steam plants fuel consumption data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
gen_eia923(update=False)

	Pull EIA 923 net generation data by generator.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
gens_eia860(update=False)

	Pull a dataframe describing generators, as reported in EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
gf_eia923(update=False)

	Pull EIA 923 generation and fuel consumption data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
hr_by_gen(update=False)

	Calculate and return generator level heat rates (mmBTU/MWh).

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
hr_by_unit(update=False)

	Calculate and return generation unit level heat rates.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
mcoe(update=False, min_heat_rate=5.5, min_fuel_cost_per_mwh=0.0, min_cap_fact=0.0, max_cap_fact=1.5)

	Calculate and return generator level MCOE based on EIA data.

Eventually this calculation will include non-fuel operating expenses
as reported in FERC Form 1, but for now only the fuel costs reported
to EIA are included. They are attibuted based on the unit-level heat
rates and fuel costs.

	Parameters

	
	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	min_heat_rate – lowest plausible heat rate, in mmBTU/MWh. Any MCOE
records with lower heat rates are presumed to be invalid, and
are discarded before returning.

	min_cap_fact – minimum generator capacity factor. Generator records
with a lower capacity factor will be filtered out before
returning. This allows the user to exclude generators that
aren’t being used enough to have valid.

	min_fuel_cost_per_mwh – minimum fuel cost on a per MWh basis that is
required for a generator record to be considered valid. For
some reason there are now a large number of $0 fuel cost
records, which previously would have been NaN.

	max_cap_fact – maximum generator capacity factor. Generator records
with a lower capacity factor will be filtered out before
returning. This allows the user to exclude generators that
aren’t being used enough to have valid.

	Returns

	a compilation of generator attributes,
including fuel costs per MWh.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
own_eia860(update=False)

	Pull a dataframe of generator level ownership data from EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
plants_eia860(update=False)

	Pull a dataframe of plant level info reported in EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
plants_steam_ferc1(update=False)

	Pull the FERC Form 1 steam plants data.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
pu_eia860(update=False)

	Pull a dataframe of EIA plant-utility associations.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
pu_ferc1(update=False)

	Pull a dataframe of FERC plant-utility associations.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
utils_eia860(update=False)

	Pull a dataframe describing utilities reported in EIA 860.

	Parameters

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, re-calculate the output dataframe, even if
a cached version exists.

	Returns

	a denormalized table for interactive use.

	Return type

	pandas.DataFrame

	
pudl.output.pudltabl.get_table_meta(pudl_engine)

	Grab the pudl sqlitie database table metadata.

pudl.transform package

Submodules

	pudl.transform.eia module

	pudl.transform.eia860 module

	pudl.transform.eia923 module

	pudl.transform.epacems module

	pudl.transform.epaipm module

	pudl.transform.ferc1 module

Module contents

Modules implementing the “Transform” step of the PUDL ETL pipeline.

Each module in this subpackage transforms the tabular data associated with a
single data source from the PUDL Data Catalog. This process begins with
a dictionary of “raw” pandas.DataFrame`s produced by the corresponding
data source specific routines from the :mod:`pudl.extract subpackage, and
ends with a dictionary of pandas.DataFrame`s that are fully normalized,
cleaned, and congruent with the tabular datapackage metadata -- i.e. they are
ready to be exported by the :mod:`pudl.load module.

pudl.transform.eia module

Routines specific to cleaning up EIA data.

This module helps with the normalization of EIA datasets and complinging
additonal connections between EIA entities. Right now, these two tasks include
what we call harvesting and generating a more complete set of boiler generator
associations. The harvesting process normalizes the EIA tables - it consolidates
the duplicated fields/records into entity and annual entity tables. The boiler
generator associations (bga) takes the given 860 bga and expands on this through
several methods within the _boiler_generator_assn function.

	
pudl.transform.eia.transform(eia_transformed_dfs, eia923_years=(2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017), eia860_years=(2011, 2012, 2013, 2014, 2015, 2016, 2017), debug=False)

	Creates DataFrames for EIA Entity tables and modifies EIA tables.

This function coordinates two main actions: generating the entity tables
via _harvesting() and generating the boiler generator associations via
_boiler_generator_assn().

There is also some removal of tables that are no longer needed after the
entity harvesting is finished.

	Parameters

	
	eia_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of table names (kays) and
transformed dataframes (values).

	eia923_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of years for EIA 923

	eia860_years (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of years for EIA 860

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, informational columns will be added into
boiler_generator_assn

	Returns

	a dictionary of table names (keys) and dataframes
(values) for the entity tables.

eia_transformed_dfs (dict): a dictionary of table names (keys) and
dataframes (values) for the rest of the EIA tables.

	Return type

	entities_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

pudl.transform.eia860 module

Module to perform data cleaning functions on EIA860 data tables.

	
pudl.transform.eia860.boiler_generator_assn(eia860_dfs, eia860_transformed_dfs)

	Pulls and transforms the boilder generator association table.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA860 form, as reported in the
Excel spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.generators(eia860_dfs, eia860_transformed_dfs)

	Pulls and transforms the generators table.

There are three tabs that the generator records come from (proposed,
existing, and retired). We pull each tab into one dataframe and include
an ‘operational_status’ to indicate which tab the record came from.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the
EIA860 form, as reported in the Excel spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to a normalized
DataFrame of values from that page (values)

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.ownership(eia860_dfs, eia860_transformed_dfs)

	Pulls and transforms the ownership table.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA860 form, as reported in the
Excel spreadsheets they distribute

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Todo

Convert assert statement to AssertionError

	
pudl.transform.eia860.plants(eia860_dfs, eia860_transformed_dfs)

	Pulls and transforms the plants table.

Much of the static plant information is reported repeatedly, and scattered
across several different pages of EIA 923. The data frame which this
function uses is assembled from those many different pages, and passed in
via the same dictionary of dataframes that all the other ingest functions
use for uniformity.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the
EIA860 form, as reported in the Excel spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.transform(eia860_raw_dfs, eia860_tables=('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860'))

	Transforms EIA 860 DataFrames.

	Parameters

	
	eia860_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of tab names (keys) and DataFrames
(values). This can be generated by pudl.

	eia860_tables (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple containing the names of the EIA 860
tables that can be pulled into PUDL

	Returns

	A dictionary of DataFrame objects in
which pages from EIA860 form (keys) corresponds to a normalized
DataFrame of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia860.utilities(eia860_dfs, eia860_transformed_dfs)

	Pulls and transforms the utilities table.

	Parameters

	
	eia860_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the
EIA860 form, as reported in the Excel spreadsheets they distribute.

	eia860_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia860_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA860 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.transform.eia923 module

Routines specific to cleaning up EIA Form 923 data.

	
pudl.transform.eia923.boiler_fuel(eia923_dfs, eia923_transformed_dfs)

	Transforms the boiler_fuel_eia923 table.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the
EIA923 form, as reported in the Excel spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.coalmine(eia923_dfs, eia923_transformed_dfs)

	Transforms the coalmine_eia923 table.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a page from the EIA923 form, as reported in the
Excel spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.fuel_receipts_costs(eia923_dfs, eia923_transformed_dfs)

	Transforms the fuel_receipts_costs_eia923 dataframe.

Fuel cost is reported in cents per mmbtu. Converts cents to dollars.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the
EIA923 form, as reported in the Excel spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.generation(eia923_dfs, eia923_transformed_dfs)

	Transforms the generation_eia923 table.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the
EIA923 form, as reported in the Excel spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.generation_fuel(eia923_dfs, eia923_transformed_dfs)

	Transforms the generation_fuel_eia923 table.

	Parameters

	
	eia923_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the
EIA923 form, as reported in the Excel spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.plants(eia923_dfs, eia923_transformed_dfs)

	Transforms the plants_eia923 table.

Much of the static plant information is reported repeatedly, and scattered
across several different pages of EIA 923. The data frame that this
function uses is assembled from those many different pages, and passed in
via the same dictionary of dataframes that all the other ingest functions
use for uniformity.

	Parameters

	
	eia923_dfs (dictionary of pandas.DataFrame) – Each entry in this
dictionary of DataFrame objects corresponds to a page from the EIA
923 form, as reported in the Excel spreadsheets they distribute.

	eia923_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Returns

	eia923_transformed_dfs, a dictionary of DataFrame objects in
which pages from EIA923 form (keys) correspond to normalized
DataFrames of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.eia923.transform(eia923_raw_dfs, eia923_tables=('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923'))

	Transforms all the EIA 923 tables.

	Parameters

	
	eia923_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of tab names (keys) and DataFrames
(values). Generated from pudl.extract.eia923.extract().

	eia923_tables (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple containing the EIA923 tables that can be
pulled into PUDL.

	Returns

	A dictionary of DataFrame objects in
which pages from EIA923 form (keys) corresponds to a normalized
DataFrame of values from that page (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.transform.epacems module

Routines specific to cleaning up EPA CEMS hourly data.

	
pudl.transform.epacems.add_facility_id_unit_id_epa(df)

	Harmonize columns that are added later.

The load into Postgres checks for consistent column names, and these
two columns aren’t present before August 2008, so this adds them in.

	Parameters

	df (pd.DataFrame) – A CEMS dataframe

	Returns

	The same DataFrame guaranteed to have int facility_id and unit_id_epa
cols

	
pudl.transform.epacems.correct_gross_load_mw(df)

	Fix values of gross load that are wrong by orders of magnitude.

	Parameters

	df (pd.DataFrame) – A CEMS dataframe

	Returns

	The same DataFrame with corrected gross load values.

	Return type

	pd.DataFrame

	
pudl.transform.epacems.fix_up_dates(df, plant_utc_offset)

	Fix the dates for the CEMS data.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A CEMS hourly dataframe for one year-month-state

	plant_utc_offset (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A dataframe of plants’ timezones

	Returns

	The same data, with an op_datetime_utc column added
and the op_date and op_hour columns removed

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.transform.epacems.harmonize_eia_epa_orispl(df)

	Harmonize the ORISPL code to match the EIA data – NOT YET IMPLEMENTED.

The EIA plant IDs and CEMS ORISPL codes almost match, but not quite. See
https://www.epa.gov/sites/production/files/2018-02/documents/egrid2016_technicalsupportdocument_0.pdf#page=104
for an example.

Note that this transformation needs to be run before fix_up_dates,
because fix_up_dates uses the plant ID to look up timezones.

	Parameters

	df (pandas.DataFrame) – A CEMS hourly dataframe for one
year-month-state

	Returns

	The same data, with the ORISPL plant codes
corrected to match the EIA plant IDs.

	Return type

	pandas.DataFrame

Todo

Ctually implement the function…

	
pudl.transform.epacems.transform(epacems_raw_dfs, pkg_dir)

	Transform EPA CEMS hourly data for use in datapackage export.

	To Do:
	Incomplete docstring.

pudl.transform.epaipm module

Module to perform data cleaning functions on EPA IPM data tables.

	
pudl.transform.epaipm.load_curves(epaipm_dfs, epaipm_transformed_dfs)

	Transform the load curve table from wide to tidy format.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from EPA’s IPM, as reported in the Excel
spreadsheets they distribute.

	epa_epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames
of values from that table (values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM (keys) correspond to normalized DataFrames of values from
that table (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.plant_region_map(epaipm_dfs, epaipm_transformed_dfs)

	Transforms the map of plant ids to IPM regions for all plants.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a table from
EPA’s IPM, as reported in the Excel spreadsheets they distribute.

	epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM(keys) correspond to normalized DataFrames
of values from that table(values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM(keys) correspond to normalized DataFrames of values from
that table(values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.transform(epaipm_raw_dfs, epaipm_tables=('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm'))

	Transform EPA IPM DataFrames.

	Parameters

	
	epaipm_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of table names(keys) and
DataFrames(values)

	epaipm_tables (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of EPA IPM tables that can be
successfully pulled into PUDL

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM(keys) correspond to normalized DataFrames of values from
that table(values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.transmission_joint(epaipm_dfs, epaipm_transformed_dfs)

	Transforms transmission constraints between multiple inter-regional links.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this
dictionary of DataFrame objects corresponds to a table from
EPA’s IPM, as reported in the Excel spreadsheets they distribute.

	epa_epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames
of values from that table (values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM (keys) correspond to normalized DataFrames of values from
that table (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.epaipm.transmission_single(epaipm_dfs, epaipm_transformed_dfs)

	Transforms the transmission constraints between individual regions.

	Parameters

	
	epaipm_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame objects
corresponds to a table from EPA’s IPM, as reported in the Excel
spreadsheets they distribute.

	epa_epaipm_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames
of values from that table (values)

	Returns

	A dictionary of DataFrame objects in which tables from EPA
IPM (keys) correspond to normalized DataFrames of values from
that table (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.transform.ferc1 module

Routines for transforming FERC Form 1 data before loading into the PUDL DB.

This module provides a variety of functions that are used in cleaning up the
FERC Form 1 data prior to loading into our database. This includes adopting
standardized units and column names, standardizing the formatting of some
string values, and correcting data entry errors which we can infer based on
the existing data. It may also include removing bad data, or replacing it
with the appropriate NA values.

	
class pudl.transform.ferc1.FERCPlantClassifier(min_sim=0.75, plants_df=None)

	Bases: sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator], sklearn.base.ClassifierMixin [https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html#sklearn.base.ClassifierMixin]

A classifier for identifying FERC plant time series in FERC Form 1 data.

We want to be able to give the classifier a FERC plant record, and get back
the group of records(or the ID of the group of records) that it ought to
be part of.

There are hundreds of different groups of records, and we can only know
what they are by looking at the whole dataset ahead of time. This is the
“fitting” step, in which the groups of records resulting from a particular
set of model parameters(e.g. the weights that are attributes of the class)
are generated.

Once we have that set of record categories, we can test how well the
classifier performs, by checking it against test / training data which we
have already classified by hand. The test / training set is a list of lists
of unique FERC plant record IDs(each record ID is the concatenation of:
report year, respondent id, supplement number, and row number). It could
also be stored as a dataframe where each column is associated with a year
of data(some of which could be empty). Not sure what the best structure
would be.

If it’s useful, we can assign each group a unique ID that is the time
ordered concatenation of each of the constituent record IDs. Need to
understand what the process for checking the classification of an input
record looks like.

To score a given classifier, we can look at what proportion of the records
in the test dataset are assigned to the same group as in our manual
classification of those records. There are much more complicated ways to
do the scoring too… but for now let’s just keep it as simple as possible.

	
fit(X, y=None)

	Use weighted FERC plant features to group records into time series.

The fit method takes the vectorized, normalized, weighted FERC plant
features (X) as input, calculates the pairwise cosine similarity matrix
between all records, and groups the records in their best time series.
The similarity matrix and best time series are stored as data members
in the object for later use in scoring & predicting.

This isn’t quite the way a fit method would normally work.

	Parameters

	
	() (y) – a sparse matrix of size n_samples x n_features.

	() –

	Returns

	

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Zane revisit args and returns

	
predict(X, y=None)

	Identify time series of similar records to input record_ids.

Given a one-dimensional dataframe X, containing FERC record IDs, return
a dataframe in which each row corresponds to one of the input record_id
values (ordered as the input was ordered), with each column
corresponding to one of the years worth of data. Values in the returned
dataframe are the FERC record_ids of the record most similar to the
input record within that year. Some of them may be null, if there was
no sufficiently good match.

Row index is the seed record IDs. Column index is years.

TODO:
* This method is hideously inefficient. It should be vectorized.
* There’s a line that throws a FutureWarning that needs to be fixed.

	
score(X, y=None)

	Scores a collection of FERC plant categorizations.

For every record ID in X, predict its record group and calculate
a metric of similarity between the prediction and the “ground
truth” group that was passed in for that value of X.

	Parameters

	
	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – an n_samples x 1 pandas dataframe of FERC
Form 1 record IDs.

	y (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – a dataframe of “ground truth” FERC Form 1
record groups, corresponding to the list record IDs in X

	Returns

	The average of all the similarity metrics as the
score.

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
transform(X, y=None)

	Passthrough transform method – just returns self.

	
pudl.transform.ferc1.accumulated_depreciation(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 depreciation data for loading into PUDL.

This information is organized by FERC account, with each line of the FERC
Form 1 having a different descriptive identifier like ‘balance_end_of_year’
or ‘transmission’.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	The dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.fuel(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 fuel data for loading into PUDL Database.

This process includes converting some columns to be in terms of our
preferred units, like MWh and mmbtu instead of kWh and btu. Plant names are
also standardized (stripped & Title Case). Fuel and fuel unit strings are
also standardized using our cleanstrings() function and string cleaning
dictionaries found in pudl.constants.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.fuel_by_plant_ferc1(fuel_df, thresh=0.5)

	Calculates useful FERC Form 1 fuel metrics on a per plant-year basis.

Each record in the FERC Form 1 corresponds to a particular type of fuel.
Many plants – especially coal plants – use more than one fuel, with gas
and/or diesel serving as startup fuels. In order to be able to classify
the type of plant based on relative proportions of fuel consumed or
fuel costs it is useful to aggregate these per-fuel records into a single
record for each plant.

Fuel cost (in nominal dollars) and fuel heat content (in mmBTU) are
calculated for each fuel based on the cost and heat content per unit, and
the number of units consumed, and then summed by fuel type (there can be
more than one record for a given type of fuel in each plant because we
are simplifying the fuel categories). The per-fuel records are then
pivoted to create one column per fuel type. The total is summed and
stored separately, and the individual fuel costs & heat contents are
divided by that total, to yield fuel proportions. Based on those
proportions and a minimum threshold that’s passed in, a “primary” fuel
type is then assigned to the plant-year record and given a string label.

	Parameters

	
	fuel_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Pandas DataFrame resembling the
post-transform result for the fuel_ferc1 table.

	thresh (float [https://docs.python.org/3/library/functions.html#float]) – A value between 0.5 and 1.0 indicating the minimum
fraction of overall heat content that must have been provided by a
fuel in a plant-year for it to be considered the “primary” fuel for
the plant in that year. Default value: 0.5.

	Returns

	A DataFrame with a single record for each

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

plant-year, including the columns required to merge it with the
plants_steam_ferc1 table/DataFrame (report_year, utility_id_ferc1,
and plant_name) as well as totals for fuel mmbtu consumed in that
plant-year, and the cost of fuel in that year, the proportions of
heat content and fuel costs for each fuel in that year, and a
column that labels the plant’s primary fuel for that year.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the DataFrame input does not have the columns
 required to run the function.

	
pudl.transform.ferc1.make_ferc_clf(plants_df, ngram_min=2, ngram_max=10, min_sim=0.75, plant_name_wt=2.0, plant_type_wt=2.0, construction_type_wt=1.0, capacity_mw_wt=1.0, construction_year_wt=1.0, utility_id_ferc1_wt=1.0, fuel_fraction_wt=1.0)

	Create a FERC Plant Classifier using several weighted features.

Given a FERC steam plants dataframe plants_df, which also includes fuel
consumption information, transform a selection of useful columns into
features suitable for use in calculating inter-record cosine similarities.
Individual features are weighted according to the keyword arguments.

	Features include:
	
	plant_name (via TF-IDF, with ngram_min and ngram_max as parameters)

	plant_type (OneHot encoded categorical feature)

	construction_type (OneHot encoded categorical feature)

	capacity_mw (MinMax scaled numerical feature)

	construction year (OneHot encoded categorical feature)

	utility_id_ferc1 (OneHot encoded categorical feature)

	fuel_fraction_mmbtu (several MinMax scaled numerical columns, which
are normalized and treated as a single feature.)

This feature matrix is then used to instantiate a FERCPlantClassifier.

The combination of the ColumnTransformer and FERCPlantClassifier are
combined in a sklearn Pipeline, which is returned by the function.

	Parameters

	
	ngram_min (int [https://docs.python.org/3/library/functions.html#int]) – the minimum lengths to consider in the vectorization
of the plant_name feature.

	ngram_max (int [https://docs.python.org/3/library/functions.html#int]) – the maximum n-gram lengths to consider in the
vectorization of the plant_name feature.

	min_sim (float [https://docs.python.org/3/library/functions.html#float]) – the minimum cosine similarity between two records that
can be considered a “match” (a number between 0.0 and 1.0).

	plant_name_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative
importance of each of the features in the feature matrix used to
calculate the cosine similarity between records. Used to scale each
individual feature before the vectors are normalized.

	plant_type_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative
importance of each of the features in the feature matrix used to
calculate the cosine similarity between records. Used to scale each
individual feature before the vectors are normalized.

	construction_type_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative
importance of each of the features in the feature matrix used to
calculate the cosine similarity between records. Used to scale each
individual feature before the vectors are normalized.

	capacity_mw_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative
importance of each of the features in the feature matrix used to
calculate the cosine similarity between records. Used to scale each
individual feature before the vectors are normalized.

	construction_year_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative
importance of each of the features in the feature matrix used to
calculate the cosine similarity between records. Used to scale each
individual feature before the vectors are normalized.

	utility_id_ferc1_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative
importance of each of the features in the feature matrix used to
calculate the cosine similarity between records. Used to scale each
individual feature before the vectors are normalized.

	fuel_fraction_wt (float [https://docs.python.org/3/library/functions.html#float]) – weight used to determine the relative
importance of each of the features in the feature matrix used to
calculate the cosine similarity between records. Used to scale each
individual feature before the vectors are normalized.

	Returns

	an sklearn Pipeline that performs
reprocessing and classification with a FERCPlantClassifier object.

	Return type

	sklearn.pipeline.Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]

	
pudl.transform.ferc1.plant_in_service(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 plant_in_service data for loading into PUDL.

This information is organized by FERC account, with each line of the FERC
Form 1 having a different FERC account id (most are numeric and correspond
to FERC’s Uniform Electric System of Accounts). As of PUDL v0.1, this data
is only valid from 2007 onward, as the line numbers for several accounts
are different in earlier years.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	The dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_hydro(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 plant_hydro data for loading into PUDL Database.

Standardizes plant names (stripping whitespace and Using Title Case). Also
converts into our preferred units of MW and MWh.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_pumped_storage(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 pumped storage data for loading into PUDL.

Standardizes plant names (stripping whitespace and Using Title Case). Also
converts into our preferred units of MW and MWh.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_small(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 plant_small data for loading into PUDL Database.

This FERC Form 1 table contains information about a large number of small
plants, including many small hydroelectric and other renewable generation
facilities. Unfortunately the data is not well standardized, and so the
plants have been categorized manually, with the results of that
categorization stored in an Excel spreadsheet. This function reads in the
plant type data from the spreadsheet and merges it with the rest of the
information from the FERC DB based on record number, FERC respondent ID,
and report year. When possible the FERC license number for small hydro
plants is also manually extracted from the data.

This categorization will need to be renewed with each additional year of
FERC data we pull in. As of v0.1 the small plants have been categorized
for 2004-2015.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	The dictionary of transformed dataframes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_steam(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 plant_steam data for loading into PUDL Database.

This includes converting to our preferred units of MWh and MW, as well as
standardizing the strings describing the kind of plant and construction.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	of transformed dataframes, including the newly transformed
plants_steam_ferc1 dataframe.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.plants_steam_validate_ids(ferc1_steam_df)

	Tests that plant_id_ferc1 times series includes one record per year.

	Parameters

	ferc1_steam_df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – A DataFrame of the data from the
FERC 1 Steam table.

	Returns

	None

	
pudl.transform.ferc1.purchased_power(ferc1_raw_dfs, ferc1_transformed_dfs)

	Transforms FERC Form 1 pumped storage data for loading into PUDL.

This table has data about inter-utility power purchases into the PUDL DB.
This includes how much electricty was purchased, how much it cost, and who
it was purchased from. Unfortunately the field describing which other
utility the power was being bought from is poorly standardized, making it
difficult to correlate with other data. It will need to be categorized by
hand or with some fuzzy matching eventually.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database.

	ferc1_transformed_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of DataFrames to be
transformed.

	Returns

	The dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.transform.ferc1.transform(ferc1_raw_dfs, ferc1_tables=('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'plant_in_service_ferc1', 'purchased_power_ferc1', 'accumulated_depreciation_ferc1'))

	Transforms FERC 1.

	Parameters

	
	ferc1_raw_dfs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Each entry in this dictionary of DataFrame
objects corresponds to a table from the FERC Form 1 DBC database

	ferc1_tables (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple containing the set of tables which
have been successfully integrated into PUDL

	Returns

	A dictionary of the transformed DataFrames.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.workspace package

Submodules

	pudl.workspace.datastore module

	pudl.workspace.datastore_cli module

	pudl.workspace.setup module

	pudl.workspace.setup_cli module

Module contents

Tools for acquiring PUDL’s original input data and organizing it locally.

The datastore subpackage takes care of downloading original data form various
public sources, organizing it locally, and providing a programmatic interface
to that collection of raw inputs, which we refer to as the PUDL datastore.

These tools are available both as a library module, and via a command line
interface installed as an entrypoint script called pudl_data. For full
reproducibility of PUDL’s ETL pipeline outputs, the datastore should be
archived alongside the PUDL release which was used and the resulting
datapackage outputs.

pudl.workspace.datastore module

Download the original public data sources used by PUDL.

This module provides programmatic, platform-independent access to the original
data sources which are used to populate the PUDL database. Those sources
currently include: FERC Form 1, EIA Form 860, and EIA Form 923. The module
can be used to download the data, and populate a local data store which is
organized such that the rest of the PUDL package knows where to find all the
raw data it needs.

Support for selectively downloading portions of the EPA’s large Continuous
Emissions Monitoring System dataset will be added in the future.

	
pudl.workspace.datastore.assert_valid_param(source, year, month=None, state=None, check_month=None)

	Check whether parameters used in various datastore functions are valid.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string indicating which data source we are going to be
downloading. Currently it must be one of the following:
- ‘eia860’
- ‘eia861’
- ‘eia923’
- ‘ferc1’
- ‘epacems’

	year (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the year for which data should be downloaded. Must
be within the range of valid data years, which is specified for
each data source in the pudl.constants module. Use None for data
sources that do not have multiple years.

	month (int [https://docs.python.org/3/library/functions.html#int]) – the month for which data should be downloaded. Only used
for EPA CEMS.

	state (str [https://docs.python.org/3/library/stdtypes.html#str]) – the state for which data should be downloaded. Only used
for EPA CEMS.

	check_month –

Todo

Return to - what is check_month?

	Raises

	
	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the source is not among the list of valid sources.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the source is not found in the valid data years.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the year is not valid for the specified source.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the source is not found in valid base download URLs.

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the month is not valid (1-12).

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If the state is not a valid US state abbreviation.

	
pudl.workspace.datastore.check_if_need_update(source, year, states, data_dir, clobber=False)

	Check to see if the file is already downloaded and clobber is False.

Do we really need to download the requested data? Only case in which
we don’t have to do anything is when the downloaded file already exists
and clobber is False.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – the data source to retrieve. Must be one of: ‘eia860’,
‘eia923’, ‘ferc1’, or ‘epacems’.

	year (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the year of data that the returned path should
pertain to. Must be within the range of valid data years, which is
specified for each data source in pudl.constants.data_years. Note
that for data (like EPA CEMS) that have multiple datasets per year,
this function will download all the files for the specified year.
Use None for data sources that do not have multiple years.

	states (iterable) – List of two letter US state abbreviations indicating
which states data should be downloaded for.

	data_dir (path-like) – Path to the top level datastore directory.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, clobber the existing file and note that the
file will need to be replaced with an updated file.

	Returns

	Whether an update is needed (True) or not (False)

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
pudl.workspace.datastore.download(source, year, states, data_dir)

	Download the original data for the specified data source and year.

Given a data source and the desired year of data, download the original
data files from the appropriate federal website, and place them in a
temporary directory within the data store. This function does not do any
checking to see whether the file already exists, or needs to be updated,
and does not do any of the organization of the datastore after download,
it simply gets the requested file.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – the data source to retrieve. Must be one of: ‘eia860’,
‘eia923’, ‘ferc1’, or ‘epacems’.

	year (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the year of data that the returned path should
pertain to. Must be within the range of valid data years, which is
specified for each data source in pudl.constants.data_years. Note
that for data (like EPA CEMS) that have multiple datasets per year,
this function will download all the files for the specified year.
Use None for data sources that do not have multiple years.

	states (iterable) – List of two letter US state abbreviations indicating
which states data should be downloaded for.

	data_dir (path-like) – Path to the top level datastore directory.

	Returns

	The path to the local downloaded file.

	Return type

	path-like

Todo

Return to

	
pudl.workspace.datastore.organize(source, year, states, data_dir, unzip=True, dl=True)

	Put downloaded original data file where it belongs in the datastore.

Once we’ve downloaded an original file from the public website it lives on
we need to put it where it belongs in the datastore. Optionally, we also
unzip it and clean up the directory hierarchy that results from unzipping.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – the data source to retrieve. Must be one of: ‘eia860’,
‘eia923’, ‘ferc1’, or ‘epacems’.

	year (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the year of data that the returned path should
pertain to. Must be within the range of valid data years, which is
specified for each data source in pudl.constants.data_years. Use
None for data sources that do not have multiple years.

	data_dir (path-like) – Path to the top level datastore directory.

	unzip (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, unzip the file once downloaded, and place the
resulting data files where they ought to be in the datastore.

	dl (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the files were not downloaded in this run.

	Returns

	None

Todo

Replace 4 assert statements

	
pudl.workspace.datastore.parallel_update(sources, years_by_source, states, data_dir, clobber=False, unzip=True, dl=True)

	Download many original source data files in parallel using threads.

	
pudl.workspace.datastore.path(source, data_dir, year=None, month=None, state=None, file=True)

	Construct a variety of local datastore paths for a given data source.

PUDL expects the original data it ingests to be organized in a particular
way. This function allows you to easily construct useful paths that refer
to various parts of the data store, by specifying the data source you are
interested in, and optionally the year of data you’re seeking, as well as
whether you want the originally downloaded files for that year, or the
directory in which a given year’s worth of data for a particular data
source can be found.

Note: if you change the default arguments here, you should also change them
for paths_for_year()

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string indicating which data source we are going to be
downloading. Currently it must be one of the following:
- ‘ferc1’
- ‘eia923’
- ‘eia860’
- ‘epacems’

	data_dir (path-like) – Path to the top level datastore directory.

	year (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the year of data that the returned path should
pertain to. Must be within the range of valid data years, which is
specified for each data source in pudl.constants.data_years, unless
year is set to zero, in which case only the top level directory for
the data source specified in source is returned. If None, no
subdirectory is used for the data source.

	month (int [https://docs.python.org/3/library/functions.html#int]) – Month of year (1-12). Only applies to epacems.

	state (str [https://docs.python.org/3/library/stdtypes.html#str]) – Two letter US state abbreviation. Only applies to epacems.

	file (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return the full path to the originally downloaded
file specified by the data source and year. If file is true, year
must not be set to zero, as a year is required to specify a
particular downloaded file.

	Returns

	the path to requested resource within the local PUDL datastore.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pudl.workspace.datastore.paths_for_year(source, data_dir, year=None, states=None, file=True)

	Derive all paths for a given source and year. See path() for details.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string indicating which data source we are going to be
downloading. Currently it must be one of the following:
- ‘ferc1’
- ‘eia923’
- ‘eia860’
- ‘epacems’

	data_dir (path-like) – Path to the top level datastore directory.

	year (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the year of data that the returned path should
pertain to. Must be within the range of valid data years, which is
specified for each data source in pudl.constants.data_years, unless
year is set to zero, in which case only the top level directory for
the data source specified in source is returned. If None, no
subdirectory is used for the data source.

	month (int [https://docs.python.org/3/library/functions.html#int]) – Month of year (1-12). Only applies to epacems.

	state (str [https://docs.python.org/3/library/stdtypes.html#str]) – Two letter US state abbreviation. Only applies to epacems.

	file (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return the full path to the originally downloaded
file specified by the data source and year. If file is true, year
must not be set to zero, as a year is required to specify a
particular downloaded file.

	Returns

	the path to requested resource within the local PUDL datastore.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pudl.workspace.datastore.source_url(source, year, month=None, state=None, table=None)

	Construct a download URL for the specified federal data source and year.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string indicating which data source we are going to be
downloading. Currently it must be one of the following:
- ‘eia860’
- ‘eia861’
- ‘eia923’
- ‘ferc1’
- ‘epacems’

	year (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the year for which data should be downloaded. Must
be within the range of valid data years, which is specified for
each data source in the pudl.constants module. Use None for data
sources that do not have multiple years.

	month (int [https://docs.python.org/3/library/functions.html#int]) – the month for which data should be downloaded. Only used
for EPA CEMS.

	state (str [https://docs.python.org/3/library/stdtypes.html#str]) – the state for which data should be downloaded. Only used
for EPA CEMS.

	table (str [https://docs.python.org/3/library/stdtypes.html#str]) – the table for which data should be downloaded. Only used
for EPA IPM.

	Returns

	a full URL from which the requested data may be
obtained

	Return type

	download_url (str [https://docs.python.org/3/library/stdtypes.html#str])

	
pudl.workspace.datastore.update(source, year, states, data_dir, clobber=False, unzip=True, dl=True)

	Update the local datastore for the given source and year.

If necessary, pull down a new copy of the data for the specified data
source and year. If we already have the requested data, do nothing,
unless clobber is True – in which case remove the existing data and
replace it with a freshly downloaded copy.

Note that update_datastore.py runs this function in parallel, so files
multiple sources and years may be in progress simultaneously.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – the data source to retrieve. Must be one of: ‘eia860’,
‘eia923’, ‘ferc1’, or ‘epacems’.

	year (int [https://docs.python.org/3/library/functions.html#int]) – the year of data that the returned path should pertain to.
Must be within the range of valid data years, which is specified
for each data source in pudl.constants.data_years.

	states (iterable) – List of two letter US state abbreviations indicating
which states data should be downloaded for. Currently only affects
the epacems dataset.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, replace existing copy of the requested data
if we have it, with freshly downloaded data.

	unzip (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, unzip the file once downloaded, and place the
resulting data files where they ought to be in the datastore.
EPA CEMS files will never be unzipped.

	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data directory which holds the PUDL datastore.

	dl (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, don’t download the files, only unzip ones
that are already present. If True, do download the files. Either
way, still obey the unzip and clobber settings. (unzip=False and
dl=False will do nothing.)

	Returns

	None

pudl.workspace.datastore_cli module

A CLI for fetching public utility data from reporting agency servers.

This script will generate a datastore on a datastore directory. By default, the
directory will end up in wherever you have designated “PUDL_IN” in the settings
file $HOME/.pudl.yml. You can use this script to specific only specific datasets
to download, only specific years or states but by default, it will grab
everything. A populated datastore is required to use other PUDL tools, like the
ETL script (pudl_etl) and all of the post-ETL processes.

	
pudl.workspace.datastore_cli.main()

	Manage and update the PUDL datastore.

	
pudl.workspace.datastore_cli.parse_command_line(argv)

	Parse command line arguments. See the -h option for more details.

	Parameters

	argv (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command line arguments, which must include caller filename.

	Returns

	Dictionary of command line arguments and their parsed values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.workspace.setup module

Tools for setting up and managing PUDL workspaces.

	
pudl.workspace.setup.deploy(pkg_path, deploy_dir, ignore_files, clobber=False)

	Deploy all files from a package_data directory into a workspace.

	Parameters

	
	pkg_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dotted module path to the subpackage inside of
package_data containing the resources to be deployed.

	deploy_dir (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Directory on the filesystem to which the
files within pkg_path should be deployed.

	ignore_files (iterable) – List of filenames (strings) that may be
present in the pkg_path subpackage, but that should be ignored.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, replace existing copies of the files that are
being deployed from pkg_path to deploy_dir. If False, do not
replace existing files.

	Returns

	None

	
pudl.workspace.setup.derive_paths(pudl_in, pudl_out)

	Derive PUDL paths based on given input and output paths.

If no configuration file path is provided, attempt to read in the user
configuration from a file called .pudl.yml in the user’s HOME directory.
Presently the only values we expect are pudl_in and pudl_out, directories
that store files that PUDL either depends on that rely on PUDL.

	Parameters

	
	pudl_in (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory containing the PUDL input
files, most notably the data directory which houses the raw
data downloaded from public agencies by the
pudl.workspace.datastore tools. pudl_in may be the same
directory as pudl_out.

	pudl_out (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory where PUDL should write
the outputs it generates. These will be organized into directories
according to the output format (sqlite, datapackage, etc.).

	Returns

	
	A dictionary containing common PUDL settings, derived from those
	read out of the YAML file. Mostly paths for inputs & outputs.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.workspace.setup.get_defaults()

	Read paths to default PUDL input/output dirs from user’s $HOME/.pudl.yml.

	Parameters

	None –

	Returns

	The contents of the user’s PUDL settings file, with keys
pudl_in and pudl_out defining their default PUDL workspace. If
the $HOME/.pudl.yml file does not exist, set these paths to None.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.workspace.setup.init(pudl_in, pudl_out, clobber=False)

	Set up a new PUDL working environment based on the user settings.

	Parameters

	
	pudl_in (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory containing the PUDL input
files, most notably the data directory which houses the raw
data downloaded from public agencies by the
pudl.workspace.datastore tools. pudl_in may be the same
directory as pudl_out.

	pudl_out (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the directory where PUDL should write
the outputs it generates. These will be organized into directories
according to the output format (sqlite, datapackage, etc.).

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, replace existing files. If False (the default)
do not replace existing files.

	Returns

	None

	
pudl.workspace.setup.set_defaults(pudl_in, pudl_out, clobber=False)

	Set default user input and output locations in $HOME/.pudl.yml.

Create a user settings file for future reference, that defines the default
PUDL input and output directories. If this file already exists, behavior
depends on the clobber parameter, which is False by default. If it’s True,
the existing file is replaced. If False, the existing file is not changed.

	Parameters

	
	pudl_in (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to be used as the default input directory
for PUDL – this is where pudl.workspace.datastore will look
to find the data directory, full of data from public agencies.

	pudl_out (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Path to the default output directory for PUDL,
where results of data processing will be organized.

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and a user settings file exists, overwrite it.
If False, do not alter the existing file. Defaults to False.

	Returns

	None

pudl.workspace.setup_cli module

Set up a well-organized PUDL workspace.

This script creates a well-defined directory structure for use by the PUDL
package, and copies several example settings files and Jupyter notebooks into
it to get you started. If the command is run without any arguments, it will
create this workspace in your current directory.

The script will also create a file named .pudl.yml, describing the location of
your PUDL workspace. The PUDL package will refer to this location in the future
to know where it should look for raw data, where to put its outputs, etc. This
file can be edited to change the default input and output directories if you
wish. However, make sure those workspaces are set up using this script.

It’s also possible to specify different input and output directories, which is
useful if you want to use a single PUDL data store (which may contain many GB
of data) to support several different workspaces. See the –pudl_in and
–pudl_out options.

By default the script will not overwrite existing files. If you want it to
replace existing files (including your .pudl.yml file which defines your
default PUDL workspace) use the –clobber option.

The directory structure set up for PUDL looks like this:

	PUDL_IN
	
	└── data
	├── eia
│ ├── form860
│ └── form923
├── epa
│ ├── cems
│ └── ipm
├── ferc
│ └── form1
└── tmp

	PUDL_OUT
	├── datapackage
├── environment.yml
├── notebook
├── parquet
├── settings
└── sqlite

Initially, the directories in the data store will be empty. The pudl_data or
pudl_etl commands will download data from public sources and organize it for
you there by source. The PUDL_OUT directories are organized by the type of
file they contain.

	
pudl.workspace.setup_cli.initialize_parser()

	Parse command line arguments for the pudl_setup script.

	
pudl.workspace.setup_cli.main()

	Set up a new default PUDL workspace.

pudl.cli module

A command line interface (CLI) to the main PUDL ETL functionality.

This script generates datapacakges based on the datapackage settings enumerated
in the settings_file which is given as an argument to this script. If the
settings has empty datapackage parameters (meaning there are no years or
tables included), no datapacakges will be generated. If the settings include a
datapackage that has empty parameters, the other valid datatpackages will be
generated, but not the empty one. If there are invalid parameters (meaning a
year that is not included in the pudl.constant.working_years), the build will
fail early on in the process.

The datapackages will be stored in “PUDL_OUT” in the “datapackge” subdirectory.
Currently, this function only uses default directories for “PUDL_IN” and
“PUDL_OUT” (meaning those stored in $HOME/.pudl.yml). To setup your default
pudl directories see the pudl_setup script (pudl_setup –help for more details).

	
pudl.cli.main()

	Parse command line and initialize PUDL DB.

	
pudl.cli.parse_command_line(argv)

	Parse script command line arguments. See the -h option.

	Parameters

	argv (list [https://docs.python.org/3/library/stdtypes.html#list]) – command line arguments including caller file name.

	Returns

	A dictionary mapping command line arguments to their values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

pudl.constants module

A warehouse for constant values required to initilize the PUDL Database.

This constants module stores and organizes a bunch of constant values which are
used throughout PUDL to populate static lists within the data packages or for
data cleaning purposes.

	
pudl.constants.aer_coal_strings = ['col', 'woc', 'pc']

	A list of EIA 923 AER fuel type strings associated with coal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_fuel_type_strings = {'coal': ['col', 'woc', 'pc'], 'gas': ['mlg', 'ng', 'oog'], 'hydro': ['hps', 'hyc'], 'nuclear': ['nuc'], 'oil': ['dfo', 'rfo', 'woo'], 'other': ['geo', 'orw', 'oth'], 'solar': ['sun'], 'waste': ['www'], 'wind': ['wnd']}

	A dictionary mapping EIA 923 AER fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.aer_gas_strings = ['mlg', 'ng', 'oog']

	A list of EIA 923 AER fuel type strings associated with gas.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_hydro_strings = ['hps', 'hyc']

	A list of EIA 923 AER fuel type strings associated with hydro power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_nuclear_strings = ['nuc']

	A list of EIA 923 AER fuel type strings associated with nuclear power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_oil_strings = ['dfo', 'rfo', 'woo']

	A list of EIA 923 AER fuel type strings associated with oil.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_other_strings = ['geo', 'orw', 'oth']

	A list of EIA 923 AER fuel type strings associated with other fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_solar_strings = ['sun']

	A list of EIA 923 AER fuel type strings associated with solar power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_waste_strings = ['www']

	A list of EIA 923 AER fuel type strings associated with waste.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.aer_wind_strings = ['wnd']

	A list of EIA 923 AER fuel type strings associated with wind power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.base_data_urls = {'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'pudl': 'https://catalyst.coop/pudl/'}

	A dictionary containing data sources (keys) and their base data URLs
(values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.boiler_fuel_map_eia923 = plant_id_eia ... report_year year_index ... 2009 plant_id ... year 2010 plant_id ... year 2011 plant_id ... year 2012 plant_id ... year 2013 plant_id ... year 2014 plant_id ... year 2015 plant_id ... year 2016 plant_id ... year 2017 plant_id ... year [9 rows x 65 columns]

	A DataFrame of metadata from EIA 923 Boiler Fuel.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.boiler_generator_assn_map_eia860 = utility_id_eia plant_id_eia boiler_id generator_id year_index 2009 utility_id plant_code boiler_id generator_id 2010 utility_id plant_code boiler_id generator_id 2011 utility_id plant_code boiler_id generator_id 2012 utility_id plant_code boiler_id generator_id 2013 utility_id plant_code boiler_id generator_id 2014 utility_id plant_code boiler_id generator_id 2015 utility_id plant_code boiler_id generator_id 2016 utility_id plant_code boiler_id generator_id 2017 utility_id plant_code boiler_id generator_id

	A DataFrame of metadata from EIA 860 Boiler Generator
Association.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.canada_prov_terr = {'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NL': 'Newfoundland and Labrador', 'NS': 'Nova Scotia', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory'}

	A dictionary containing Canadian provinces’ and territories’
abbreviations (keys) and names (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.cems_states = {'AL': 'Alabama', 'AR': 'Arkansas', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MS': 'Mississippi', 'MT': 'Montana', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming'}

	A dictionary containing US state abbreviations (keys) and names
(values) that are present in the CEMS dataset

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.census_region = {'ENC': 'East North Central', 'ESC': 'East South Central', 'MAT': 'Middle Atlantic', 'MTN': 'Mountain', 'NEW': 'New England', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', 'SAT': 'South Atlantic', 'WNC': 'West North Central', 'WSC': 'West South Central'}

	A dictionary mapping Census Region abbreviations (keys) to Census
Region names (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.coalmine_country_eia923 = {'AU': 'AUS', 'CL': 'COL', 'CN': 'CAN', 'IM': 'unknown', 'IS': 'IDN', 'OC': 'other_country', 'PL': 'POL', 'RS': 'RUS', 'UK': 'GBR', 'VZ': 'VEN'}

	A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three
letter country codes (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.coalmine_type_eia923 = {'P': 'Preparation Plant', 'S': 'Surface', 'SU': 'Both an underground and surface mine with most coal extracted from surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground'}

	A dictionary mapping EIA 923 coal mine type codes (keys) to
descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.contract_type_eia923 = {'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'S': 'Spot Purchase', 'T': 'Tolling Agreement – Fuel received under a tolling agreement (bartering arrangement of fuel for generation)'}

	A dictionary mapping EIA 923 contract codes (keys) to contract
descriptions (values) for each month in the Fuel Receipts and Costs table.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.contributors = {'alana-wilson': {'email': 'alana.wilson@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Alana Wilson'}, 'catalyst-cooperative': {'email': 'pudl@catalyst.coop', 'organization': 'Catalyst Cooperative', 'path': 'https://catalyst.coop/', 'role': 'publisher', 'title': 'Catalyst Cooperative'}, 'christina-gosnell': {'email': 'christina.gosnell@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Christina Gosnell'}, 'climate-policy-initiative': {'organization': 'Climate Policy Initiative', 'path': 'https://climatepolicyinitiative.org/', 'role': 'contributor', 'title': 'Climate Policy Initiative'}, 'greg-schivley': {'role': 'contributor', 'title': 'Greg Schivley'}, 'karl-dunkle-werner': {'email': 'karldw@berkeley.edu', 'organization': 'UC Berkeley', 'path': 'https://karldw.org/', 'role': 'contributor', 'title': 'Karl Dunkle Werner'}, 'steven-winter': {'email': 'steven.winter@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Steven Winter'}, 'zane-selvans': {'email': 'zane.selvans@catalyst.coop', 'organization': 'Catalyst Cooperative', 'path': 'https://amateurearthling.org/', 'role': 'wrangler', 'title': 'Zane Selvans'}}

	A dictionary of dictionaries containing organization names (keys) and
their attributes (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.contributors_by_source = {'eia860': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson'], 'eia923': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter'], 'epacems': ['catalyst-cooperative', 'karl-dunkle-werner', 'zane-selvans'], 'epaipm': ['greg-schivley'], 'ferc1': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson'], 'pudl': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson', 'karl-dunkle-werner', 'climate-policy-initiative']}

	A dictionary of data sources (keys) and lists of contributors (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.cpi_diesel_strings = ['DIESEL', 'Diesel Engine', 'Diesel Turbine']

	A list of strings for fuel type diesel compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.cpi_geothermal_strings = ['Steam - Geothermal']

	A list of strings for fuel type geothermal compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.cpi_natural_gas_strings = ['Combined Cycle', 'Combustion Turbine', 'GT', 'GAS TURBINE', 'Comb. Turbine', 'Gas Turbine #1', 'Combine Cycle Oper', 'Combustion', 'Combined', 'Gas Turbine/Steam', 'Gas Turbine Peaker', 'Gas Turbine - Note 1', 'Resp Share Gas Note3', 'Gas Turbines', 'Simple Cycle', 'Gas / Steam', 'GasTurbine', 'Combine Cycle', 'CTG/Steam-Gas', 'GTG/Gas', 'CTG/Steam -Gas', 'Steam/Gas Turbine', 'CombustionTurbine', 'Gas Turbine-Simple', 'STEAM & GAS TURBINE', 'Gas & Steam Turbine', 'Gas', 'Gas Turbine (2)', 'COMBUSTION AND GAS', 'Com Turbine Peaking', 'Gas Turbine Peaking', 'Comb Turb Peaking', 'JET ENGINE', 'Comb. Cyc', 'Com. Cyc', 'Com. Cycle', 'GAS TURB-COMBINED CY', 'Gas Turb', 'Combined Cycle - 40%', 'IGCC/Gas Turbine', 'CC', 'Combined Cycle Oper', 'Simple Cycle Turbine', 'Steam and CC', 'Com Cycle Gas Turb', 'I.C.E/ Gas Turbine', 'Combined Cycle CTG', 'GAS-TURBINE', 'Gas Expander Turbine', 'Gas Turbine (Leased)', 'Gas Turbine # 1', 'Gas Turbine (Note 1)', 'COMBUSTINE TURBINE', 'Gas Turb, Int. Comb.', 'Combined Turbine', 'Comb Turb Peak Units', 'Combustion Tubine', 'Comb. Cycle', 'COMB.TURB.PEAK.UNITS', 'Steam and CC', 'I.C.E. /Gas Turbine', 'Conbustion Turbine', 'Gas Turbine/Int Comb', 'Steam & CC', 'GAS TURB. & HEAT REC', 'Gas Turb/Comb. Cyc', 'Comb. Turine']

	A list of strings for fuel type gas compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.cpi_nuclear_strings = ['Nuclear', 'Nuclear (3)']

	A list of strings for fuel type nuclear compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.cpi_other_strings = ['IC', 'Internal Combustion', 'Int Combust - Note 1', 'Resp. Share - Note 2', 'Int. Combust - Note1', 'Resp. Share - Note 4', 'Resp Share - Note 5', 'Resp. Share - Note 7', 'Internal Comb Recip', 'Reciprocating Engine', 'Internal Comb', 'Resp. Share - Note 8', 'Resp. Share - Note 9', 'Resp Share - Note 11', 'Resp. Share - Note 6', 'INT.COMBUSTINE', 'Steam (Incl I.C.)', 'Other', 'Int Combust (Note 1)', 'Resp. Share (Note 2)', 'Int. Combust (Note1)', 'Resp. Share (Note 8)', 'Resp. Share (Note 9)', 'Resp Share (Note 11)', 'Resp. Share (Note 4)', 'Resp. Share (Note 6)', 'Plant retired- 2013', 'Retired - 2013']

	A list of strings for fuel type other compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.cpi_plant_kind_strings = {'diesel': ['DIESEL', 'Diesel Engine', 'Diesel Turbine'], 'geothermal': ['Steam - Geothermal'], 'natural_gas': ['Combined Cycle', 'Combustion Turbine', 'GT', 'GAS TURBINE', 'Comb. Turbine', 'Gas Turbine #1', 'Combine Cycle Oper', 'Combustion', 'Combined', 'Gas Turbine/Steam', 'Gas Turbine Peaker', 'Gas Turbine - Note 1', 'Resp Share Gas Note3', 'Gas Turbines', 'Simple Cycle', 'Gas / Steam', 'GasTurbine', 'Combine Cycle', 'CTG/Steam-Gas', 'GTG/Gas', 'CTG/Steam -Gas', 'Steam/Gas Turbine', 'CombustionTurbine', 'Gas Turbine-Simple', 'STEAM & GAS TURBINE', 'Gas & Steam Turbine', 'Gas', 'Gas Turbine (2)', 'COMBUSTION AND GAS', 'Com Turbine Peaking', 'Gas Turbine Peaking', 'Comb Turb Peaking', 'JET ENGINE', 'Comb. Cyc', 'Com. Cyc', 'Com. Cycle', 'GAS TURB-COMBINED CY', 'Gas Turb', 'Combined Cycle - 40%', 'IGCC/Gas Turbine', 'CC', 'Combined Cycle Oper', 'Simple Cycle Turbine', 'Steam and CC', 'Com Cycle Gas Turb', 'I.C.E/ Gas Turbine', 'Combined Cycle CTG', 'GAS-TURBINE', 'Gas Expander Turbine', 'Gas Turbine (Leased)', 'Gas Turbine # 1', 'Gas Turbine (Note 1)', 'COMBUSTINE TURBINE', 'Gas Turb, Int. Comb.', 'Combined Turbine', 'Comb Turb Peak Units', 'Combustion Tubine', 'Comb. Cycle', 'COMB.TURB.PEAK.UNITS', 'Steam and CC', 'I.C.E. /Gas Turbine', 'Conbustion Turbine', 'Gas Turbine/Int Comb', 'Steam & CC', 'GAS TURB. & HEAT REC', 'Gas Turb/Comb. Cyc', 'Comb. Turine'], 'nuclear': ['Nuclear', 'Nuclear (3)'], 'other': ['IC', 'Internal Combustion', 'Int Combust - Note 1', 'Resp. Share - Note 2', 'Int. Combust - Note1', 'Resp. Share - Note 4', 'Resp Share - Note 5', 'Resp. Share - Note 7', 'Internal Comb Recip', 'Reciprocating Engine', 'Internal Comb', 'Resp. Share - Note 8', 'Resp. Share - Note 9', 'Resp Share - Note 11', 'Resp. Share - Note 6', 'INT.COMBUSTINE', 'Steam (Incl I.C.)', 'Other', 'Int Combust (Note 1)', 'Resp. Share (Note 2)', 'Int. Combust (Note1)', 'Resp. Share (Note 8)', 'Resp. Share (Note 9)', 'Resp Share (Note 11)', 'Resp. Share (Note 4)', 'Resp. Share (Note 6)', 'Plant retired- 2013', 'Retired - 2013'], 'solar': ['Solar Photovoltaic', 'Solar Thermal', 'SOLAR PROJECT', 'Solar', 'Photovoltaic'], 'steam': ['Steam', 'Steam Units 1, 2, 3', 'Resp Share St Note 3', 'Steam Turbine', 'Steam-Internal Comb', 'IGCC', 'Steam- 72%', 'Steam (1)', '\x02Steam (1)', 'Steam Units 1,2,3', 'Steam/Fossil', 'Steams', 'Steam - 72%', 'Steam - 100%', 'Stream', 'Steam Units 4, 5', 'Steam - 64%', 'Common', 'Steam (A)', 'Coal', 'Steam;Retired - 2013', 'Steam Units 4 & 6'], 'wind': ['Wind', 'Wind Turbine', 'Wind - Turbine', 'Wind Energy']}

	A dictionary linking fuel types (keys) to lists of strings associated
by Climate Policy Institute with those fuel types (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.cpi_solar_strings = ['Solar Photovoltaic', 'Solar Thermal', 'SOLAR PROJECT', 'Solar', 'Photovoltaic']

	A list of strings for fuel type photovoltaic compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.cpi_steam_strings = ['Steam', 'Steam Units 1, 2, 3', 'Resp Share St Note 3', 'Steam Turbine', 'Steam-Internal Comb', 'IGCC', 'Steam- 72%', 'Steam (1)', '\x02Steam (1)', 'Steam Units 1,2,3', 'Steam/Fossil', 'Steams', 'Steam - 72%', 'Steam - 100%', 'Stream', 'Steam Units 4, 5', 'Steam - 64%', 'Common', 'Steam (A)', 'Coal', 'Steam;Retired - 2013', 'Steam Units 4 & 6']

	A list of strings for fuel type steam compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.cpi_wind_strings = ['Wind', 'Wind Turbine', 'Wind - Turbine', 'Wind Energy']

	A list of strings for fuel type wind compiled by Climate Policy
Initiative.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.data_source_info = {'eia860': {'path': 'https://www.eia.gov/electricity/data/eia860/', 'title': 'EIA Form 860'}, 'eia861': {'title': 'EIA Form 861'}, 'eia923': {'path': 'https://www.eia.gov/electricity/data/eia923/', 'title': 'EIA Form 923'}, 'eiawater': {'title': 'EIA Water Use for Power'}, 'epacems': {'path': 'https://ampd.epa.gov/ampd/', 'title': 'EPA Air Markets Program Data'}, 'ferc1': {'path': 'https://www.ferc.gov/docs-filing/forms/form-1/data.asp', 'title': 'FERC Form 1'}, 'ferc714': {'title': 'FERC Form 714'}, 'ferceqr': {'title': 'FERC Electric Quarterly Report'}, 'msha': {'title': 'Mining Safety and Health Administration'}, 'phmsa': {'title': 'Pipelines and Hazardous Materials Safety Administration'}, 'pudl': {'email': 'pudl@catalyst.coop', 'path': 'https://catalyst.coop/pudl/', 'title': 'Public Utility Data Liberation Project (PUDL)'}}

	A dictionary of dictionaries containing datasources (keys) and
associated attributes (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.data_sources = ('eia860', 'eia923', 'epacems', 'ferc1', 'epaipm')

	A tuple containing the data sources we are able to pull into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.data_years = {'eia860': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), 'eia923': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), 'epacems': (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), 'epaipm': (None,), 'ferc1': (1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018)}

	A dictionary of data sources (keys) and tuples containing the years
that we expect to be able to download for each data source (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.dbf_typemap = {'+': 'XXX', '0': <class 'sqlalchemy.sql.sqltypes.Integer'>, '@': 'XXX', 'B': 'XXX', 'C': <class 'sqlalchemy.sql.sqltypes.String'>, 'D': <class 'sqlalchemy.sql.sqltypes.Date'>, 'F': <class 'sqlalchemy.sql.sqltypes.Float'>, 'G': 'XXX', 'I': <class 'sqlalchemy.sql.sqltypes.Integer'>, 'L': <class 'sqlalchemy.sql.sqltypes.Boolean'>, 'M': <class 'sqlalchemy.sql.sqltypes.Text'>, 'N': <class 'sqlalchemy.sql.sqltypes.Float'>, 'O': 'XXX', 'T': <class 'sqlalchemy.sql.sqltypes.DateTime'>}

	A dictionary mapping field types in the DBF objects (keys) to the
corresponding generic SQLAlchemy Column types.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.eia860_pudl_tables = ('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860')

	A tuple containing the list of EIA 860 tables that can be successfully
pulled into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923')

	A tuple containing the EIA923 tables that can be successfully
integrated into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.energy_source_eia923 = {'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BM': 'Biomass', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'OG': 'Other Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SG': 'Synhtesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.'}

	A dictionary mapping fuel codes (keys) to fuel descriptions (values)
for each fuel receipt from the EIA 923 Fuel Receipts and Costs table.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.energy_source_eia_simple_map = {'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'], 'solar': ['SUN'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'wind': ['WND']}

	A dictionary mapping EIA fuel types (keys) to fuel codes (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.entities = {'boilers': [['plant_id_eia', 'boiler_id'], ['prime_mover_code'], [], {'plant_id_eia': 'int64', 'boiler_id': 'str'}], 'generators': [['plant_id_eia', 'generator_id'], ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'heat_bypass_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'minimum_load_mw', 'technology_description', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date'], {'plant_id_eia': 'int64', 'generator_id': 'str'}], 'plants': [['plant_id_eia'], ['balancing_authority_code', 'balancing_authority_name', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'iso_rto_name', 'latitude', 'longitude', 'nerc_region', 'plant_name', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], {'plant_id_eia': 'int64', 'grid_voltage_2_kv': 'float64', 'grid_voltage_3_kv': 'float64', 'grid_voltage_kv': 'float64', 'longitude': 'float64', 'latitude': 'float64', 'primary_purpose_naics_id': 'float64', 'sector_id': 'float64', 'zip_code': 'float64', 'utility_id_eia': 'float64'}], 'utilities': [['utility_id_eia'], ['utility_name', 'entity_type'], ['street_address', 'city', 'state', 'zip_code', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship'], {'utility_id_eia': 'int64'}]}

	A dictionary containing table name strings (keys) and lists of columns
to keep for those tables (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm']

	A list of PUDL entity tables.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.epacems_additional_plant_info_file = <_io.TextIOWrapper name='/home/docs/checkouts/readthedocs.org/user_builds/catalystcoop-pudl/envs/v0.2.0/lib/python3.7/site-packages/pudl/package_data/epa/cems/plant_info_for_additional_cems_plants.csv' encoding='utf-8'>

	typing.TextIO:

Todo

Return to

	
pudl.constants.epacems_columns_fill_na_dict = {'gross_load_mw': 0.0, 'heat_content_mmbtu': 0.0}

	the set of EPA CEMS columns to

Todo

Return to

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.constants.epacems_columns_to_ignore = {'CO2_RATE', 'CO2_RATE (tons/mmBtu)', 'CO2_RATE_MEASURE_FLG', 'FACILITY_NAME', 'SO2_RATE', 'SO2_RATE (lbs/mmBtu)', 'SO2_RATE_MEASURE_FLG'}

	The set of EPA CEMS columns to ignore when reading data.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.constants.epacems_csv_dtypes = {'CO2_MASS': <class 'float'>, 'CO2_MASS (tons)': <class 'float'>, 'CO2_MASS_MEASURE_FLG': <class 'str'>, 'FAC_ID': <class 'int'>, 'GLOAD': <class 'float'>, 'GLOAD (MW)': <class 'float'>, 'HEAT_INPUT': <class 'float'>, 'HEAT_INPUT (mmBtu)': <class 'float'>, 'NOX_MASS': <class 'float'>, 'NOX_MASS (lbs)': <class 'float'>, 'NOX_MASS_MEASURE_FLG': <class 'str'>, 'NOX_RATE': <class 'float'>, 'NOX_RATE (lbs/mmBtu)': <class 'float'>, 'NOX_RATE_MEASURE_FLG': <class 'str'>, 'OP_DATE': <class 'str'>, 'OP_HOUR': <class 'int'>, 'OP_TIME': <class 'float'>, 'ORISPL_CODE': <class 'int'>, 'SLOAD': <class 'float'>, 'SLOAD (1000 lbs)': <class 'float'>, 'SLOAD (1000lb/hr)': <class 'float'>, 'SO2_MASS': <class 'float'>, 'SO2_MASS (lbs)': <class 'float'>, 'SO2_MASS_MEASURE_FLG': <class 'str'>, 'STATE': <class 'str'>, 'UNITID': <class 'str'>, 'UNIT_ID': <class 'int'>}

	A dictionary containing column names (keys) and data types (values) for
EPA CEMS.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.epacems_rename_dict = {'CO2_MASS': 'co2_mass_tons', 'CO2_MASS (tons)': 'co2_mass_tons', 'CO2_MASS_MEASURE_FLG': 'co2_mass_measurement_code', 'FAC_ID': 'facility_id', 'GLOAD': 'gross_load_mw', 'GLOAD (MW)': 'gross_load_mw', 'HEAT_INPUT': 'heat_content_mmbtu', 'HEAT_INPUT (mmBtu)': 'heat_content_mmbtu', 'NOX_MASS': 'nox_mass_lbs', 'NOX_MASS (lbs)': 'nox_mass_lbs', 'NOX_MASS_MEASURE_FLG': 'nox_mass_measurement_code', 'NOX_RATE': 'nox_rate_lbs_mmbtu', 'NOX_RATE (lbs/mmBtu)': 'nox_rate_lbs_mmbtu', 'NOX_RATE_MEASURE_FLG': 'nox_rate_measurement_code', 'OP_DATE': 'op_date', 'OP_HOUR': 'op_hour', 'OP_TIME': 'operating_time_hours', 'ORISPL_CODE': 'plant_id_eia', 'SLOAD': 'steam_load_1000_lbs', 'SLOAD (1000 lbs)': 'steam_load_1000_lbs', 'SLOAD (1000lb/hr)': 'steam_load_1000_lbs', 'SO2_MASS': 'so2_mass_lbs', 'SO2_MASS (lbs)': 'so2_mass_lbs', 'SO2_MASS_MEASURE_FLG': 'so2_mass_measurement_code', 'STATE': 'state', 'UNITID': 'unitid', 'UNIT_ID': 'unit_id_epa'}

	A dictionary containing EPA CEMS column names (keys) and replacement
names to use when reading those columns into PUDL (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.epacems_tables = 'hourly_emissions_epacems'

	A tuple containing tables of EPA CEMS data to pull into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.epaipm_pudl_tables = ('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm')

	A tuple containing the EPA IPM tables that can be successfully
integrated into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.epaipm_region_aggregations = {'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': ['MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS'], 'NYISO': ['NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K'], 'PJM': ['PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC'], 'SPP': ['SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE'], 'WECC_NW': ['WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY']}

	A dictionary containing EPA IPM regions (keys) and lists of their
associated abbreviations (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.epaipm_region_names = ['ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK']

	A list of EPA IPM region names.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.epaipm_url_ext = {'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx'}

	A dictionary of EPA IPM tables and associated URLs extensions for
downloading that table’s data.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_1kgal_strings = ['oil(1000 gal)', 'oil(1000)', 'oil (1000)', 'oil(1000']

	A list of fuel unit strings for thousand gallons.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_bbl_strings = ['barrel', 'bbls', 'bbl', 'barrels', 'bbrl', 'bbl.', 'bbls.', 'oil 42 gal', 'oil-barrels', 'barrrels', 'bbl-42 gal', 'oil-barrel', 'bb.', 'barrells', 'bar', 'bbld', 'oil- barrel', 'barrels .', 'bbl .', 'barels', 'barrell', 'berrels', 'bb', 'bbl.s', 'oil-bbl', 'bls', 'bbl:', 'barrles', 'blb', 'propane-bbl']

	A list of fuel unit strings for barrels.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_coal_strings = ['coal', 'coal-subbit', 'lignite', 'coal(sb)', 'coal (sb)', 'coal-lignite', 'coke', 'coa', 'lignite/coal', 'coal - subbit', 'coal-subb', 'coal-sub', 'coal-lig', 'coal-sub bit', 'coals', 'ciak', 'petcoke']

	A list of strings which are used to represent coal fuel in FERC Form 1
reporting.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_const_type_conventional = ['conventional', 'conventional', 'conventional boiler', 'conv-b', 'conventionall', 'convention', 'conventional', 'coventional', 'conven full boiler', 'c0nventional', 'conventtional', 'conventialunderground', 'conventional bulb', 'conventrional']

	A list of strings from FERC Form 1 associated with the conventional
construction type.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_const_type_outdoor = ['outdoor', 'outdoor boiler', 'full outdoor', 'outdoor boiler', 'outdoor boilers', 'outboilers', 'fuel outdoor', 'full outdoor', 'outdoors', 'outdoor', 'boiler outdoor& full', 'boiler outdoor&full', 'outdoor boiler& full', 'full -outdoor', 'outdoor steam', 'outdoor boiler', 'ob', 'outdoor automatic', 'outdoor repower', 'full outdoor boiler', 'fo', 'outdoor boiler & ful', 'full-outdoor', 'fuel outdoor', 'outoor', 'outdoor', 'outdoor boiler&full', 'boiler outdoor &full', 'outdoor boiler &full', 'boiler outdoor & ful', 'outdoor-boiler', 'outdoor - boiler', 'outdoor const.', '4 outdoor boilers', '3 outdoor boilers', 'full outdoor', 'full outdoors', 'full oudoors', 'outdoor (auto oper)', 'outside boiler', 'outdoor boiler&full', 'outdoor hrsg', 'outdoor hrsg', 'semi-outdoor', 'semi - outdoor']

	A list of strings from FERC Form 1 associated with the outdoor
construction type.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_const_type_strings = {'conventional': ['conventional', 'conventional', 'conventional boiler', 'conv-b', 'conventionall', 'convention', 'conventional', 'coventional', 'conven full boiler', 'c0nventional', 'conventtional', 'conventialunderground', 'conventional bulb', 'conventrional'], 'outdoor': ['outdoor', 'outdoor boiler', 'full outdoor', 'outdoor boiler', 'outdoor boilers', 'outboilers', 'fuel outdoor', 'full outdoor', 'outdoors', 'outdoor', 'boiler outdoor& full', 'boiler outdoor&full', 'outdoor boiler& full', 'full -outdoor', 'outdoor steam', 'outdoor boiler', 'ob', 'outdoor automatic', 'outdoor repower', 'full outdoor boiler', 'fo', 'outdoor boiler & ful', 'full-outdoor', 'fuel outdoor', 'outoor', 'outdoor', 'outdoor boiler&full', 'boiler outdoor &full', 'outdoor boiler &full', 'boiler outdoor & ful', 'outdoor-boiler', 'outdoor - boiler', 'outdoor const.', '4 outdoor boilers', '3 outdoor boilers', 'full outdoor', 'full outdoors', 'full oudoors', 'outdoor (auto oper)', 'outside boiler', 'outdoor boiler&full', 'outdoor hrsg', 'outdoor hrsg', 'semi-outdoor', 'semi - outdoor']}

	A dictionary of construction types (keys) and lists of construction
type strings associated with each type (values) from FERC Form 1.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_data_tables = ('f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev')

	A tuple containing the FERC Form 1 tables that have the same composite
primary keys: [respondent_id, report_year, report_prd, row_number,
spplmnt_num].

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.ferc1_dbf2tbl = {'F1_1': 'f1_respondent_id', 'F1_10': 'f1_allowances', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_106_2009': 'f1_106_2009', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_2': 'f1_acb_epda', 'F1_20': 'f1_csscslc_pcsircs', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_3': 'f1_accumdepr_prvsn', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_33': 'f1_gnrt_plant', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_40': 'f1_mtrl_spply', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_43': 'f1_note_fin_stmnt', 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_5': 'f1_adit_190_detail', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_6': 'f1_adit_190_notes', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_7': 'f1_adit_amrt_prop', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_8': 'f1_adit_other', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_9': 'f1_adit_other_prop', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security'}

	A dictionary mapping FERC Form 1 DBF files (w/o .DBF file extension)
(keys) to database table names (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_default_tables = ('f1_respondent_id', 'f1_fuel', 'f1_steam', 'f1_gnrt_plant', 'f1_hydro', 'f1_pumped_storage', 'f1_plant_in_srvce', 'f1_purchased_pwr', 'f1_accumdepr_prvsn', 'f1_general_info', 'f1_row_lit_tbl', 'f1_edcfu_epda', 'f1_dacs_epda', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_elctrc_oper_rev', 'f1_elctrc_erg_acct', 'f1_elc_op_mnt_expn', 'f1_slry_wg_dstrbtn', 'f1_utltyplnt_smmry', 'f1_399_mth_peak', 'f1_398_ancl_ps', 'f1_325_elc_cust', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_397_isorto_stl')

	A tuple containing the FERC Form 1 columns PUDL is initially focused
on.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.ferc1_fuel_strings = {'coal': ['coal', 'coal-subbit', 'lignite', 'coal(sb)', 'coal (sb)', 'coal-lignite', 'coke', 'coa', 'lignite/coal', 'coal - subbit', 'coal-subb', 'coal-sub', 'coal-lig', 'coal-sub bit', 'coals', 'ciak', 'petcoke'], 'gas': ['gas', 'gass', 'methane', 'natural gas', 'blast gas', 'gas mcf', 'propane', 'prop', 'natural gas', 'nat.gas', 'nat gas', 'nat. gas', 'natl gas', 'ga', 'gas`', 'syngas', 'ng', 'mcf', 'blast gaa', 'nat gas', 'gac', 'syngass', 'prop.', 'natural', 'coal.gas'], 'hydro': [], 'nuclear': ['nuclear', 'grams of uran', 'grams of', 'grams of ura', 'grams', 'nucleur', 'nulear', 'nucl', 'nucleart'], 'oil': ['oil', '#6 oil', '#2 oil', 'fuel oil', 'jet', 'no. 2 oil', 'no.2 oil', 'no.6& used', 'used oil', 'oil-2', 'oil (#2)', 'diesel oil', 'residual oil', '# 2 oil', 'resid. oil', 'tall oil', 'oil/gas', 'no.6 oil', 'oil-fuel', 'oil-diesel', 'oil / gas', 'oil bbls', 'oil bls', 'no. 6 oil', '#1 kerosene', 'diesel', 'no. 2 oils', 'blend oil', '#2oil diesel', '#2 oil-diesel', '# 2 oil', 'light oil', 'heavy oil', 'gas.oil', '#2', '2', '6', 'bbl', 'no 2 oil', 'no 6 oil', '#1 oil', '#6', 'oil-kero', 'oil bbl', 'biofuel', 'no 2', 'kero', '#1 fuel oil', 'no. 2 oil', 'blended oil', 'no 2. oil', '# 6 oil', 'nno. 2 oil', '#2 fuel', 'oill', 'oils', 'gas/oil', 'no.2 oil gas', '#2 fuel oil', 'oli', 'oil (#6)', 'oil/diesel', '2 Oil'], 'other': ['steam', 'purch steam', 'purch. steam', 'other', 'composite', 'composit', 'mbtus'], 'solar': [], 'waste': ['tires', 'tire', 'refuse', 'switchgrass', 'wood waste', 'woodchips', 'biomass', 'wood', 'wood chips', 'rdf'], 'wind': []}

	A dictionary linking fuel types (keys) to lists of various strings
representing that fuel (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_fuel_unit_strings = {'1kgal': ['oil(1000 gal)', 'oil(1000)', 'oil (1000)', 'oil(1000'], 'bbl': ['barrel', 'bbls', 'bbl', 'barrels', 'bbrl', 'bbl.', 'bbls.', 'oil 42 gal', 'oil-barrels', 'barrrels', 'bbl-42 gal', 'oil-barrel', 'bb.', 'barrells', 'bar', 'bbld', 'oil- barrel', 'barrels .', 'bbl .', 'barels', 'barrell', 'berrels', 'bb', 'bbl.s', 'oil-bbl', 'bls', 'bbl:', 'barrles', 'blb', 'propane-bbl'], 'gal': ['gallons', 'gal.', 'gals', 'gals.', 'gallon', 'gal'], 'gramsU': ['gram', 'grams', 'gm u', 'grams u235', 'grams u-235', 'grams of uran', 'grams: u-235', 'grams:u-235', 'grams:u235', 'grams u308', 'grams: u235', 'grams of'], 'kgU': ['kg of uranium', 'kg uranium', 'kilg. u-235', 'kg u-235', 'kilograms-u23', 'kg', 'kilograms u-2', 'kilograms', 'kg of'], 'mcf': ['mcf', "mcf's", 'mcfs', 'mcf.', 'gas mcf', '"gas" mcf', 'gas-mcf', 'mfc', 'mct', ' mcf', 'msfs', 'mlf', 'mscf', 'mci', 'mcl', 'mcg', 'm.cu.ft.'], 'mmbtu': ['mmbtu', 'mmbtus', "mmbtu's", 'nuclear-mmbtu', 'nuclear-mmbt'], 'mwdth': ['mwd therman', 'mw days-therm', 'mwd thrml', 'mwd thermal', 'mwd/mtu', 'mw days', 'mwdth', 'mwd', 'mw day'], 'mwhth': ['mwh them', 'mwh threm', 'nwh therm', 'mwhth', 'mwh therm', 'mwh'], 'ton': ['toms', 'taons', 'tones', 'col-tons', 'toncoaleq', 'coal', 'tons coal eq', 'coal-tons', 'ton', 'tons', 'tons coal', 'coal-ton', 'tires-tons']}

	A dictionary linking fuel units (keys) to lists of various strings
representing those fuel units (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_gal_strings = ['gallons', 'gal.', 'gals', 'gals.', 'gallon', 'gal']

	A list of fuel unit strings for gallons.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_gas_strings = ['gas', 'gass', 'methane', 'natural gas', 'blast gas', 'gas mcf', 'propane', 'prop', 'natural gas', 'nat.gas', 'nat gas', 'nat. gas', 'natl gas', 'ga', 'gas`', 'syngas', 'ng', 'mcf', 'blast gaa', 'nat gas', 'gac', 'syngass', 'prop.', 'natural', 'coal.gas']

	A list of strings which are used to represent gas fuel in FERC Form 1
reporting.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_gramsU_strings = ['gram', 'grams', 'gm u', 'grams u235', 'grams u-235', 'grams of uran', 'grams: u-235', 'grams:u-235', 'grams:u235', 'grams u308', 'grams: u235', 'grams of']

	A list of fuel unit strings for grams.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_huge_tables = {'f1_footnote_data', 'f1_footnote_tbl', 'f1_note_fin_stmnt'}

	A set containing large FERC Form 1 tables.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pudl.constants.ferc1_kgU_strings = ['kg of uranium', 'kg uranium', 'kilg. u-235', 'kg u-235', 'kilograms-u23', 'kg', 'kilograms u-2', 'kilograms', 'kg of']

	A list of fuel unit strings for thousand grams.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_mcf_strings = ['mcf', "mcf's", 'mcfs', 'mcf.', 'gas mcf', '"gas" mcf', 'gas-mcf', 'mfc', 'mct', ' mcf', 'msfs', 'mlf', 'mscf', 'mci', 'mcl', 'mcg', 'm.cu.ft.']

	A list of fuel unit strings for thousand cubic feet.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_mmbtu_strings = ['mmbtu', 'mmbtus', "mmbtu's", 'nuclear-mmbtu', 'nuclear-mmbt']

	A list of fuel unit strings for million British Thermal Units.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_mwdth_strings = ['mwd therman', 'mw days-therm', 'mwd thrml', 'mwd thermal', 'mwd/mtu', 'mw days', 'mwdth', 'mwd', 'mw day']

	A list of fuel unit strings for megawatt days thermal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_mwhth_strings = ['mwh them', 'mwh threm', 'nwh therm', 'mwhth', 'mwh therm', 'mwh']

	A list of fuel unit strings for megawatt hours thermal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_nuke_strings = ['nuclear', 'grams of uran', 'grams of', 'grams of ura', 'grams', 'nucleur', 'nulear', 'nucl', 'nucleart']

	A list of strings which are used to represent nuclear fuel in FERC Form
1 reporting.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_oil_strings = ['oil', '#6 oil', '#2 oil', 'fuel oil', 'jet', 'no. 2 oil', 'no.2 oil', 'no.6& used', 'used oil', 'oil-2', 'oil (#2)', 'diesel oil', 'residual oil', '# 2 oil', 'resid. oil', 'tall oil', 'oil/gas', 'no.6 oil', 'oil-fuel', 'oil-diesel', 'oil / gas', 'oil bbls', 'oil bls', 'no. 6 oil', '#1 kerosene', 'diesel', 'no. 2 oils', 'blend oil', '#2oil diesel', '#2 oil-diesel', '# 2 oil', 'light oil', 'heavy oil', 'gas.oil', '#2', '2', '6', 'bbl', 'no 2 oil', 'no 6 oil', '#1 oil', '#6', 'oil-kero', 'oil bbl', 'biofuel', 'no 2', 'kero', '#1 fuel oil', 'no. 2 oil', 'blended oil', 'no 2. oil', '# 6 oil', 'nno. 2 oil', '#2 fuel', 'oill', 'oils', 'gas/oil', 'no.2 oil gas', '#2 fuel oil', 'oli', 'oil (#6)', 'oil/diesel', '2 Oil']

	A list of strings which are used to represent oil fuel in FERC Form 1
reporting.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_other_strings = ['steam', 'purch steam', 'purch. steam', 'other', 'composite', 'composit', 'mbtus']

	A list of strings which are used to represent other fuels in FERC Form
1 reporting.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_combined_cycle = ['Combined cycle', 'combined cycle', 'combined', 'gas turb. & heat rec', 'combined cycle', 'com. cyc', 'com. cycle', 'gas turb-combined cy', 'combined cycle ctg', 'combined cycle - 40%', 'com cycle gas turb', 'combined cycle oper', 'gas turb/comb. cyc', 'combine cycle', 'cc', 'comb. cycle', 'gas turb-combined cy', 'steam and cc', 'steam cc', 'gas steam', 'ctg steam gas', 'steam comb cycle']

	A list of strings from FERC Form 1 for the combined cycle plant kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_combustion_turbine = ['combustion turbine', 'gt', 'gas turbine', 'gas turbine # 1', 'gas turbine', 'gas turbine (note 1)', 'gas turbines', 'simple cycle', 'combustion turbine', 'comb.turb.peak.units', 'gas turbine', 'combustion turbine', 'com turbine peaking', 'gas turbine peaking', 'comb turb peaking', 'combustine turbine', 'comb. turine', 'conbustion turbine', 'combustine turbine', 'gas turbine (leased)', 'combustion tubine', 'gas turb', 'gas turbine peaker', 'gtg/gas', 'simple cycle turbine', 'gas-turbine', 'gas turbine-simple', 'gas turbine - note 1', 'gas turbine #1', 'simple cycle', 'gasturbine', 'combustionturbine', 'gas turbine (2)', 'comb turb peak units', 'jet engine']

	A list of strings from FERC Form 1 for the combustion turbine plant
kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_geothermal = ['steam - geothermal', 'steam_geothermal']

	A list of strings from FERC Form 1 for the geothermal plant kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_nuke = ['nuclear', 'nuclear (3)']

	A list of strings from FERC Form 1 for the nuclear plant kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_photovoltaic = ['solar photovoltaic', 'photovoltaic']

	A list of strings from FERC Form 1 for the photovoltaic plant kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_solar_thermal = ['solar thermal']

	A list of strings from FERC Form 1 for the solar thermal plant kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_steam_turbine = ['coal', 'steam', 'steam units 1 2 3', 'steam units 4 5', 'steam fossil', 'steam turbine', 'steam a', 'steam 100', 'steam units 1 2 3', 'steams', 'steam 1', 'steam retired 2013', 'stream']

	A list of strings from FERC Form 1 for the steam turbine plant kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_plant_kind_strings = {'combined_cycle': ['Combined cycle', 'combined cycle', 'combined', 'gas turb. & heat rec', 'combined cycle', 'com. cyc', 'com. cycle', 'gas turb-combined cy', 'combined cycle ctg', 'combined cycle - 40%', 'com cycle gas turb', 'combined cycle oper', 'gas turb/comb. cyc', 'combine cycle', 'cc', 'comb. cycle', 'gas turb-combined cy', 'steam and cc', 'steam cc', 'gas steam', 'ctg steam gas', 'steam comb cycle'], 'combustion_turbine': ['combustion turbine', 'gt', 'gas turbine', 'gas turbine # 1', 'gas turbine', 'gas turbine (note 1)', 'gas turbines', 'simple cycle', 'combustion turbine', 'comb.turb.peak.units', 'gas turbine', 'combustion turbine', 'com turbine peaking', 'gas turbine peaking', 'comb turb peaking', 'combustine turbine', 'comb. turine', 'conbustion turbine', 'combustine turbine', 'gas turbine (leased)', 'combustion tubine', 'gas turb', 'gas turbine peaker', 'gtg/gas', 'simple cycle turbine', 'gas-turbine', 'gas turbine-simple', 'gas turbine - note 1', 'gas turbine #1', 'simple cycle', 'gasturbine', 'combustionturbine', 'gas turbine (2)', 'comb turb peak units', 'jet engine'], 'geothermal': ['steam - geothermal', 'steam_geothermal'], 'internal_combustion': ['ic', 'internal combustion', 'diesel turbine', 'int combust (note 1)', 'int. combust (note1)', 'int.combustine', 'comb. cyc', 'internal comb', 'diesel', 'diesel engine', 'internal combustion', 'int combust - note 1', 'int. combust - note1', 'internal comb recip', 'reciprocating engine', 'comb. turbine'], 'nuclear': ['nuclear', 'nuclear (3)'], 'photovoltaic': ['solar photovoltaic', 'photovoltaic'], 'solar_thermal': ['solar thermal'], 'steam': ['coal', 'steam', 'steam units 1 2 3', 'steam units 4 5', 'steam fossil', 'steam turbine', 'steam a', 'steam 100', 'steam units 1 2 3', 'steams', 'steam 1', 'steam retired 2013', 'stream'], 'wind': ['wind', 'wind energy', 'wind turbine', 'wind - turbine']}

	A dictionary of plant kinds (keys) and associated lists of plant_fuel
strings (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_plant_kind_wind = ['wind', 'wind energy', 'wind turbine', 'wind - turbine']

	A list of strings from FERC Form 1 for the wind plant kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_power_purchase_type = {'AD': 'adjustment', 'EX': 'electricity_exchange', 'IF': 'intermediate_firm', 'IU': 'intermediate_unit', 'LF': 'long_firm', 'LU': 'long_unit', 'OS': 'other_service', 'RQ': 'requirement', 'SF': 'short_firm'}

	A dictionary of abbreviations (keys) and types (values) for power
purchase agreements from FERC Form 1.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_pudl_tables = ('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'plant_in_service_ferc1', 'purchased_power_ferc1', 'accumulated_depreciation_ferc1')

	A tuple containing the FERC Form 1 tables that can be successfully
integrated into PUDL.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.ferc1_tbl2dbf = {'f1_106_2009': 'F1_106_2009', 'f1_106a_2009': 'F1_106A_2009', 'f1_106b_2009': 'F1_106B_2009', 'f1_208_elc_dep': 'F1_208_ELC_DEP', 'f1_231_trn_stdycst': 'F1_231_TRN_STDYCST', 'f1_324_elc_expns': 'F1_324_ELC_EXPNS', 'f1_325_elc_cust': 'F1_325_ELC_CUST', 'f1_331_transiso': 'F1_331_TRANSISO', 'f1_338_dep_depl': 'F1_338_DEP_DEPL', 'f1_397_isorto_stl': 'F1_397_ISORTO_STL', 'f1_398_ancl_ps': 'F1_398_ANCL_PS', 'f1_399_mth_peak': 'F1_399_MTH_PEAK', 'f1_400_sys_peak': 'F1_400_SYS_PEAK', 'f1_400a_iso_peak': 'F1_400A_ISO_PEAK', 'f1_429_trans_aff': 'F1_429_TRANS_AFF', 'f1_acb_epda': 'F1_2', 'f1_accumdepr_prvsn': 'F1_3', 'f1_accumdfrrdtaxcr': 'F1_4', 'f1_adit_190_detail': 'F1_5', 'f1_adit_190_notes': 'F1_6', 'f1_adit_amrt_prop': 'F1_7', 'f1_adit_other': 'F1_8', 'f1_adit_other_prop': 'F1_9', 'f1_allowances': 'F1_10', 'f1_allowances_nox': 'F1_ALLOWANCES_NOX', 'f1_audit_log': 'F1_78', 'f1_bal_sheet_cr': 'F1_11', 'f1_capital_stock': 'F1_12', 'f1_cash_flow': 'F1_13', 'f1_cmmn_utlty_p_e': 'F1_14', 'f1_cmpinc_hedge': 'F1_CMPINC_HEDGE', 'f1_cmpinc_hedge_a': 'F1_CMPINC_HEDGE_A', 'f1_co_directors': 'F1_18', 'f1_codes_val': 'F1_76', 'f1_col_lit_tbl': 'F1_79', 'f1_comp_balance_db': 'F1_15', 'f1_construction': 'F1_16', 'f1_control_respdnt': 'F1_17', 'f1_cptl_stk_expns': 'F1_19', 'f1_csscslc_pcsircs': 'F1_20', 'f1_dacs_epda': 'F1_21', 'f1_dscnt_cptl_stk': 'F1_22', 'f1_edcfu_epda': 'F1_23', 'f1_elc_op_mnt_expn': 'F1_27', 'f1_elc_oper_rev_nb': 'F1_26', 'f1_elctrc_erg_acct': 'F1_24', 'f1_elctrc_oper_rev': 'F1_25', 'f1_electric': 'F1_28', 'f1_email': 'F1_EMAIL', 'f1_envrnmntl_expns': 'F1_29', 'f1_envrnmntl_fclty': 'F1_30', 'f1_footnote_data': 'F1_85', 'f1_footnote_tbl': 'F1_87', 'f1_fuel': 'F1_31', 'f1_general_info': 'F1_32', 'f1_gnrt_plant': 'F1_33', 'f1_hydro': 'F1_86', 'f1_ident_attsttn': 'F1_88', 'f1_important_chg': 'F1_34', 'f1_incm_stmnt_2': 'F1_35', 'f1_income_stmnt': 'F1_36', 'f1_leased': 'F1_90', 'f1_load_file_names': 'F1_80', 'f1_long_term_debt': 'F1_93', 'f1_misc_dfrrd_dr': 'F1_38', 'f1_miscgen_expnelc': 'F1_37', 'f1_mthly_peak_otpt': 'F1_39', 'f1_mtrl_spply': 'F1_40', 'f1_nbr_elc_deptemp': 'F1_41', 'f1_nonutility_prop': 'F1_42', 'f1_note_fin_stmnt': 'F1_43', 'f1_nuclear_fuel': 'F1_44', 'f1_officers_co': 'F1_45', 'f1_othr_dfrrd_cr': 'F1_46', 'f1_othr_pd_in_cptl': 'F1_47', 'f1_othr_reg_assets': 'F1_48', 'f1_othr_reg_liab': 'F1_49', 'f1_overhead': 'F1_50', 'f1_pccidica': 'F1_51', 'f1_plant': 'F1_92', 'f1_plant_in_srvce': 'F1_52', 'f1_privilege': 'F1_81', 'f1_pumped_storage': 'F1_53', 'f1_purchased_pwr': 'F1_54', 'f1_r_d_demo_actvty': 'F1_59', 'f1_reconrpt_netinc': 'F1_55', 'f1_reg_comm_expn': 'F1_56', 'f1_respdnt_control': 'F1_57', 'f1_respondent_id': 'F1_1', 'f1_retained_erng': 'F1_58', 'f1_rg_trn_srv_rev': 'F1_RG_TRN_SRV_REV', 'f1_row_lit_tbl': 'F1_84', 'f1_s0_checks': 'F1_S0_CHECKS', 'f1_s0_filing_log': 'F1_S0_FILING_LOG', 'f1_sale_for_resale': 'F1_61', 'f1_sales_by_sched': 'F1_60', 'f1_sbsdry_detail': 'F1_91', 'f1_sbsdry_totals': 'F1_62', 'f1_sched_lit_tbl': 'F1_77', 'f1_schedules_list': 'F1_63', 'f1_security': 'F1_SECURITY', 'f1_security_holder': 'F1_64', 'f1_slry_wg_dstrbtn': 'F1_65', 'f1_steam': 'F1_89', 'f1_substations': 'F1_66', 'f1_sys_error_log': 'F1_82', 'f1_taxacc_ppchrgyr': 'F1_67', 'f1_unique_num_val': 'F1_83', 'f1_unrcvrd_cost': 'F1_68', 'f1_utltyplnt_smmry': 'F1_69', 'f1_work': 'F1_70', 'f1_xmssn_adds': 'F1_71', 'f1_xmssn_elc_bothr': 'F1_72', 'f1_xmssn_elc_fothr': 'F1_73', 'f1_xmssn_line': 'F1_74', 'f1_xtraordnry_loss': 'F1_75'}

	A dictionary mapping database table names (keys) to FERC Form 1 DBF
files (w/o .DBF file extension) (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.ferc1_ton_strings = ['toms', 'taons', 'tones', 'col-tons', 'toncoaleq', 'coal', 'tons coal eq', 'coal-tons', 'ton', 'tons', 'tons coal', 'coal-ton', 'tires-tons']

	A list of fuel unit strings for tons.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc1_waste_strings = ['tires', 'tire', 'refuse', 'switchgrass', 'wood waste', 'woodchips', 'biomass', 'wood', 'wood chips', 'rdf']

	A list of strings which are used to represent waste fuel in FERC Form 1
reporting.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc_1_plant_kind_internal_combustion = ['ic', 'internal combustion', 'diesel turbine', 'int combust (note 1)', 'int. combust (note1)', 'int.combustine', 'comb. cyc', 'internal comb', 'diesel', 'diesel engine', 'internal combustion', 'int combust - note 1', 'int. combust - note1', 'internal comb recip', 'reciprocating engine', 'comb. turbine']

	A list of strings from FERC Form 1 for the internal combustion plant
kind.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc_accumulated_depreciation = row_number ... ferc_account_description 0 1 ... Balance Beginning of Year 1 3 ... (403) Depreciation Expense 2 4 ... (403.1) Depreciation Expense for Asset Retirem... 3 5 ... (413) Exp. of Elec. Plt. Leas. to Others 4 6 ... Transportation Expenses-Clearing 5 7 ... Other Clearing Accounts 6 8 ... Other Accounts (Specify, details in footnote): 7 9 ... Other Charges: 8 10 ... TOTAL Deprec. Prov for Year (Enter Total of li... 9 11 ... Net Charges for Plant Retired: 10 12 ... Book Cost of Plant Retired 11 13 ... Cost of Removal 12 14 ... Salvage (Credit) 13 15 ... TOTAL Net Chrgs. for Plant Ret. (Enter Total o... 14 16 ... Other Debit or Cr. Items (Describe, details in... 15 17 ... Other Charges 2 16 18 ... Book Cost or Asset Retirement Costs Retired 17 19 ... Balance End of Year (Enter Totals of lines 1, ... 18 20 ... Steam Production 19 21 ... Nuclear Production 20 22 ... Hydraulic Production-Conventional 21 23 ... Hydraulic Production-Pumped Storage 22 24 ... Other Production 23 25 ... Transmission 24 26 ... Distribution 25 27 ... Regional Transmission and Market Operation 26 28 ... General 27 29 ... TOTAL (Enter Total of lines 20 thru 28) [28 rows x 3 columns]

	A list of tuples containing row numbers, FERC account IDs, and FERC
account descriptions from FERC Form 1 page 219, Accumulated Provision for
Depreciation of electric utility plant (Account 108).

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ferc_electric_plant_accounts = row_number ... ferc_account_description 0 2.0 ... Intangible: Organization 1 3.0 ... Intangible: Franchises and consents 2 4.0 ... Intangible: Miscellaneous intangible plant 3 5.0 ... Subtotal: Intangible Plant 4 8.0 ... Steam production: Land and land rights 92 100.0 ... Electric plant in service (Major only) 93 101.0 ... Electric plant purchased 94 102.0 ... Electric plant sold 95 103.0 ... Experimental plant unclassified 96 104.0 ... TOTAL Electric Plant in Service [97 rows x 3 columns]

	A list of tuples containing row numbers, FERC account IDs, and FERC
account descriptions from FERC Form 1 pages 204-207, Electric Plant in
Service.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.file_pages_eia860 = {'enviro_assn': ['boiler_generator_assn'], 'generators': ['generator_existing', 'generator_proposed', 'generator_retired'], 'ownership': ['ownership'], 'plants': ['plant'], 'utilities': ['utility']}

	A dictionary containing file names (keys) and lists of tab names to
read (values) for EIA 860.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.files_dict_eia860 = {'enviro_assn': '*EnviroAssoc*', 'envrio_equipment': '*EnviroEquip*', 'generators': '*Generat*', 'multi_fuel': '*Multi*', 'ownership': '*Owner*', 'plants': '*Plant*', 'solar': '*Solar*', 'utilities': '*Utility*', 'wind': '*Wind*'}

	A dictionary containing file names (keys) and file name patterns to
glob (values) for EIA 860.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.files_dict_epaipm = {'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'transmission_single_epaipm': '*table_3-21*'}

	A dictionary of EPA IPM tables and strings that files of those tables
contain.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.files_eia860 = ('enviro_assn', 'utilities', 'plants', 'generators', 'ownership')

	A tuple containing EIA 860 file names.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.fuel_group_eia923 = ('coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas')

	A tuple containing EIA 923 fuel groups.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.fuel_group_eia923_simple_map = {'coal': ['coal', 'petroleum coke'], 'gas': ['natural gas', 'other gas'], 'oil': ['petroleum']}

	A dictionary mapping EIA 923 simple fuel types (“oil”, “coal”, “gas”)
(keys) to fuel types (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_receipts_costs_map_eia923 = report_year report_month ... moisture_content_pct chlorine_content_ppm year_index ... 2009 year month ... NaN NaN 2010 year month ... NaN NaN 2011 year month ... NaN NaN 2012 year month ... NaN NaN 2013 year month ... NaN NaN 2014 year month ... NaN NaN 2015 year month ... NaN NaN 2016 year month ... moisture_content chlorine_content 2017 year month ... moisture_content chlorine_content [9 rows x 31 columns]

	A DataFrame of metadata from EIA 923 Fuel Receipts and
Costs.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.fuel_type_aer_eia923 = {'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'SUN': 'Solar PV and thermal', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste'}

	A dictionary mapping EIA 923 AER fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc']

	A list of strings from EIA 860 associated with fuel type coal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg']

	A list of strings from EIA 860 associated with fuel type gas.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro']

	A list of strings from EIA 860 associated with hydro power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear']

	A list of strings from EIA 860 associated with nuclear power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum']

	A list of strings from EIA 860 associated with fuel type oil.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other']

	A list of strings from EIA 860 associated with fuel type other.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_simple_map = {'coal': ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'], 'gas': ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'], 'hydro': ['wat', 'hyc', 'hps', 'hydro'], 'nuclear': ['nuc', 'nuclear'], 'oil': ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'], 'other': ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'], 'solar': ['sun', 'solar'], 'waste': ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'], 'wind': ['wnd', 'wind', 'wt']}

	A dictionary mapping EIA 860 fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia860_solar_strings = ['sun', 'solar']

	A list of strings from EIA 860 associated with solar power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www']

	A list of strings from EIA 860 associated with fuel type waste.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt']

	A list of strings from EIA 860 associated with wind power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923 = {'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.'}

	A dictionary mapping EIA 923 fuel type codes (keys) and fuel type
names/descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia923_boiler_fuel_coal_strings = ['ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
coal.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_gas_strings = ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
gas.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
oil.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
other.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_boiler_fuel_simple_map = {'coal': ['ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc'], 'gas': ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp'], 'oil': ['dfo', 'rfo', 'wo', 'jf', 'ker'], 'other': ['oth', 'pur', 'wh'], 'waste': ['ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']}

	A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia923_boiler_fuel_waste_strings = ['ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']

	A list of strings from EIA 923 Boiler Fuel associated with fuel type
waste.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc']

	The list of EIA 923 Generation Fuel strings associated with coal fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_gas_strings = ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp']

	The list of EIA 923 Generation Fuel strings associated with gas fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_hydro_strings = ['wat']

	The list of EIA 923 Generation Fuel strings associated with hydro
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc']

	The list of EIA 923 Generation Fuel strings associated with nuclear
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker']

	The list of EIA 923 Generation Fuel strings associated with oil fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh']

	The list of EIA 923 Generation Fuel strings associated with geothermal
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_simple_map = {'coal': ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc'], 'gas': ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp'], 'hydro': ['wat'], 'nuclear': ['nuc'], 'oil': ['dfo', 'rfo', 'wo', 'jf', 'ker'], 'other': ['geo', 'mwh', 'oth', 'pur', 'wh'], 'solar': ['sun'], 'waste': ['ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'], 'wind': ['wnd']}

	A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists
of strings associated with that fuel type (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.fuel_type_eia923_gen_fuel_solar_strings = ['sun']

	The list of EIA 923 Generation Fuel strings associated with solar
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_waste_strings = ['ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']

	The list of EIA 923 Generation Fuel strings associated with solid waste
fuel.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_type_eia923_gen_fuel_wind_strings = ['wnd']

	The list of EIA 923 Generation Fuel strings associated with wind
power.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.fuel_units_eia923 = {'barrels': 'Barrels (for liquids)', 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)'}

	A dictionary mapping EIA 923 fuel units (keys) to fuel unit
descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.generation_fuel_map_eia923 = plant_id_eia ... report_year year_index ... 2009 plant_id ... year 2010 plant_id ... year 2011 plant_id ... year 2012 plant_id ... year 2013 plant_id ... year 2014 plant_id ... year 2015 plant_id ... year 2016 plant_id ... year 2017 plant_id ... year [9 rows x 97 columns]

	A DataFrame of metadata from EIA 923 Generation Fuel.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.generator_assn_map_eia860 = utility_id_eia ... uprate_derate_completed_year year_index ... 2009 utility_id ... NaN 2010 utility_id ... NaN 2011 utility_id ... NaN 2012 utility_id ... NaN 2013 utility_id ... year_uprate_or_derate_completed 2014 utility_id ... year_uprate_or_derate_completed 2015 utility_id ... year_uprate_or_derate_completed 2016 utility_id ... year_uprate_or_derate_completed 2017 utility_id ... year_uprate_or_derate_completed [9 rows x 76 columns]

	A DataFrame of metadata from EIA 860 Generator.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.generator_map_eia923 = plant_id_eia ... report_year year_index ... 2008 plant_id ... year 2009 plant_id ... year 2010 plant_id ... year 2011 plant_id ... year 2012 plant_id ... year 2013 plant_id ... year 2014 plant_id ... year 2015 plant_id ... year 2016 plant_id ... year 2017 plant_id ... year [10 rows x 27 columns]

	A DataFrame of metadata from EIA 923 Generators.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.generator_proposed_assn_map_eia860 = utility_id_eia utility_name ... cofire_fuels previously_canceled year_index ... 2009 utility_id utility_name ... NaN NaN 2010 utility_id utility_name ... NaN NaN 2011 utility_id utility_name ... NaN NaN 2012 utility_id utility_name ... NaN NaN 2013 utility_id utility_name ... cofire_fuels previously_canceled 2014 utility_id utility_name ... cofire_fuels previously_canceled 2015 utility_id utility_name ... cofire_fuels previously_canceled 2016 utility_id utility_name ... cofire_fuels previously_canceled 2017 utility_id utility_name ... cofire_fuels previously_canceled [9 rows x 55 columns]

	A DataFrame of metadata from EIA 860 Generator Proposed.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.generator_retired_assn_map_eia860 = utility_id_eia ... switch_oil_gas year_index ... 2009 utility_id ... NaN 2010 utility_id ... NaN 2011 utility_id ... NaN 2012 utility_id ... NaN 2013 utility_id ... switch_between_oil_and_natural_gas 2014 utility_id ... switch_between_oil_and_natural_gas 2015 utility_id ... switch_between_oil_and_natural_gas 2016 utility_id ... switch_between_oil_and_natural_gas 2017 utility_id ... switch_between_oil_and_natural_gas [9 rows x 75 columns]

	A DataFrame of metadata from EIA 860 Generator Retired.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn')

	A dictionary of dictionaries containing EPA IPM tables (keys) and items
for each table to be renamed along with the replacement name (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.licenses = {'cc-by-4.0': {'name': 'CC-BY-4.0', 'path': 'https://creativecommons.org/licenses/by/4.0/', 'title': 'Creative Commons Attribution 4.0'}, 'us-govt': {'name': 'other-pd', 'path': 'http://www.usa.gov/publicdomain/label/1.0/', 'title': 'U.S. Government Work'}}

	A dictionary of dictionaries containing license types and their
attributes.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.missing_respondents_ferc1 = {514: 'respondent_514', 515: 'respondent_515', 516: 'respondent_516', 517: 'respondent_517', 518: 'respondent_518', 519: 'respondent_519', 522: 'respondent_522'}

	A dictionary of missing FERC Form 1 respondent IDs (keys) and names
(values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.month_dict_eia923 = {1: '_january$', 2: '_february$', 3: '_march$', 4: '_april$', 5: '_may$', 6: '_june$', 7: '_july$', 8: '_august$', 9: '_september$', 10: '_october$', 11: '_november$', 12: '_december$'}

	A dictionary mapping column numbers (keys) to months (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.need_fix_inting = {'coalmine_eia923': ('mine_id_msha', 'county_id_fips'), 'fuel_receipts_costs_eia923': ('mine_id_pudl',), 'generation_fuel_eia923': ('nuclear_unit_id',), 'generators_eia860': ('turbines_num',), 'hourly_emissions_epacems': ('facility_id', 'unit_id_epa'), 'plants_eia860': ('utility_id_eia',), 'plants_entity_eia': ('zip_code',), 'plants_hydro_ferc1': ('construction_year', 'installation_year'), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_steam_ferc1': ('construction_year', 'installation_year')}

	A dictionary containing tables (keys) and column names (values)
containing integer-type columns whose null values need fixing.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.nerc_region = {'ASCC': 'Alaska Systems Coordinating Council', 'FRCC': 'Florida Reliability Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'NPCC': 'Northeast Power Coordinating Council', 'RFC': 'Reliability First Corporation', 'SERC': 'SERC Reliability Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'WECC': 'Western Electricity Coordinating Council'}

	A dictionary mapping NERC Region abbreviations (keys) to NERC
Region names (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.output_formats = ['sqlite', 'parquet', 'datapackage', 'notebook']

	A list of types of PUDL output formats.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.ownership_assn_map_eia860 = utility_id_eia utility_name ... owner_zip_code fraction_owned year_index ... 2009 utility_id utility_name ... NaN percent_owned 2010 utility_id utility_name ... NaN percent_owned 2011 utility_id utility_name ... NaN percent_owned 2012 utility_id utility_name ... NaN percent_owned 2013 utility_id utility_name ... owner_zip percent_owned 2014 utility_id utility_name ... owner_zip percent_owned 2015 utility_id utility_name ... owner_zip percent_owned 2016 utility_id utility_name ... owner_zip percent_owned 2017 utility_id utility_name ... owner_zip percent_owned [9 rows x 14 columns]

	A DataFrame of metadata from EIA 860 Ownership.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.plant_assn_map_eia860 = utility_id_eia ... liquefied_natural_gas_storage year_index ... 2009 utility_id ... NaN 2010 utility_id ... NaN 2011 utility_id ... NaN 2012 utility_id ... NaN 2013 utility_id ... NaN 2014 utility_id ... NaN 2015 utility_id ... NaN 2016 utility_id ... liquefied_natural_gas_storage 2017 utility_id ... liquefied_natural_gas_storage [9 rows x 45 columns]

	A DataFrame of metadata from EIA 860 Plant.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.plant_frame_map_eia923 = report_year ... nameplate_capacity_mw year_index ... 2009 NaN ... NaN 2010 NaN ... NaN 2011 year ... nameplate_capacity_mw 2012 year ... NaN 2013 year ... NaN 2014 year ... NaN 2015 year ... NaN 2016 year ... NaN 2017 year ... NaN [9 rows x 10 columns]

	A DataFrame of metadata from EIA 923 Plant Frame.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.prime_movers = ['steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine']

	A list of the types of prime movers

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.constants.prime_movers_eia923 = {'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'OT': 'Other', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'PV': 'Photovoltaic', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'WS': 'Wind Turbine, Offshore', 'WT': 'Wind Turbine, Onshore'}

	A dictionary mapping EIA 923 prime mover codes (keys) and prime mover
names/descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.pudl_tables = {'eia860': ('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860'), 'eia923': ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923'), 'epacems': 'hourly_emissions_epacems', 'epaipm': ('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm'), 'ferc1': ('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'plant_in_service_ferc1', 'purchased_power_ferc1', 'accumulated_depreciation_ferc1'), 'glue': ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn')}

	A dictionary containing data sources (keys) and the list of associated
tables from that datasource that can be pulled into PUDL (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.read_excel_epaipm_dict = {'load_curves_epaipm': {'skiprows': 3, 'usecols': 'B:AB'}, 'plant_region_map_epaipm_active': {'sheet_name': 'NEEDS v6_Active', 'usecols': 'C,I'}, 'plant_region_map_epaipm_retired': {'sheet_name': 'NEEDS v6_Retired_Through2021', 'usecols': 'C,I'}, 'transmission_joint_epaipm': {}, 'transmission_single_epaipm': {'index_col': [0, 1], 'skiprows': 3, 'usecols': 'B:F'}}

	A dictionary of dictionaries containing EPA IPM tables and associated
information for reading those tables into PUDL (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.rto_iso = {'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'ISO-NE': 'ISO New England', 'MISO': 'Midcontinent ISO', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool'}

	A dictionary containing ISO/RTO abbreviations (keys) and names (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.sector_eia = {'1': 'Electric Utility', '2': 'NAICS-22 Non-Cogen', '3': 'NAICS-22 Cogen', '4': 'Commercial NAICS Non-Cogen', '5': 'Commercial NAICS Cogen', '6': 'Industrial NAICS Non-Cogen', '7': 'Industrial NAICS Cogen'}

	A dictionary mapping EIA numeric codes (keys) to EIA’s internal
consolidated NAICS sectors (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.skiprows_eia860 = boiler_generator_assn ... generator_retired year_index ... 2009 0 ... 0 2010 0 ... 0 2011 1 ... 1 2012 1 ... 1 2013 1 ... 1 2014 1 ... 1 2015 1 ... 1 2016 1 ... 1 2017 1 ... 1 [9 rows x 7 columns]

	A DataFrame of metadata from EIA 860 skiprows map.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.skiprows_eia923 = generation_fuel stocks ... fuel_receipts_costs plant_frame year_index ... 2009 7 7 ... 6 -1 2010 7 7 ... 7 -1 2011 5 5 ... 4 4 2012 5 5 ... 4 4 2013 5 5 ... 4 4 2014 5 5 ... 4 4 2015 5 5 ... 4 4 2016 5 5 ... 4 4 2017 5 5 ... 4 4 [9 rows x 6 columns]

	A DataFrame of metadata from the EIA 923 skiprows map.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.state_tz_approx = {'AB': 'America/Edmonton', 'AK': 'US/Alaska', 'AL': 'US/Central', 'AR': 'US/Central', 'AS': 'Pacific/Pago_Pago', 'AZ': 'US/Arizona', 'BC': 'America/Vancouver', 'CA': 'US/Pacific', 'CO': 'US/Mountain', 'CT': 'US/Eastern', 'DC': 'US/Eastern', 'DE': 'US/Eastern', 'FL': 'US/Eastern', 'GA': 'US/Eastern', 'GU': 'Pacific/Guam', 'HI': 'US/Hawaii', 'IA': 'US/Central', 'ID': 'US/Mountain', 'IL': 'US/Central', 'IN': 'US/Eastern', 'KS': 'US/Central', 'KY': 'US/Eastern', 'LA': 'US/Central', 'MA': 'US/Eastern', 'MB': 'America/Winnipeg', 'MD': 'US/Eastern', 'ME': 'US/Eastern', 'MI': 'America/Detroit', 'MN': 'US/Central', 'MO': 'US/Central', 'MP': 'Pacific/Saipan', 'MS': 'US/Central', 'MT': 'US/Mountain', 'NB': 'America/Moncton', 'NC': 'US/Eastern', 'ND': 'US/Central', 'NE': 'US/Central', 'NH': 'US/Eastern', 'NJ': 'US/Eastern', 'NL': 'America/St_Johns', 'NM': 'US/Mountain', 'NS': 'America/Halifax', 'NT': 'America/Yellowknife', 'NU': 'America/Iqaluit', 'NV': 'US/Pacific', 'NY': 'US/Eastern', 'OH': 'US/Eastern', 'OK': 'US/Central', 'ON': 'America/Toronto', 'OR': 'US/Pacific', 'PA': 'US/Eastern', 'PE': 'America/Halifax', 'PR': 'America/Puerto_Rico', 'QC': 'America/Montreal', 'RI': 'US/Eastern', 'SC': 'US/Eastern', 'SD': 'US/Central', 'SK': 'America/Regina', 'TN': 'US/Central', 'TX': 'US/Central', 'UT': 'US/Mountain', 'VA': 'US/Eastern', 'VI': 'America/Puerto_Rico', 'VT': 'US/Eastern', 'WA': 'US/Pacific', 'WI': 'US/Central', 'WV': 'US/Eastern', 'WY': 'US/Mountain', 'YT': 'America/Whitehorse'}

	A dictionary containing US and Canadian state/territory abbreviations
(keys) and timezones (values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.stocks_map_eia923 = census_division_and_state ... petcoke_december year_index ... 2009 NaN ... petcoke_dec 2010 NaN ... petcoke_dec 2011 region_name ... petcoke_dec 2012 census_division_and_state ... petcoke_december 2013 region_name ... petcoke_dec 2014 census_division_and_state ... petcoke_december 2015 census_division_and_state ... petcoke_december 2016 census_division_and_state ... petcoke_december 2017 census_division_and_state ... petcoke_december [9 rows x 37 columns]

	A DataFrame of metadata from EIA 923 Stocks.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.tab_map_eia860 = boiler_generator_assn ... generator_retired year_index ... 2009 0 ... 2 2010 0 ... 2 2011 0 ... 2 2012 0 ... 2 2013 0 ... 2 2014 0 ... 2 2015 0 ... 2 2016 0 ... 2 2017 0 ... 2 [9 rows x 7 columns]

	A DataFrame of metadata from EIA 860 tab map.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.tab_map_eia923 = generation_fuel stocks ... fuel_receipts_costs plant_frame year_index ... 2009 0 1 ... 7 -1 2010 0 1 ... 7 -1 2011 0 1 ... 7 8 2012 0 1 ... 7 8 2013 0 1 ... 7 8 2014 0 1 ... 7 8 2015 0 1 ... 7 8 2016 0 1 ... 7 8 2017 0 2 ... 8 9 [9 rows x 6 columns]

	A DataFrame of metadata from the EIA 923 tab map.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.table_map_ferc1_pudl = {'accumulated_depreciation_ferc1': 'f1_accumdepr_prvsn', 'fuel_ferc1': 'f1_fuel', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_steam_ferc1': 'f1_steam', 'purchased_power_ferc1': 'f1_purchased_pwr'}

	A dictionary mapping PUDL table names (keys) to the corresponding FERC
Form 1 DBF table names.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.transport_modes_eia923 = {'GL': 'Great Lakes: Shipments of coal moved to consumers via the Great Lakes. These shipments are moved via the Great Lakes coal loading docks, which are identified by name and location as follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; KCBX Terminals Inc., Chicago, Illinois; Superior Midwest Energy Terminal, Superior, Wisconsin', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline', 'RR': 'Rail: Shipments of fuel moved to consumers by rail (private or public/commercial). Included is coal hauled to or away from a railroad siding by truck if the truck did not use public roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. Not included are shipments to Great Lakes coal loading docks, tidewater piers, or coastal ports.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers by slurry pipeline.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers by tramway or conveyor.', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to Tidewater Piers and Coastal Ports for further shipments to consumers via coastal water or ocean. The Tidewater Piers and Coastal Ports are identified by name and location as follows: Dominion Terminal Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, Alabama; IC Railmarine Terminal, Convent, Louisiana; International Marine Terminals, Myrtle Grove, Louisiana; Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, Inc., Los Angeles, California; Levin-Richmond Terminal Corp., Richmond, California; Baltimore Terminal, Baltimore, Maryland; Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, Newport News, Virginia; Electro-Coal Transport Corp., Davant, Louisiana', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. Not included is fuel hauled to or away from a railroad siding by truck on non-public roads.', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. Not included is fuel hauled to or away from a railroad siding by truck on non-public roads.'}

	A dictionary mapping primary and secondary transportation mode codes
(keys) to descriptions (values).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.travis_ci_eia860_years = (2017,)

	A tuple containing years of EIA 860 data to use with Travis continuous
integration.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.travis_ci_eia923_years = (2017,)

	A tuple containing years of EIA 923 data to use with Travis continuous
integration.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.travis_ci_epacems_states = ('ID',)

	A tuple containing states whose EPA CEMS data are used with Travis
continuous integration.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.travis_ci_epacems_years = (2017,)

	A tuple containing years of EPA CEMS data to use with Travis
continuous integration.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.travis_ci_ferc1_years = (2017,)

	A tuple containing years of FERC1 data to use with Travis continous
integration.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.constants.us_states = {'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming'}

	A dictionary containing US state abbreviations (keys) and names
(values)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.utility_assn_map_eia860 = utility_id_eia ... entity_type year_index ... 2009 utility_id ... NaN 2010 utility_id ... NaN 2011 utility_id ... NaN 2012 utility_id ... NaN 2013 utility_id ... entity_type 2014 utility_id ... entity_type 2015 utility_id ... entity_type 2016 utility_id ... entity_type 2017 utility_id ... entity_type [9 rows x 11 columns]

	A DataFrame of metadata from EIA 860 Utility.

	Type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
pudl.constants.working_years = {'eia860': (2011, 2012, 2013, 2014, 2015, 2016, 2017), 'eia923': (2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017), 'epacems': (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), 'epaipm': (None,), 'ferc1': (2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017)}

	A dictionary of data sources (keys) and tuples containing the years for
each data source that are able to be ingested into PUDL.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.constants.xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps'

	type?:

Todo

Return to

pudl.etl module

Module coordinating the PUDL ETL pipeline, generating data packages.

The PUDL project integrates several different public data sets into well
normalized data packages allowing easier access and interaction between all each
dataset. This module coordinates the extract/transfrom/load process of data from:

	US Energy Information Agency (EIA):
- Form 860 (eia860)
- Form 923 (eia923)

	US Federal Energy Regulatory Commission (FERC):
- Form 1 (ferc1)

	US Environmental Protection Agency (EPA):
- Continuous Emissions Monitory System (epacems)
- Integrated Planning Model (epaipm)

	
pudl.etl.etl_pkg(pkg_settings, pudl_settings, pkg_bundle_dir)

	Extracts, transforms and loads CSVs.

This is the coordinating function for generating all of the CSV’s for a data
package. For each of the datasets enumerated in the pkg_settings, this
function runs the dataset specific ETL function. Along the way, we are
accumulating which tables have been loaded. This is useful for generating
the metadata associated with the package.

	Parameters

	
	pkg_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of etl_params for a datapackage.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary filled with settings that mostly
describe paths to various resources and outputs.

	uuid_pkgs (uuid) –

	Returns

	dictionary with datapackpackages (keys) and
lists of tables (values)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.etl.generate_data_packages(pkg_bundle_settings, pudl_settings, pkg_bundle_name, debug=False, clobber=False)

	Coordinate the generation of data packages.

For each bundle of packages laid out in the package_settings, this function
generates data packages. First, the settings are validated (which runs
through each of the settings listed in the package_settings). Then for
each of the packages, run through the etl (extract, transform, load)
functions, which generates CSVs. Then the metadata for the packages is
generated by pulling from the metadata (which is a json file containing
the schema for all of the possible pudl tables).

	Parameters

	
	pkg_bundle_settings (iterable) – a list of dictionaries. Each item in
the list corresponds to a data package. Each data package’s
dictionary contains the arguements for its ETL function.

	pudl_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary filled with settings that mostly
describe paths to various resources and outputs.

	pkg_bundle_name (string) – name of directory you want the bundle of
data packages to live.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return a dictionary with package names (keys)
and a list with the data package metadata and report (values).

	clobber (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Returns

	A tuple containing generated metadata for the packages laid out
in the package_settings.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pudl.etl.get_flattened_etl_parameters(pkg_bundle_settings)

	Compile flattened etl parameters.

	Parameters

	pkg_bundle_settings (iterable) – a list of data package parameters,
with each element of the list being a dictionary specifying
the data to be packaged.

	Returns

	dictionary of etl parameters (i.e. ferc1_years, eia923_years)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pudl.etl.validate_params(pkg_bundle_settings, pudl_settings)

	Read and validate the etl inputs from a settings file.

	Parameters

	pkg_bundle_settings (iterable) – a list of data package parameters,
with each element of the list being a dictionary specifying
the data to be packaged.

	Returns

	validated list of inputs

	Return type

	iterable

pudl.helpers module

General utility functions that are used in a variety of contexts.

The functions in this module are used in various stages of the ETL and post-etl
processes. They are usually not dataset specific, but not always. If a function
is designed to be used as a general purpose tool, applicable in multiple
scenarios, it should probably live here. There are lost of transform type
functions in here that help with cleaning and restructing dataframes.

	
pudl.helpers.cleanstrings(df, columns, stringmaps, unmapped=None, simplify=True)

	Consolidate freeform strings in several dataframe columns.

This function will consolidate freeform strings found in columns into
simplified categories, as defined by stringmaps. This is useful when
a field contains many different strings that are really meant to represent
a finite number of categories, e.g. a type of fuel. It can also be used to
create simplified categories that apply to similar attributes that are
reported in various data sources from different agencies that use their own
taxonomies.

The function takes and returns a pandas.DataFrame, making it suitable for
use with the pd.DataFrame.pipe() method in a chain.

	Parameters

	
	df (pd.DataFrame) – the DataFrame containing the string columns to be
cleaned up.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of string column labels found in the column
index of df. These are the columns that will be cleaned.

	stringmaps (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of dictionaries. The keys of these
dictionaries are strings, and the values are lists of strings. Each
dictionary in the list corresponds to a column in columns. The
keys of the dictionaries are the values with which every string in
the list of values will be replaced.

	unmapped (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – the value with which strings not found in the
stringmap dictionary will be replaced. Typically the null string
‘’. If None, then strings found in the columns but not in the
stringmap will be left unchanged.

	simplify (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, strip whitespace, remove duplicate
whitespace, and force lower-case on both the string map and the
values found in the columns to be cleaned. This can reduce the
overall number of string values that need to be tracked.

	Returns

	The function returns a new pandas series/column that can
be used to set the values of the original data.

	Return type

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]

Todo

Update docstring.

	
pudl.helpers.cleanstrings_series(col, str_map, unmapped=None, simplify=True)

	Clean up the strings in a single column/Series.

	Parameters

	
	col (pd.Series) – A pandas Series, typically a single column of a
dataframe, containing the freeform strings that are to be cleaned.

	map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of lists of strings, in which the keys are the
simplified canonical strings, witch which each string found in the
corresponding list will be replaced.

	unmapped (str [https://docs.python.org/3/library/stdtypes.html#str]) – A value with which to replace any string found in col
that is not found in one of the lists of strings in map. Typically
the null string ‘’. If None, these strings will not be replaced.

	simplify (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, strip and compact whitespace, and lowercase
all strings in both the list of values to be replaced, and the
values found in col. This can reduce the number of strings that
need to be kept track of.

	Returns

	The cleaned up Series / column, suitable for
replacng the original messy column in a pd.Dataframe.

	Return type

	pandas.Series

	
pudl.helpers.convert_to_date(df, date_col='report_date', year_col='report_year', month_col='report_month', day_col='report_day', month_value=1, day_value=1)

	Convert specified year, month or day columns into a datetime object.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – dataframe to convert

	date_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the column you want in the output.

	year_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the year column in the original table.

	month_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the month column in the original table.

	day_col – the name of the day column in the original table.

	month_value (int [https://docs.python.org/3/library/functions.html#int]) – generated month if no month exists.

	day_value (int [https://docs.python.org/3/library/functions.html#int]) – generated day if no month exists.

	Returns

	A DataFrame in which the year, month, day columns
values have been converted into datetime objects.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Update docstring.

	
pudl.helpers.drop_tables(engine)

	Drops all tables from a SQLite database.

Creates an sa.schema.MetaData object reflecting the structure of the
database that the passed in engine refers to, and uses that schema to
drop all existing tables.

Todo

Treat DB connection as a context manager (with/as).

	Parameters

	engine (sa.engine.Engine) – An SQL Alchemy SQLite database Engine
pointing at an exising SQLite database to be deleted.

	Returns

	None

	
pudl.helpers.extend_annual(df, date_col='report_date', start_date=None, end_date=None)

	Extend time range in a DataFrame by duplicating first and last years.

Takes the earliest year’s worth of annual data and uses it to create
earlier years by duplicating it, and changing the year. Similarly,
extends a dataset into the future by duplicating the last year’s records.

This is primarily used to extend the EIA860 data about utilities, plants,
and generators, so that we can analyze a larger set of EIA923 data. EIA923
data has been integrated a bit further back, and the EIA860 data has a year
long lag in being released.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) –

	date_col (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	start_date (date) –

	end_date (date) –

	Returns

	

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Return to

	
pudl.helpers.find_timezone(*, lng=None, lat=None, state=None, strict=True)

	Find the timezone associated with the a specified input location.

Note that this function requires named arguments. The names are lng, lat,
and state. lng and lat must be provided, but they may be NA. state isn’t
required, and isn’t used unless lng/lat are NA or timezonefinder can’t find
a corresponding timezone.

Timezones based on states are imprecise, so it’s far better to use lng/lat
if possible. If strict is True, state will not be used.
More on state-to-timezone conversion here:
https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory

	Parameters

	
	lng (int [https://docs.python.org/3/library/functions.html#int] or float in [-180,180]) – Longitude, in decimal degrees

	lat (int [https://docs.python.org/3/library/functions.html#int] or float in [-90, 90]) – Latitude, in decimal degrees

	state (str [https://docs.python.org/3/library/stdtypes.html#str]) – Abbreviation for US state or Canadian province

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Raise an error if no timezone is found?

	Returns

	The timezone (as an IANA string) for that location.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Todo

Update docstring.

	
pudl.helpers.fix_eia_na(df)

	Replace common ill-posed EIA NA spreadsheet values with np.nan.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame to clean.

	Returns

	The cleaned DataFrame.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Update docstring.

	
pudl.helpers.fix_int_na(df, columns, float_na=nan, int_na=-1, str_na='')

	Convert NA containing integer columns from float to string.

Numpy doesn’t have a real NA value for integers. When pandas stores integer
data which has NA values, it thus upcasts integers to floating point
values, using np.nan values for NA. However, in order to dump some of our
dataframes to CSV files that are suitable for loading into postgres
directly, we need to write out integer formatted numbers, with empty
strings as the NA value. This function replaces np.nan values with a
sentinel value, converts the column to integers, and then to strings,
finally replacing the sentinel value with the desired NA string.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe to be fixed. This argument allows
method chaining with the pipe() method.

	columns (iterable of strings) – A list of DataFrame column labels
indicating which columns need to be reformatted for output.

	float_na (float [https://docs.python.org/3/library/functions.html#float]) – The floating point value to be interpreted as NA and
replaced in col.

	int_na (int [https://docs.python.org/3/library/functions.html#int]) – Sentinel value to substitute for float_na prior to
conversion of the column to integers.

	str_na (str [https://docs.python.org/3/library/stdtypes.html#str]) – sa.String value to substitute for int_na after the column
has been converted to strings.

	Returns

	a new DataFrame, with the selected columns
converted to strings that look like integers, compatible with
the postgresql COPY FROM command.

	Return type

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame])

Todo

Update docstring.

	
pudl.helpers.is_annual(df_year, year_col='report_date')

	Determine whether dataframe is consistent with yearly reporting.

Some processes will only work with consistent yearly reporting. This means
if you have two non-contiguous years of data or the datetime reporting is
inconsistent, the process will break.

	Parameters

	
	() (df_year) –

	year_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The column of the DataFrame in which the year is
reported.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Todo

Return to for df_year, Returns, assert statements

	
pudl.helpers.merge_dicts(list_of_dicts)

	Merge multipe dictionaries together.

Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.
:param dict_args: a list of dictionaries.
:type dict_args: list

	Returns

	dictionary

	
pudl.helpers.merge_on_date_year(df_date, df_year, on=(), how='inner', date_col='report_date', year_col='report_date')

	Merge two dataframes based on a shared year.

Some of our data is annual, and has an integer year column (e.g. FERC 1).
Some of our data is annual, and uses a Date column (e.g. EIA 860), and
some of our data has other temporal resolutions, and uses date columns
(e.g. EIA 923 fuel receipts are monthly, EPA CEMS data is hourly). This
function takes two data frames and merges them based on the year that the
data pertains to. It requires one of the dataframes to have annual
resolution, and allows the annual time to be described as either an integer
year or a Date. The non-annual dataframe must have a Date column.

By default, it is assumed that both the date and annual columns to be
merged on are called ‘report_date’ since that’s the common case when
bringing together EIA860 and EIA923 data.

	Parameters

	
	df_date – the dataframe with a more granular date column, the label of
which is specified by date_col (report_date by default)

	df_year – the dataframe with a column containing annual dates, the label
of which is specified by year_col (report_date by default)

	on – The list of columns to merge on, other than the year and date
columns.

	date_col – name of the date column to use to find the year to merge on.
Must be a Date.

	year_col – name of the year column to merge on. Must be a Date
column with annual resolution.

	Returns

	a dataframe with a date column, but no year
columns, and only one copy of any shared columns that were not part of
the list of columns to be merged on. The values from df1 are the ones
which are retained for any shared, non-merging columns

	Return type

	pandas.DataFrame

	
pudl.helpers.month_year_to_date(df)

	Convert all pairs of year/month fields in a dataframe into Date fields.

This function finds all column names within a dataframe that match the
regular expression ‘_month$’ and ‘_year$’, and looks for pairs that have
identical prefixes before the underscore. These fields are assumed to
describe a date, accurate to the month. The two fields are used to
construct a new _date column (having the same prefix) and the month/year
columns are then dropped.

	This function needs to be combined with convert_to_date, and improved:
	
	find and use a _day$ column as well

	allow specification of default month & day values, if none are found.

	allow specification of lists of year, month, and day columns to be
combined, rather than automataically finding all the matching ones.

	Do the Right Thing when invalid or NA values are encountered.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame in which to convert year/months
fields to Date fields.

	Returns

	A DataFrame in which the year/month fields have been
converted into Date fields.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Update docstring.

	
pudl.helpers.organize_cols(df, cols)

	Organize columns into key ID & name fields & alphabetical data columns.

For readability, it’s nice to group a few key columns at the beginning
of the dataframe (e.g. report_year or report_date, plant_id…) and then
put all the rest of the data columns in alphabetical order.

	Parameters

	
	df – The DataFrame to be re-organized.

	cols – The columns to put first, in their desired output ordering.

	Returns

	A dataframe with the same columns as the input
DataFrame df, but with cols first, in the same order as they
were passed in, and the remaining columns sorted alphabetically.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Update docstring.

	
pudl.helpers.simplify_columns(df)

	Simplify column labels for use as database fields.

	This transformation includes:
	
	Replacing all non-alphanumeric characters with spaces.

	Forcing all letters to be lower case.

	Compacting internal whitespace.

	Stripping leading and trailing whitespace.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame to clean.

	Returns

	The cleaned DataFrame.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Todo

Update docstring.

	
pudl.helpers.strip_lower(df, columns=None)

	Strip and compact whitespace, lowercase listed DataFrame columns.

First converts all listed columns (if present in df) to string type, then
applies the str.strip() and str.lower() methods to them, and replaces all
internal whitespace to a single space. The columns are assigned in place.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame whose columns are being cleaned up.

	columns (iterable) – The labels of the columns to be stripped and
converted to lowercase.

	Returns

	The whole DataFrame that was passed in, with
the columns cleaned up in place, allowing method chaining.

	Return type

	pandas.DataFrame

	
pudl.helpers.sum_na(self, axis=None, *, skipna=False, level=None, numeric_only=None, min_count=0, **kwargs)

	Return the sum of the values for the requested axis.

This is equivalent to the method numpy.sum.

	Parameters

	
	axis ({index (0)}) – Axis for the function to be applied on.

	skipna (bool [https://docs.python.org/3/library/functions.html#bool], default True) – Exclude NA/null values when computing the result.

	level (int [https://docs.python.org/3/library/functions.html#int] or level name, default None) – If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a scalar.

	numeric_only (bool [https://docs.python.org/3/library/functions.html#bool], default None) – Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.

	min_count (int [https://docs.python.org/3/library/functions.html#int], default 0) – The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA
or empty Series is 0, and the product of an all-NA or empty
Series is 1.

	**kwargs – Additional keyword arguments to be passed to the function.

	Returns

	

	Return type

	scalar or Series (if level specified)

See also

	Series.sum()
	Return the sum.

	Series.min()
	Return the minimum.

	Series.max()
	Return the maximum.

	Series.idxmin()
	Return the index of the minimum.

	Series.idxmax()
	Return the index of the maximum.

	DataFrame.sum()
	Return the sum over the requested axis.

	DataFrame.min()
	Return the minimum over the requested axis.

	DataFrame.max()
	Return the maximum over the requested axis.

	DataFrame.idxmin()
	Return the index of the minimum over the requested axis.

	DataFrame.idxmax()
	Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded animal
warm dog 4
 falcon 2
cold fish 0
 spider 8
Name: legs, dtype: int64

>>> s.sum()
14

Sum using level names, as well as indices.

>>> s.sum(level='blooded')
blooded
warm 6
cold 8
Name: legs, dtype: int64

>>> s.sum(level=0)
blooded
warm 6
cold 8
Name: legs, dtype: int64

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([]).sum() # min_count=0 is the default
0.0

This can be controlled with the min_count parameter. For example, if
you’d like the sum of an empty series to be NaN, pass min_count=1.

>>> pd.Series([]).sum(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and
empty series identically.

>>> pd.Series([np.nan]).sum()
0.0

>>> pd.Series([np.nan]).sum(min_count=1)
nan

	
pudl.helpers.verify_input_files(ferc1_years, eia923_years, eia860_years, epacems_years, epacems_states, pudl_settings)

	Verify that all required data files exist prior to the ETL process.

	Parameters

	
	ferc1_years (iterable) – Years of FERC1 data we’re going to import.

	eia923_years (iterable) – Years of EIA923 data we’re going to import.

	eia860_years (iterable) – Years of EIA860 data we’re going to import.

	epacems_years (iterable) – Years of CEMS data we’re going to import.

	epacems_states (iterable) – States of CEMS data we’re going to import.

	data_dir (path-like) – Path to the top level of the PUDL datastore.

	Raises

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If any of the requested data is missing.

Todo

Check Docstring.

pudl.validate module

PUDL data validation functions and test case specifications.

	What defines a data validation?
	
	What data are we checking?
* What table or output does it come from?
* What selection criteria do we apply to that table or output?

	What are we checking it against?
* Itself (helps validate that the tests themselves are working)
* A processed version of itself (aggregation or derived values)
* A hard-coded external standard (e.g. heat rates, fuel heat content)

	
pudl.validate.bf_eia923_agg = [{'title': 'Coal ash content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.2, 'mid_q': 0.7, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Coal sulfur content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Coal heat content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	EIA923 Boiler Fuel data validation against aggregated data.

	
pudl.validate.bf_eia923_coal_ash_content = [{'title': 'Bituminous coal ash content (middle)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.5, 'low_bound': 6.0, 'hi_q': 0.5, 'hi_bound': 15.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal ash content (middle)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.5, 'low_bound': 4.5, 'hi_q': 0.5, 'hi_bound': 7.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite ash content (middle)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'All coal ash content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 4.0, 'hi_q': 0.5, 'hi_bound': 20.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}]

	Valid coal ash content (%). Based on historical reporting in EIA 923.

	
pudl.validate.bf_eia923_coal_heat_content = [{'title': 'Bituminous coal heat content (middle)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Bituminous coal heat content (tails)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.05, 'low_bound': 17.0, 'hi_q': 0.95, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal heat content (middle)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.5, 'low_bound': 16.5, 'hi_q': 0.5, 'hi_bound': 18.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal heat content (tails)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'low_bound': 15.0, 'hi_q': 0.95, 'hi_bound': 20.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content (middle)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.5, 'low_bound': 12.0, 'hi_q': 0.5, 'hi_bound': 14.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content (tails)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 15.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All coal heat content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid coal (bituminous, sub-bituminous, and lignite) heat content values.

Based on IEA coal grade definitions:
https://www.iea.org/statistics/resources/balancedefinitions/

	
pudl.validate.bf_eia923_coal_sulfur_content = [{'title': 'Coal sulfur content (tails)', 'query': "fuel_type_code_pudl=='coal'", 'hi_q': 0.95, 'hi_bound': 4.0, 'low_q': 0.05, 'low_bound': 0.15, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_consumed_units'}]

	Valid coal sulfur content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.bf_eia923_gas_heat_content = [{'title': 'Natural Gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.5, 'hi_bound': 1.036, 'low_q': 0.5, 'low_bound': 1.018, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Natural Gas heat content (tails)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.99, 'hi_bound': 1.15, 'low_q': 0.01, 'low_bound': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid natural gas heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs. May
fail because of a population of bad data around 0.1 mmbtu/unit. This appears
to be an off-by-10x error, possibly due to reporting error in units used.

	
pudl.validate.bf_eia923_oil_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "fuel_type_code=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "fuel_type_code=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All petroleum heat content (tails)', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid petroleum based fuel heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.bf_eia923_self = [{'title': 'Bituminous coal ash content', 'query': "fuel_type_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.25, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Subbituminous coal ash content', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite coal ash content', 'query': "fuel_type_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Bituminous coal heat content', 'query': "fuel_type_code=='BIT'", 'low_q': 0.07, 'mid_q': 0.5, 'hi_q': 0.98, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Subbituminous coal heat content', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.9, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content', 'query': "fuel_type_code=='LIG'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content', 'query': "fuel_type_code=='DFO'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	EIA923 Boiler Fuel data validation against itself.

	
pudl.validate.bounds_histogram(df, data_col, weight_col, query, low_q, hi_q, low_bound, hi_bound, title='')

	Plot a weighted histogram showing acceptable bounds/actual values.

	
pudl.validate.frc_eia923_agg = [{'title': 'Coal ash content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.2, 'mid_q': 0.7, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal chlorine content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'chlorine_content_ppm', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal fuel costs', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal sulfur content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Gas fuel costs', 'query': "fuel_type_code_pudl=='gas'", 'low_q': False, 'mid_q': 0.5, 'hi_q': False, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Petroleum fuel cost', 'query': "fuel_type_code_pudl=='oil'", 'low_q': False, 'mid_q': 0.5, 'hi_q': False, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	EIA923 fuel receipts & costs data validation against aggregated data.

	
pudl.validate.frc_eia923_coal_ash_content = [{'title': 'Bituminous coal ash content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 6.0, 'hi_q': 0.5, 'hi_bound': 15.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal ash content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 4.5, 'hi_q': 0.5, 'hi_bound': 7.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite ash content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'All coal ash content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 4.0, 'hi_q': 0.5, 'hi_bound': 20.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}]

	Valid coal ash content (%). Based on historical reporting in EIA 923.

	
pudl.validate.frc_eia923_coal_heat_content = [{'title': 'Bituminous coal heat content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal heat content (tails)', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'low_bound': 17.0, 'hi_q': 0.95, 'hi_bound': 30.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal heat content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 16.5, 'hi_q': 0.5, 'hi_bound': 18.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal heat content (tails)', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'low_bound': 15.0, 'hi_q': 0.95, 'hi_bound': 20.5, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite heat content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 12.0, 'hi_q': 0.5, 'hi_bound': 14.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite heat content (tails)', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 15.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'All coal heat content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Valid coal (bituminous, sub-bituminous, and lignite) heat content values.

Based on IEA coal grade definitions:
https://www.iea.org/statistics/resources/balancedefinitions/

	
pudl.validate.frc_eia923_coal_mercury_content = [{'title': 'Coal mercury content (upper tail)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'low_bound': False, 'hi_q': 0.95, 'hi_bound': 1.0, 'data_col': 'mercury_content_ppm', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal mercury content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 0.04, 'hi_q': 0.5, 'hi_bound': 0.19, 'data_col': 'mercury_content_ppm', 'weight_col': 'fuel_qty_units'}]

	Valid coal mercury content limits.

Based on USGS FS095-01: https://pubs.usgs.gov/fs/fs095-01/fs095-01.html
Upper tail may fail because of a population of extremely high mercury content
coal (9.0ppm) which is likely a reporting error.

	
pudl.validate.frc_eia923_coal_moisture_content = [{'title': 'Bituminous coal moisture content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 5.0, 'hi_q': 0.5, 'hi_bound': 16.5, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal moisture content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 15.0, 'hi_q': 0.5, 'hi_bound': 32.5, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite moisture content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 25.0, 'hi_q': 0.5, 'hi_bound': 45.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'All coal moisture content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 5.0, 'hi_q': 0.5, 'hi_bound': 40.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}]

	Valid coal moisture content, based on historical EIA 923 reporting.

	
pudl.validate.frc_eia923_coal_sulfur_content = [{'title': 'Coal sulfur content (tails)', 'query': "fuel_type_code_pudl=='coal'", 'hi_q': 0.95, 'hi_bound': 4.0, 'low_q': 0.05, 'low_bound': 0.15, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_qty_units'}]

	Valid coal sulfur content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.frc_eia923_gas_heat_content = [{'title': 'Natural Gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.5, 'hi_bound': 1.036, 'low_q': 0.5, 'low_bound': 1.018, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Natural Gas heat content (tails)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.99, 'hi_bound': 1.15, 'low_q': 0.01, 'low_bound': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Valid natural gas heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs. May
fail because of a population of bad data around 0.1 mmbtu/unit. This appears
to be an off-by-10x error, possibly due to reporting error in units used.

	
pudl.validate.frc_eia923_oil_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "energy_source_code=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "energy_source_code=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'All petroleum heat content (tails)', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.5, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]

	Valid petroleum based fuel heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.frc_eia923_self = [{'title': 'Bituminous coal ash content', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.25, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal ash content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite coal ash content', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal heat content', 'query': "energy_source_code=='BIT'", 'low_q': 0.07, 'mid_q': 0.5, 'hi_q': 0.98, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal heat content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.9, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite heat content', 'query': "energy_source_code=='LIG'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Diesel Fuel Oil heat content', 'query': "energy_source_code=='DFO'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal moisture content', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal moisture content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite moisture content', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 1.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}]

	EIA923 fuel receipts & costs data validation against itself.

	
pudl.validate.gf_eia923_agg = [{'title': 'Coal heat content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	EIA923 Boiler Fuel data validation against aggregated data.

	
pudl.validate.gf_eia923_coal_heat_content = [{'title': 'All coal heat content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid coal heat content values (all coal types).

The Generation Fuel table does not break different coal types out separately,
so we can only test the validity of the entire suite of coal records.

Based on IEA coal grade definitions:
https://www.iea.org/statistics/resources/balancedefinitions/

	
pudl.validate.gf_eia923_gas_heat_content = [{'title': 'Natural Gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.5, 'hi_bound': 1.036, 'low_q': 0.5, 'low_bound': 1.018, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Natural Gas heat content (tails)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.99, 'hi_bound': 1.15, 'low_q': 0.01, 'low_bound': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid natural gas heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs. May
fail because of a population of bad data around 0.1 mmbtu/unit. This appears
to be an off-by-10x error, possibly due to reporting error in units used.

	
pudl.validate.gf_eia923_oil_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "fuel_type_code_aer=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "fuel_type_code_aer=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All petroleum heat content (tails)', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]

	Valid petroleum based fuel heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

	
pudl.validate.historical_distribution(df, data_col, weight_col, quantile)

	Calculate a historical distribution of weighted values of a column.

In order to know what a “reasonable” value of a particular column is in the
pudl data, we can use this function to see what the value in that column
has been in each of the years of data we have on hand, and a given
quantile. This population of values can then be used to set boundaries on
acceptable data distributions in the aggregated and processed data.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – a dataframe containing historical data, with a
column named either report_date or report_year.

	data_col (string) – Label of the column containing the data of interest.

	weight_col (string) – Label of the column containing the weights to be
used in scaling the data.

	Returns

	The weighted quantiles of data, for each of the years found in
the historical data of df.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pudl.validate.historical_histogram(orig_df, test_df, data_col, weight_col, query='', low_q=0.05, mid_q=0.5, hi_q=0.95, low_bound=None, hi_bound=None, title='')

	Weighted histogram comparing distribution with historical subsamples.

	
pudl.validate.mcoe_coal_capacity_factor = [{'title': 'Coal Capacity Factor (middle)', 'query': "fuel_type_code_pudl=='coal' and capacity_factor!=0.0", 'low_q': 0.6, 'low_bound': 0.5, 'hi_q': 0.6, 'hi_bound': 0.9, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}, {'title': 'Coal Capacity Factor (tails)', 'query': "fuel_type_code_pudl=='coal' and capacity_factor!=0.0", 'low_q': 0.1, 'low_bound': 0.04, 'hi_q': 0.95, 'hi_bound': 0.95, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}]

	Static constraints on coal fired generator capacity factors.

	
pudl.validate.mcoe_coal_heat_rate = [{'title': 'Coal Unit Heat Rates (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 11.0, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Coal Unit Heat Rates (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 9.0, 'hi_q': 0.95, 'hi_bound': 12.5, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}]

	Static constraints on coal fired generator heat rates.

	
pudl.validate.mcoe_fuel_cost_per_mmbtu = [{'title': 'Coal Fuel Costs (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 1.5, 'hi_q': 0.5, 'hi_bound': 3.0, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Coal Fuel Costs (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 1.25, 'hi_q': 0.95, 'hi_bound': 4.5, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Natural Gas Fuel Costs (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 2.0, 'hi_q': 0.5, 'hi_bound': 4.0, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Natural Gas Fuel Costs (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 1.75, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}]

	Static constraints on fuel costs per mmbtu of fuel consumed.

	
pudl.validate.mcoe_fuel_cost_per_mwh = [{'title': 'Coal Fuel Costs (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 18.0, 'hi_q': 0.5, 'hi_bound': 27.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Coal Fuel Costs (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 50.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Fuel Costs (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 20.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Fuel Costs (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 50.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}]

	Static constraints on fuel costs per MWh net generation.

	
pudl.validate.mcoe_gas_capacity_factor = [{'title': 'Natural Gas Capacity Factor (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01' and capacity_factor!=0.0", 'low_q': 0.65, 'low_bound': 0.4, 'hi_q': 0.65, 'hi_bound': 0.7, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}, {'title': 'Natural Gas Capacity Factor (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01' and capacity_factor!=0.0", 'low_q': 0.15, 'low_bound': 0.01, 'hi_q': 0.95, 'hi_bound': 0.95, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}]

	Static constraints on natural gas generator capacity factors.

	
pudl.validate.mcoe_gas_heat_rate = [{'title': 'Natural Gas Unit Heat Rates (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 7.5, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Unit Heat Rates (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 6.5, 'hi_q': 0.95, 'hi_bound': 13.0, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}]

	Static constraints on gas fired generator heat rates.

	
pudl.validate.plot_vs_agg(orig_df, agg_df, validation_cases)

	Validate a bunch of distributions against aggregated versions.

	
pudl.validate.plot_vs_bounds(df, validation_cases)

	Run through a data validation based on absolute bounds.

	
pudl.validate.plot_vs_self(df, validation_cases)

	Validate a bunch of distributions against themselves.

	
pudl.validate.vs_bounds(df, data_col, weight_col, query='', title='', low_q=False, low_bound=False, hi_q=False, hi_bound=False)

	Test a distribution against an upper bound, lower bound, or both.

	
pudl.validate.vs_historical(orig_df, test_df, data_col, weight_col, query='', low_q=0.05, mid_q=0.5, hi_q=0.95, title='')

	Validate aggregated distributions against original data.

	
pudl.validate.vs_self(df, data_col, weight_col, query='', title='', low_q=0.05, mid_q=0.5, hi_q=0.95)

	Test a distribution against its own historical range.

This is a special case of the pudl.validate.vs_historical function,
in which both the orig_df and test_df are the same. Mostly it
helps ensure that the test itself is valid for the given distribution.

	
pudl.validate.weighted_quantile(data, weights, quantile)

	Calculate the weighted quantile of a Series or DataFrame column.

This function allows us to take two columns from a pandas.DataFrame
one of which contains an observed value (data) like heat content per unit
of fuel, and the other of which (weights) contains a quantity like quantity
of fuel delivered which should be used to scale the importance of the
observed value in an overall distribution, and calculate the values that
the scaled distribution will have at various quantiles.

	Parameters

	
	data (pandas.Series) – A series containing numeric data.

	weights (pandas.series) – Weights to use in scaling the data. Must have
the same length as data.

	quantile (float [https://docs.python.org/3/library/functions.html#float]) – A number between 0 and 1, representing the quantile
at which we want to find the value of the weighted data.

	Returns

	the value in the weighted data corresponding to the given
quantile. If there are no values in the data, return numpy.na.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pudl	

 	
 	
 pudl.analysis	

 	
 	
 pudl.analysis.mcoe	

 	
 	
 pudl.cli	

 	
 	
 pudl.constants	

 	
 	
 pudl.convert	

 	
 	
 pudl.convert.datapkg_to_sqlite	

 	
 	
 pudl.convert.epacems_to_parquet	

 	
 	
 pudl.convert.ferc1_to_sqlite	

 	
 	
 pudl.convert.flatten_datapkgs	

 	
 	
 pudl.etl	

 	
 	
 pudl.extract	

 	
 	
 pudl.extract.eia860	

 	
 	
 pudl.extract.eia923	

 	
 	
 pudl.extract.epacems	

 	
 	
 pudl.extract.epaipm	

 	
 	
 pudl.extract.ferc1	

 	
 	
 pudl.glue	

 	
 	
 pudl.glue.ferc1_eia	

 	
 	
 pudl.helpers	

 	
 	
 pudl.load	

 	
 	
 pudl.load.csv	

 	
 	
 pudl.load.metadata	

 	
 	
 pudl.output	

 	
 	
 pudl.output.eia860	

 	
 	
 pudl.output.eia923	

 	
 	
 pudl.output.export	

 	
 	
 pudl.output.ferc1	

 	
 	
 pudl.output.glue	

 	
 	
 pudl.output.pudltabl	

 	
 	
 pudl.transform	

 	
 	
 pudl.transform.eia	

 	
 	
 pudl.transform.eia860	

 	
 	
 pudl.transform.eia923	

 	
 	
 pudl.transform.epacems	

 	
 	
 pudl.transform.epaipm	

 	
 	
 pudl.transform.ferc1	

 	
 	
 pudl.validate	

 	
 	
 pudl.workspace	

 	
 	
 pudl.workspace.datastore	

 	
 	
 pudl.workspace.datastore_cli	

 	
 	
 pudl.workspace.setup	

 	
 	
 pudl.workspace.setup_cli	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	accumulated_depreciation() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	add() (pudl.load.csv.BulkCopy method)

 	add_facility_id_unit_id_epa() (in module pudl.transform.epacems)

 	add_sqlite_table() (in module pudl.extract.ferc1)

 	aer_coal_strings (in module pudl.constants)

 	aer_fuel_type_strings (in module pudl.constants)

 	aer_gas_strings (in module pudl.constants)

 	
 	aer_hydro_strings (in module pudl.constants)

 	aer_nuclear_strings (in module pudl.constants)

 	aer_oil_strings (in module pudl.constants)

 	aer_other_strings (in module pudl.constants)

 	aer_solar_strings (in module pudl.constants)

 	aer_waste_strings (in module pudl.constants)

 	aer_wind_strings (in module pudl.constants)

 	annotated_xlsx() (in module pudl.output.export)

 	assert_valid_param() (in module pudl.workspace.datastore)

B

 	
 	base_data_urls (in module pudl.constants)

 	bf_eia923() (pudl.output.pudltabl.PudlTabl method)

 	bf_eia923_agg (in module pudl.validate)

 	bf_eia923_coal_ash_content (in module pudl.validate)

 	bf_eia923_coal_heat_content (in module pudl.validate)

 	bf_eia923_coal_sulfur_content (in module pudl.validate)

 	bf_eia923_gas_heat_content (in module pudl.validate)

 	bf_eia923_oil_heat_content (in module pudl.validate)

 	bf_eia923_self (in module pudl.validate)

 	bga() (pudl.output.pudltabl.PudlTabl method)

 	
 	bga_eia860() (pudl.output.pudltabl.PudlTabl method)

 	boiler_fuel() (in module pudl.transform.eia923)

 	boiler_fuel_eia923() (in module pudl.output.eia923)

 	boiler_fuel_map_eia923 (in module pudl.constants)

 	boiler_generator_assn() (in module pudl.output.glue)

 	(in module pudl.transform.eia860)

 	boiler_generator_assn_eia860() (in module pudl.output.eia860)

 	boiler_generator_assn_map_eia860 (in module pudl.constants)

 	bounds_histogram() (in module pudl.validate)

 	BulkCopy (class in pudl.load.csv)

C

 	
 	canada_prov_terr (in module pudl.constants)

 	capacity_factor() (in module pudl.analysis.mcoe)

 	(pudl.output.pudltabl.PudlTabl method)

 	cems_states (in module pudl.constants)

 	census_region (in module pudl.constants)

 	check_for_matching_parameters() (in module pudl.convert.flatten_datapkgs)

 	check_if_need_update() (in module pudl.workspace.datastore)

 	clean_columns_dump() (in module pudl.load.csv)

 	cleanstrings() (in module pudl.helpers)

 	cleanstrings_series() (in module pudl.helpers)

 	close() (pudl.load.csv.BulkCopy method)

 	coalmine() (in module pudl.transform.eia923)

 	coalmine_country_eia923 (in module pudl.constants)

 	coalmine_type_eia923 (in module pudl.constants)

 	compile_data_packages_metadata() (in module pudl.convert.flatten_datapkgs)

 	compile_partitions() (in module pudl.load.metadata)

 	
 	contract_type_eia923 (in module pudl.constants)

 	contributors (in module pudl.constants)

 	contributors_by_source (in module pudl.constants)

 	convert_to_date() (in module pudl.helpers)

 	correct_gross_load_mw() (in module pudl.transform.epacems)

 	cpi_diesel_strings (in module pudl.constants)

 	cpi_geothermal_strings (in module pudl.constants)

 	cpi_natural_gas_strings (in module pudl.constants)

 	cpi_nuclear_strings (in module pudl.constants)

 	cpi_other_strings (in module pudl.constants)

 	cpi_plant_kind_strings (in module pudl.constants)

 	cpi_solar_strings (in module pudl.constants)

 	cpi_steam_strings (in module pudl.constants)

 	cpi_wind_strings (in module pudl.constants)

 	create_cems_schema() (in module pudl.convert.epacems_to_parquet)

 	create_dfs_epaipm() (in module pudl.extract.epaipm)

 	csv_dump() (in module pudl.load.csv)

D

 	
 	data_source_info (in module pudl.constants)

 	data_sources (in module pudl.constants)

 	data_sources_from_tables_pkg() (in module pudl.load.metadata)

 	data_years (in module pudl.constants)

 	dbc_filename() (in module pudl.extract.ferc1)

 	dbf2sqlite() (in module pudl.extract.ferc1)

 	dbf_typemap (in module pudl.constants)

 	
 	define_sqlite_db() (in module pudl.extract.ferc1)

 	deploy() (in module pudl.workspace.setup)

 	derive_paths() (in module pudl.workspace.setup)

 	dict_dump() (in module pudl.load.csv)

 	download() (in module pudl.workspace.datastore)

 	drop_tables() (in module pudl.extract.ferc1)

 	(in module pudl.helpers)

E

 	
 	eia860_pudl_tables (in module pudl.constants)

 	eia923_pudl_tables (in module pudl.constants)

 	energy_source_eia923 (in module pudl.constants)

 	energy_source_eia_simple_map (in module pudl.constants)

 	entities (in module pudl.constants)

 	entity_tables (in module pudl.constants)

 	epacems_additional_plant_info_file (in module pudl.constants)

 	epacems_columns_fill_na_dict (in module pudl.constants)

 	epacems_columns_to_ignore (in module pudl.constants)

 	epacems_csv_dtypes (in module pudl.constants)

 	epacems_rename_dict (in module pudl.constants)

 	epacems_tables (in module pudl.constants)

 	
 	epacems_to_parquet() (in module pudl.convert.epacems_to_parquet)

 	epaipm_pudl_tables (in module pudl.constants)

 	epaipm_region_aggregations (in module pudl.constants)

 	epaipm_region_names (in module pudl.constants)

 	epaipm_url_ext (in module pudl.constants)

 	etl_pkg() (in module pudl.etl)

 	extend_annual() (in module pudl.helpers)

 	extract() (in module pudl.extract.eia860)

 	(in module pudl.extract.eia923)

 	(in module pudl.extract.epacems)

 	(in module pudl.extract.epaipm)

 	(in module pudl.extract.ferc1)

F

 	
 	fbp_ferc1() (pudl.output.pudltabl.PudlTabl method)

 	ferc1_1kgal_strings (in module pudl.constants)

 	ferc1_bbl_strings (in module pudl.constants)

 	ferc1_coal_strings (in module pudl.constants)

 	ferc1_const_type_conventional (in module pudl.constants)

 	ferc1_const_type_outdoor (in module pudl.constants)

 	ferc1_const_type_strings (in module pudl.constants)

 	ferc1_data_tables (in module pudl.constants)

 	ferc1_dbf2tbl (in module pudl.constants)

 	ferc1_default_tables (in module pudl.constants)

 	ferc1_fuel_strings (in module pudl.constants)

 	ferc1_fuel_unit_strings (in module pudl.constants)

 	ferc1_gal_strings (in module pudl.constants)

 	ferc1_gas_strings (in module pudl.constants)

 	ferc1_gramsU_strings (in module pudl.constants)

 	ferc1_huge_tables (in module pudl.constants)

 	ferc1_kgU_strings (in module pudl.constants)

 	ferc1_mcf_strings (in module pudl.constants)

 	ferc1_mmbtu_strings (in module pudl.constants)

 	ferc1_mwdth_strings (in module pudl.constants)

 	ferc1_mwhth_strings (in module pudl.constants)

 	ferc1_nuke_strings (in module pudl.constants)

 	ferc1_oil_strings (in module pudl.constants)

 	ferc1_other_strings (in module pudl.constants)

 	ferc1_plant_kind_combined_cycle (in module pudl.constants)

 	ferc1_plant_kind_combustion_turbine (in module pudl.constants)

 	ferc1_plant_kind_geothermal (in module pudl.constants)

 	ferc1_plant_kind_nuke (in module pudl.constants)

 	ferc1_plant_kind_photovoltaic (in module pudl.constants)

 	ferc1_plant_kind_solar_thermal (in module pudl.constants)

 	ferc1_plant_kind_steam_turbine (in module pudl.constants)

 	ferc1_plant_kind_strings (in module pudl.constants)

 	ferc1_plant_kind_wind (in module pudl.constants)

 	ferc1_power_purchase_type (in module pudl.constants)

 	ferc1_pudl_tables (in module pudl.constants)

 	ferc1_tbl2dbf (in module pudl.constants)

 	ferc1_ton_strings (in module pudl.constants)

 	ferc1_waste_strings (in module pudl.constants)

 	FERC1FieldParser (class in pudl.extract.ferc1)

 	ferc_1_plant_kind_internal_combustion (in module pudl.constants)

 	ferc_accumulated_depreciation (in module pudl.constants)

 	ferc_electric_plant_accounts (in module pudl.constants)

 	FERCPlantClassifier (class in pudl.transform.ferc1)

 	file_pages_eia860 (in module pudl.constants)

 	files_dict_eia860 (in module pudl.constants)

 	files_dict_epaipm (in module pudl.constants)

 	files_eia860 (in module pudl.constants)

 	find_timezone() (in module pudl.helpers)

 	fit() (pudl.transform.ferc1.FERCPlantClassifier method)

 	fix_eia_na() (in module pudl.helpers)

 	fix_int_na() (in module pudl.helpers)

 	fix_up_dates() (in module pudl.transform.epacems)

 	flatten_data_package_metadata() (in module pudl.convert.flatten_datapkgs)

 	
 	flatten_data_packages_csvs() (in module pudl.convert.flatten_datapkgs)

 	flatten_pudl_datapackages() (in module pudl.convert.flatten_datapkgs)

 	frc_eia923() (pudl.output.pudltabl.PudlTabl method)

 	frc_eia923_agg (in module pudl.validate)

 	frc_eia923_coal_ash_content (in module pudl.validate)

 	frc_eia923_coal_heat_content (in module pudl.validate)

 	frc_eia923_coal_mercury_content (in module pudl.validate)

 	frc_eia923_coal_moisture_content (in module pudl.validate)

 	frc_eia923_coal_sulfur_content (in module pudl.validate)

 	frc_eia923_gas_heat_content (in module pudl.validate)

 	frc_eia923_oil_heat_content (in module pudl.validate)

 	frc_eia923_self (in module pudl.validate)

 	fuel() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	fuel_by_plant_ferc1() (in module pudl.output.ferc1)

 	(in module pudl.transform.ferc1)

 	fuel_cost() (in module pudl.analysis.mcoe)

 	(pudl.output.pudltabl.PudlTabl method)

 	fuel_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	fuel_group_eia923 (in module pudl.constants)

 	fuel_group_eia923_simple_map (in module pudl.constants)

 	fuel_receipts_costs() (in module pudl.transform.eia923)

 	fuel_receipts_costs_eia923() (in module pudl.output.eia923)

 	fuel_receipts_costs_map_eia923 (in module pudl.constants)

 	fuel_type_aer_eia923 (in module pudl.constants)

 	fuel_type_eia860_coal_strings (in module pudl.constants)

 	fuel_type_eia860_gas_strings (in module pudl.constants)

 	fuel_type_eia860_hydro_strings (in module pudl.constants)

 	fuel_type_eia860_nuclear_strings (in module pudl.constants)

 	fuel_type_eia860_oil_strings (in module pudl.constants)

 	fuel_type_eia860_other_strings (in module pudl.constants)

 	fuel_type_eia860_simple_map (in module pudl.constants)

 	fuel_type_eia860_solar_strings (in module pudl.constants)

 	fuel_type_eia860_waste_strings (in module pudl.constants)

 	fuel_type_eia860_wind_strings (in module pudl.constants)

 	fuel_type_eia923 (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_coal_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_gas_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_oil_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_other_strings (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_simple_map (in module pudl.constants)

 	fuel_type_eia923_boiler_fuel_waste_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_coal_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_gas_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_hydro_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_nuclear_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_oil_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_other_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_simple_map (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_solar_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_waste_strings (in module pudl.constants)

 	fuel_type_eia923_gen_fuel_wind_strings (in module pudl.constants)

 	fuel_units_eia923 (in module pudl.constants)

G

 	
 	gen_eia923() (pudl.output.pudltabl.PudlTabl method)

 	generate_data_packages() (in module pudl.etl)

 	generate_metadata() (in module pudl.load.metadata)

 	generation() (in module pudl.transform.eia923)

 	generation_eia923() (in module pudl.output.eia923)

 	generation_fuel() (in module pudl.transform.eia923)

 	generation_fuel_eia923() (in module pudl.output.eia923)

 	generation_fuel_map_eia923 (in module pudl.constants)

 	generator_assn_map_eia860 (in module pudl.constants)

 	generator_map_eia923 (in module pudl.constants)

 	generator_proposed_assn_map_eia860 (in module pudl.constants)

 	generator_retired_assn_map_eia860 (in module pudl.constants)

 	generators() (in module pudl.transform.eia860)

 	generators_eia860() (in module pudl.output.eia860)

 	gens_eia860() (pudl.output.pudltabl.PudlTabl method)

 	get_all_sources() (in module pudl.convert.flatten_datapkgs)

 	get_autoincrement_columns() (in module pudl.load.metadata)

 	get_dbc_map() (in module pudl.extract.ferc1)

 	get_dbf_path() (in module pudl.extract.ferc1)

 	get_defaults() (in module pudl.workspace.setup)

 	get_dependent_tables_from_list_pkg() (in module pudl.load.metadata)

 	get_dependent_tables_pkg() (in module pudl.load.metadata)

 	get_eia860_column_map() (in module pudl.extract.eia860)

 	get_eia860_file() (in module pudl.extract.eia860)

 	get_eia860_page() (in module pudl.extract.eia860)

 	
 	get_eia860_xlsx() (in module pudl.extract.eia860)

 	get_eia923_column_map() (in module pudl.extract.eia923)

 	get_eia923_file() (in module pudl.extract.eia923)

 	get_eia923_page() (in module pudl.extract.eia923)

 	get_eia923_xlsx() (in module pudl.extract.eia923)

 	get_epaipm_file() (in module pudl.extract.epaipm)

 	get_epaipm_name() (in module pudl.extract.epaipm)

 	get_ferc1_meta() (in module pudl.extract.ferc1)

 	get_flattened_etl_parameters() (in module pudl.etl)

 	get_foreign_key_relash_from_pkg() (in module pudl.load.metadata)

 	get_raw_df() (in module pudl.extract.ferc1)

 	get_repartitioned_tables() (in module pudl.load.metadata)

 	get_same_source_meta() (in module pudl.convert.flatten_datapkgs)

 	get_source_metadata() (in module pudl.load.metadata)

 	get_strings() (in module pudl.extract.ferc1)

 	get_table_meta() (in module pudl.output.pudltabl)

 	get_tabular_data_resource() (in module pudl.load.metadata)

 	get_unpartioned_tables() (in module pudl.load.metadata)

 	gf_eia923() (pudl.output.pudltabl.PudlTabl method)

 	gf_eia923_agg (in module pudl.validate)

 	gf_eia923_coal_heat_content (in module pudl.validate)

 	gf_eia923_gas_heat_content (in module pudl.validate)

 	gf_eia923_oil_heat_content (in module pudl.validate)

 	glue() (in module pudl.glue.ferc1_eia)

 	glue_pudl_tables (in module pudl.constants)

H

 	
 	harmonize_eia_epa_orispl() (in module pudl.transform.epacems)

 	hash_csv() (in module pudl.load.metadata)

 	heat_rate_by_gen() (in module pudl.analysis.mcoe)

 	heat_rate_by_unit() (in module pudl.analysis.mcoe)

 	
 	historical_distribution() (in module pudl.validate)

 	historical_histogram() (in module pudl.validate)

 	hr_by_gen() (pudl.output.pudltabl.PudlTabl method)

 	hr_by_unit() (pudl.output.pudltabl.PudlTabl method)

I

 	
 	init() (in module pudl.workspace.setup)

 	
 	initialize_parser() (in module pudl.workspace.setup_cli)

 	is_annual() (in module pudl.helpers)

L

 	
 	licenses (in module pudl.constants)

 	
 	load_curves() (in module pudl.transform.epaipm)

M

 	
 	main() (in module pudl.cli)

 	(in module pudl.convert.datapkg_to_sqlite)

 	(in module pudl.convert.epacems_to_parquet)

 	(in module pudl.convert.ferc1_to_sqlite)

 	(in module pudl.workspace.datastore_cli)

 	(in module pudl.workspace.setup_cli)

 	make_ferc_clf() (in module pudl.transform.ferc1)

 	mcoe() (in module pudl.analysis.mcoe)

 	(pudl.output.pudltabl.PudlTabl method)

 	mcoe_coal_capacity_factor (in module pudl.validate)

 	
 	mcoe_coal_heat_rate (in module pudl.validate)

 	mcoe_fuel_cost_per_mmbtu (in module pudl.validate)

 	mcoe_fuel_cost_per_mwh (in module pudl.validate)

 	mcoe_gas_capacity_factor (in module pudl.validate)

 	mcoe_gas_heat_rate (in module pudl.validate)

 	merge_dicts() (in module pudl.helpers)

 	merge_on_date_year() (in module pudl.helpers)

 	missing_respondents_ferc1 (in module pudl.constants)

 	month_dict_eia923 (in module pudl.constants)

 	month_year_to_date() (in module pudl.helpers)

N

 	
 	need_fix_inting (in module pudl.constants)

 	
 	nerc_region (in module pudl.constants)

O

 	
 	organize() (in module pudl.workspace.datastore)

 	organize_cols() (in module pudl.helpers)

 	output_formats (in module pudl.constants)

 	
 	own_eia860() (pudl.output.pudltabl.PudlTabl method)

 	ownership() (in module pudl.transform.eia860)

 	ownership_assn_map_eia860 (in module pudl.constants)

 	ownership_eia860() (in module pudl.output.eia860)

P

 	
 	package_files_from_table() (in module pudl.load.metadata)

 	parallel_update() (in module pudl.workspace.datastore)

 	parse_command_line() (in module pudl.cli)

 	(in module pudl.convert.datapkg_to_sqlite)

 	(in module pudl.convert.epacems_to_parquet)

 	(in module pudl.convert.ferc1_to_sqlite)

 	(in module pudl.workspace.datastore_cli)

 	parseN() (pudl.extract.ferc1.FERC1FieldParser method)

 	path() (in module pudl.workspace.datastore)

 	paths_for_year() (in module pudl.workspace.datastore)

 	pkg_to_sqlite_db() (in module pudl.convert.datapkg_to_sqlite)

 	plant_assn_map_eia860 (in module pudl.constants)

 	plant_frame_map_eia923 (in module pudl.constants)

 	plant_in_service() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plant_region_map() (in module pudl.transform.epaipm)

 	plants() (in module pudl.transform.eia860)

 	(in module pudl.transform.eia923)

 	plants_eia860() (in module pudl.output.eia860)

 	(pudl.output.pudltabl.PudlTabl method)

 	plants_hydro() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_pumped_storage() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_small() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_steam() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	plants_steam_ferc1() (in module pudl.output.ferc1)

 	(pudl.output.pudltabl.PudlTabl method)

 	plants_steam_validate_ids() (in module pudl.transform.ferc1)

 	plants_utils_eia860() (in module pudl.output.eia860)

 	plants_utils_ferc1() (in module pudl.output.ferc1)

 	plot_vs_agg() (in module pudl.validate)

 	plot_vs_bounds() (in module pudl.validate)

 	plot_vs_self() (in module pudl.validate)

 	predict() (pudl.transform.ferc1.FERCPlantClassifier method)

 	prep_pkg_bundle_directory() (in module pudl.load.metadata)

 	prime_movers (in module pudl.constants)

 	prime_movers_eia923 (in module pudl.constants)

 	pu_eia860() (pudl.output.pudltabl.PudlTabl method)

 	pu_ferc1() (pudl.output.pudltabl.PudlTabl method)

 	pudl (module)

 	pudl.analysis (module)

 	pudl.analysis.mcoe (module)

 	pudl.cli (module)

 	pudl.constants (module)

 	
 	pudl.convert (module)

 	pudl.convert.datapkg_to_sqlite (module)

 	pudl.convert.epacems_to_parquet (module)

 	pudl.convert.ferc1_to_sqlite (module)

 	pudl.convert.flatten_datapkgs (module)

 	pudl.etl (module)

 	pudl.extract (module)

 	pudl.extract.eia860 (module)

 	pudl.extract.eia923 (module)

 	pudl.extract.epacems (module)

 	pudl.extract.epaipm (module)

 	pudl.extract.ferc1 (module)

 	pudl.glue (module)

 	pudl.glue.ferc1_eia (module)

 	pudl.helpers (module)

 	pudl.load (module)

 	pudl.load.csv (module)

 	pudl.load.metadata (module)

 	pudl.output (module)

 	pudl.output.eia860 (module)

 	pudl.output.eia923 (module)

 	pudl.output.export (module)

 	pudl.output.ferc1 (module)

 	pudl.output.glue (module)

 	pudl.output.pudltabl (module)

 	pudl.transform (module)

 	pudl.transform.eia (module)

 	pudl.transform.eia860 (module)

 	pudl.transform.eia923 (module)

 	pudl.transform.epacems (module)

 	pudl.transform.epaipm (module)

 	pudl.transform.ferc1 (module)

 	pudl.validate (module)

 	pudl.workspace (module)

 	pudl.workspace.datastore (module)

 	pudl.workspace.datastore_cli (module)

 	pudl.workspace.setup (module)

 	pudl.workspace.setup_cli (module)

 	pudl_tables (in module pudl.constants)

 	PudlTabl (class in pudl.output.pudltabl)

 	pull_resource_from_megadata() (in module pudl.load.metadata)

 	purchased_power() (in module pudl.extract.ferc1)

 	(in module pudl.transform.ferc1)

 	
 Python Enhancement Proposals

 	PEP 257

 	PEP 517, [1]

 	PEP 518, [1]

 	PEP 8, [1], [2], [3]

R

 	
 	read_cems_csv() (in module pudl.extract.epacems)

 	
 	read_excel_epaipm_dict (in module pudl.constants)

 	rto_iso (in module pudl.constants)

S

 	
 	score() (pudl.transform.ferc1.FERCPlantClassifier method)

 	sector_eia (in module pudl.constants)

 	set_defaults() (in module pudl.workspace.setup)

 	show_dupes() (in module pudl.extract.ferc1)

 	simplify_columns() (in module pudl.helpers)

 	skiprows_eia860 (in module pudl.constants)

 	
 	skiprows_eia923 (in module pudl.constants)

 	source_url() (in module pudl.workspace.datastore)

 	spill() (pudl.load.csv.BulkCopy method)

 	state_tz_approx (in module pudl.constants)

 	stocks_map_eia923 (in module pudl.constants)

 	strip_lower() (in module pudl.helpers)

 	sum_na() (in module pudl.helpers)

T

 	
 	tab_map_eia860 (in module pudl.constants)

 	tab_map_eia923 (in module pudl.constants)

 	table_map_ferc1_pudl (in module pudl.constants)

 	test_file_consistency() (in module pudl.load.metadata)

 	transform() (in module pudl.transform.eia)

 	(in module pudl.transform.eia860)

 	(in module pudl.transform.eia923)

 	(in module pudl.transform.epacems)

 	(in module pudl.transform.epaipm)

 	(in module pudl.transform.ferc1)

 	(pudl.transform.ferc1.FERCPlantClassifier method)

 	
 	transmission_joint() (in module pudl.transform.epaipm)

 	transmission_single() (in module pudl.transform.epaipm)

 	transport_modes_eia923 (in module pudl.constants)

 	travis_ci_eia860_years (in module pudl.constants)

 	travis_ci_eia923_years (in module pudl.constants)

 	travis_ci_epacems_states (in module pudl.constants)

 	travis_ci_epacems_years (in module pudl.constants)

 	travis_ci_ferc1_years (in module pudl.constants)

U

 	
 	update() (in module pudl.workspace.datastore)

 	us_states (in module pudl.constants)

 	utilities() (in module pudl.transform.eia860)

 	
 	utilities_eia860() (in module pudl.output.eia860)

 	utility_assn_map_eia860 (in module pudl.constants)

 	utils_eia860() (pudl.output.pudltabl.PudlTabl method)

V

 	
 	validate_params() (in module pudl.etl)

 	validate_save_pkg() (in module pudl.load.metadata)

 	verify_input_files() (in module pudl.helpers)

 	
 	vs_bounds() (in module pudl.validate)

 	vs_historical() (in module pudl.validate)

 	vs_self() (in module pudl.validate)

W

 	
 	weighted_quantile() (in module pudl.validate)

 	
 	working_years (in module pudl.constants)

X

 	
 	xlsx_maps_pkg (in module pudl.constants)

Y

 	
 	year_from_operating_datetime() (in module pudl.convert.epacems_to_parquet)

 nav.xhtml

 Table of Contents

 		
 The Public Utility Data Liberation Project

_static/catalyst_logo-200x200.png

_static/plus.png

_static/file.png

_static/minus.png

