
PUDL
Release 0.4.0

Catalyst Cooperative

Aug 16, 2021

CONTENTS

1 What is PUDL? 3

2 What data is available? 5

3 Who is PUDL for? 7

4 How do I access the data? 9
4.1 Datasette . 9
4.2 Docker + Jupyter . 9
4.3 JupyterHub . 10
4.4 The PUDL Development Environment . 10

5 Contributing to PUDL 11

6 Licensing 13

7 Contact Us 15

8 About Catalyst Cooperative 17
8.1 Introduction . 17
8.2 Data Access . 21
8.3 Data Sources . 24
8.4 Data Dictionaries . 36
8.5 Contributing to PUDL . 63
8.6 Development . 65
8.7 The MIT License . 89
8.8 Catalyst Cooperative Code of Conduct . 90
8.9 PUDL Release Notes . 91
8.10 pudl . 95

Python Module Index 237

Index 239

i

ii

PUDL, Release 0.4.0

CONTENTS 1

https://www.repostatus.org/#active
https://github.com/catalyst-cooperative/pudl/actions?query=workflow%3Atox-pytest
https://catalystcoop-pudl.readthedocs.io/en/latest/
https://codecov.io/gh/catalyst-cooperative/pudl
https://pypi.org/project/catalystcoop.pudl/
https://pypi.org/project/catalystcoop.pudl/
https://anaconda.org/conda-forge/catalystcoop.pudl
https://zenodo.org/badge/latestdoi/80646423

PUDL, Release 0.4.0

2 CONTENTS

CHAPTER

ONE

WHAT IS PUDL?

The PUDL Project is an open source data processing pipeline that makes US energy data easier to access and use
programmatically.

Hundreds of gigabytes of valuable data are published by US government agencies, but it’s often difficult to work with.
PUDL takes the original spreadsheets, CSV files, and databases and turns them into a unified resource. This allows
users to spend more time on novel analysis and less time on data preparation.

3

https://catalyst.coop/pudl/

PUDL, Release 0.4.0

4 Chapter 1. What is PUDL?

CHAPTER

TWO

WHAT DATA IS AVAILABLE?

PUDL currently integrates data from:

• EIA Form 860 (2004-2019)

• EIA Form 860m (2020-2021)

• EIA Form 861 (2001-2019)

• EIA Form 923 (2001-2019)

• EPA Continuous Emissions Monitoring System (CEMS) (1995-2020)

• FERC Form 1 (1994-2019)

• FERC Form 714 (2006-2019)

• US Census Demographic Profile 1 Geodatabase (2010)

Thanks to support from the Alfred P. Sloan Foundation Energy & Environment Program, from 2021 to 2023 we will
be integrating the following data as well:

• EIA Form 176 (The Annual Report of Natural Gas Supply and Disposition)

• FERC Electric Quarterly Reports (EQR)

• FERC Form 2 (Annual Report of Major Natural Gas Companies)

• PHMSA Natural Gas Annual Report

• Machine Readable Specifications of State Clean Energy Standards

5

https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia860m/
https://www.eia.gov/electricity/data/eia861/
https://www.eia.gov/electricity/data/eia923/
https://ampd.epa.gov/ampd/
https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-1-electric-utility-annual
https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-no-714-annual-electric/data
https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html
https://sloan.org/programs/research/energy-and-environment
https://www.eia.gov/dnav/ng/TblDefs/NG_DataSources.html#s176
https://www.ferc.gov/industries-data/electric/power-sales-and-markets/electric-quarterly-reports-eqr
https://www.ferc.gov/industries-data/natural-gas/overview/general-information/natural-gas-industry-forms/form-22a-data
https://www.phmsa.dot.gov/data-and-statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-liquids

PUDL, Release 0.4.0

6 Chapter 2. What data is available?

CHAPTER

THREE

WHO IS PUDL FOR?

The project is focused on serving researchers, activists, journalists, policy makers, and small businesses that might not
otherwise be able to afford access to this data from commercial sources and who may not have the time or expertise to
do all the data processing themselves from scratch.

We want to make this data accessible and easy to work with for as wide an audience as possible: anyone from a
grassroots youth climate organizers working with Google sheets to university researchers with access to scalable
cloud computing resources and everyone in between!

7

PUDL, Release 0.4.0

8 Chapter 3. Who is PUDL for?

CHAPTER

FOUR

HOW DO I ACCESS THE DATA?

There are four main ways to access PUDL outputs. For more details you’ll want to check out the complete documen-
tation, but here’s a quick overview:

4.1 Datasette

We publish a lot of the data on https://data.catalyst.coop using a tool called Datasette that lets us wrap our databases in
a relatively friendly web interface. You can browse and query the data, make simple charts and maps, and download
portions of the data as CSV files or JSON so you can work with it locally. For a quick introduction to what you can
do with the Datasette interface, check out this 17 minute video.

This access mode is good for casual data explorers or anyone who just wants to grab a small subset of the data. It
also lets you share links to a particular subset of the data and provides a REST API for querying the data from other
applications.

4.2 Docker + Jupyter

Want access to all the published data in bulk? If you’re familiar with Python and Jupyter Notebooks and are willing to
install Docker you can:

• Download a PUDL data release from CERN’s Zenodo archiving service.

• Install Docker

• Run the archived image using docker-compose up

• Access the data via the resulting Jupyter Notebook server running on your machine.

If you’d rather work with the PUDL SQLite Databases and Apache Parquet files directly, they are accessible within
the same Zenodo archive.

The PUDL Examples repository has more detailed instructions on how to work with the Zenodo data archive and
Docker image.

9

https://catalystcoop-pudl.readthedocs.io
https://catalystcoop-pudl.readthedocs.io
https://data.catalyst.coop
https://datasette.io
https://simonwillison.net/2021/Feb/7/video/
https://jupyter.org/
https://sandbox.zenodo.org/record/764696
https://zenodo.org
https://docs.docker.com/get-docker/
https://sqlite.org
https://parquet.apache.org
https://github.com/catalyst-cooperative/pudl-examples

PUDL, Release 0.4.0

4.3 JupyterHub

Do you want to use Python and Jupyter Notebooks to access the data but aren’t comfortable setting up Docker? We
are working with 2i2c to host a JupyterHub that has the same software and data as the Docker container and Zenodo
archive mentioned above, but running in the cloud.

• Request an account

• Log in to the JupyterHub

Note: you’ll only have 4-6GB of RAM and 1 CPU to work with on the JupyterHub, so if you need more computing
power, you may need to set PUDL up on your own computer. Eventually we hope to offer scalable computing resources
on the JupyterHub as well.

4.4 The PUDL Development Environment

If you’re more familiar with the Python data science stack and are comfortable working with git, conda environments,
and the Unix command line, then you can set up the whole PUDL Development Environment on your own computer.
This will allow you to run the full data processing pipeline yourself, tweak the underlying source code, and (we hope!)
make contributions back to the project.

This is by far the most involved way to access the data and isn’t recommended for most users. You should check out
the Development section of the main PUDL documentation for more details.

10 Chapter 4. How do I access the data?

https://2i2c.org
https://forms.gle/TN3GuE2e2mnWoFC4A
https://bit.ly/pudl-examples-01
https://catalystcoop-pudl.readthedocs.io

CHAPTER

FIVE

CONTRIBUTING TO PUDL

Find PUDL useful? Want to help make it better? There are lots of ways to help!

• First, be sure to read our Code of Conduct.

• You can file a bug report, make a feature request, or ask questions in the Github issue tracker.

• Feel free to fork the project and make a pull request with new code, better documentation, or example notebooks.

• Make a recurring financial contribution to support our work liberating public energy data.

• Hire us to do some custom analysis and allow us to integrate the resulting code into PUDL.

• For more information check out the Contributing section of the PUDL Documentation

11

https://catalystcoop-pudl.readthedocs.io/en/latest/code_of_conduct.html
https://github.com/catalyst-cooperative/pudl/issues
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=PZBZDFNKBJW5E&source=url
https://catalyst.coop/hire-catalyst/
https://catalystcoop-pudl.readthedocs.io

PUDL, Release 0.4.0

12 Chapter 5. Contributing to PUDL

CHAPTER

SIX

LICENSING

In general, our code, data, and other work are permissively licensed for use by anybody, for any purpose, so long as
you give us credit for the work we’ve done.

• The PUDL software is released under the MIT License.

• The PUDL data and documentation are published under the Creative Commons Attribution License v4.0 (CC-
BY-4.0).

13

https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by/4.0/

PUDL, Release 0.4.0

14 Chapter 6. Licensing

CHAPTER

SEVEN

CONTACT US

• For user support, bug reports and anything else that could be useful or interesting to other users, please make a
GitHub issue.

• For private communication about the project or to hire us to provide customized data extraction and analysis,
you can email the maintainers: pudl@catalyst.coop

• If you’d like to get occasional updates about the project sign up for our email list.

• Follow us on Twitter: @CatalystCoop

• More info on our website: https://catalyst.coop

15

https://github.com/catalyst-cooperative/pudl/issues
mailto:pudl@catalyst.coop
https://catalyst.coop/updates/
https://twitter.com/CatalystCoop
https://catalyst.coop

PUDL, Release 0.4.0

16 Chapter 7. Contact Us

CHAPTER

EIGHT

ABOUT CATALYST COOPERATIVE

Catalyst Cooperative is a small group of data wranglers and policy wonks organized as a worker-owned cooperative
consultancy. Our goal is a more just, livable, and sustainable world. We integrate public data and perform custom
analyses to inform public policy (Hire us!). Our focus is primarily on mitigating climate change and improving
electric utility regulation in the United States.

8.1 Introduction

PUDL is a data processing pipeline Created by Catalyst Cooperative that cleans, integrates, and standardizes some of
the most widely used public energy datasets in the US. The data serve researchers, activists, journalists, and policy
makers that might not have the technical expertise to access it in its raw form, the time to clean and prepare the data
for bulk analysis, or the means to purchase it from existing commercial providers.

8.1.1 Available Data

Currently, PUDL has cleaned and integrated data from:

• EIA Form 860 (including EIA 860m)

• EIA Form 861 (preliminary)

• EIA Form 923

• FERC Form 1

• FERC Form 714 (preliminary)

• EPA CEMS Hourly

In addition, we distribute an SQLite databases containing all available years of the raw FERC Form 1 data and an
SQLite version of the US Census DP1 geodatabase

To get started using PUDL data, visit our Data Access page, or continue reading to learn more about the PUDL data
processing pipeline.

17

https://catalyst.coop
https://catalyst.coop/hire-catalyst
https://catalyst.coop/
https://doi.org/10.5281/zenodo.3677547
https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html

PUDL, Release 0.4.0

8.1.2 Raw Data Archives

PUDL depends on “raw” data inputs from sources that are known to occasionally update their data or alter the pub-
lished format. These changes may be incompatible with the way the data are read and interpreted by PUDL, so, to
ensure the integrity of our data processing, we periodically create archives of the raw inputs on Zenodo. Each of the
data inputs may have several different versions archived, and all are assigned a unique DOI and made available through
the REST API. Each release of the PUDL Python package is embedded with a set of of DOIs to indicate which version
of the raw inputs it is meant to process. This process helps ensure that our outputs are replicable.

To enable programmatic access to individual partitions of the data (by year, state, etc.), we archive the raw inputs
as Frictionless Data Packages. The data packages contain both the raw data in their originally published format
(CSVs, Excel spreadsheets, and Visual FoxPro database (DBF) files) and metadata that depicts how each the dataset
is partitioned.

The PUDL software will download a copy of the appropriate raw inputs automatically as needed and organize them in
a local datastore.

See also:

The software that creates and archives the raw inputs can be found in our PUDL Scrapers and PUDL Zenodo Storage
repositories on GitHub.

8.1.3 The ETL Process

The core of PUDL’s work takes place in the ETL (Extract, Transform, and Load) process.

Extract

The Extract step reads the raw data from the original heterogeneous formats into a collection of pandas.
DataFrame with uniform column names across all years so that it can be easily processed in bulk. Data distributed
as binary database files, such as the DBF files from FERC Form 1, may be converted into a unified SQLite database
before individual dataframes are created.

See also:

Module documentation within the pudl.extract subpackage.

Transform

The Transform step is generally broken down into two phases. Phase one focuses on cleaning and organizing data
within individual tables while phase two focuses on the integration and deduplication of data between tables. These
tasks can be tedious data wrangling toil that impose a huge amount of overhead on anyone trying to do analysis based
on the publicly available data. PUDL implements common data cleaning operations in the hopes that we can all work
on more interesting problems most of the time. These operations include:

• Standardization of units (e.g. dollars not thousands of dollars)

• Standardization of N/A values

• Standardization of freeform names and IDs

• Use of controlled vocabularies for categorical values like fuel type

• Use of more readable codes and column names

• Imposition of well defined, rich data types for each column

• Converting local timestamps to UTC

18 Chapter 8. About Catalyst Cooperative

https://zenodo.org/communities/catalyst-cooperative
https://specs.frictionlessdata.io/data-package/
https://github.com/catalyst-cooperative/pudl-scrapers
https://github.com/catalyst-cooperative/pudl-zenodo-storage
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://sre.google/sre-book/eliminating-toil/

PUDL, Release 0.4.0

• Reshaping of data into well normalized tables which minimize data duplication

• Inferring Plant IDs which link records across many years of FERC Form 1 data

• Inferring linkages between FERC and EIA Plants and Utilities.

• Inferring more complete associations between EIA boilers and generators

See also:

The module and per-table transform functions in the pudl.transform sub-package have more details on the spe-
cific transformations applied to each table.

Many of the original datasets contain large amounts of duplicated data. For instance, the EIA reports the name of
each power plant in every table that refers to otherwise unique plant-related data. Similarly, many attributes like plant
latitude and longitude are reported separately every year. Often, these reported values are not self-consistent. There
may be several different spellings of a plant’s name, or an incorrectly reported latitude in one year.

The transform step attempts to eliminate this kind of inconsistent and duplicate information when normalizing the
tables by choosing only the most consistently reported value for inclusion in the final database. If a value which
should be static is not consistently reported, it may also be set to N/A.

See also:

• Tidy Data by Hadley Wickham, Journal of Statistical Software (2014).

• A Simple Guide to the Five Normal Forms in Relational Database Theory by William Kent, Communications
of the ACM (1983).

Load

At the end of the Transform step, we have collections of DataFrames that correspond to database tables. These are
written out to (“loaded” into) platform independent tabular data packages where the data is stored as CSV files and the
metadata is stored as JSON. These static, text-based output formats are archive-friendly and can be used to populate a
database or read with Python, R, and many other tools. See the PUDL Data Dictionary page for a list of the normalized
database tables and their contents.

Note: Starting with v0.5.0 of PUDL, we will begin generating SQLite database and Apache Parquet file outputs
directly and using those formats to distribute the processed data.

See also:

Module documentation within the pudl.load sub-package.

8.1.4 Database & Output Tables

Tabular Data Packages are archive friendly and platform independent, but, given the size and complexity of the data
within PUDL, this format isn’t ideal for day to day interactive use. In practice, we take the clean, processed data in the
data packages and use it to populate a local SQLite database. To handle the ~1 billion row EPA CEMS hourly time
series, we convert the data package into Apache Parquet dataset that are partitioned by state and year. For more details
on these conversions to SQLite and Parquet formats, see Data Packages.

8.1. Introduction 19

https://vita.had.co.nz/papers/tidy-data.pdf
https://www.bkent.net/Doc/simple5.htm
https://specs.frictionlessdata.io/tabular-data-package/

PUDL, Release 0.4.0

Denormalized Outputs

We normalized the data to make storage more efficient and avoid data integrity issues, but you may want to combine
information from more than one of the tables to make the data more readable and readily interpretable. For example,
PUDL stores name that EIA uses to refer to a power plant in the plants_entity_eia table in association with the plant’s
unique numeric ID. If you are working with data from the fuel_receipts_costs_eia923 table, which records monthly
per-plant fuel deliveries, you may want to have the name of the plant alongside the fuel delivery information since it’s
more recognizable than the plant ID.

Rather than requiring everyone to write their own SQL SELECT and JOIN statements or do a bunch of pandas.
merge() operations to bring together data, PUDL provides a variety of predefined queries as methods of the pudl.
output.pudltabl.PudlTabl class. These methods perform common joins to return output tables (pandas
DataFrames) that contain all of the useful information in one place. In some cases, like with EIA, the output tables are
composed to closely resemble the raw spreadsheet tables you’re familiar with.

Note: In the future, we intend to replace the simple denormalized output tables with database views that are integrated
into the distributed SQLite database directly. This will provide the same convenience without requiring use of the
Python software layer.

Analysis Outputs

There are several analytical routines built into the pudl.output.pudltabl.PudlTabl output objects for cal-
culating derived values like the heat rate by generation unit (hr_by_unit) or the capacity factor by generator
(capacity_factor). We intend to integrate more analytical outputs into the library over time.

See also:

• The PUDL Examples GitHub repo to see how to access the PUDL Database directly, use the output functions,
or work with the EPA CEMS data using Dask.

• How to Learn Dask in 2021 is a great collection of self-guided resources if you are already familiar with Python,
Pandas, and NumPy.

8.1.5 Data Validation

We have a growing collection of data validation test cases that we run before publishing a data release to try and avoid
publishing data with known issues. Most of these validations are described in the pudl.validate module. They
check things like:

• The heat content of various fuel types are within expected bounds.

• Coal ash, moisture, mercury, sulfur etc. content are within expected bounds

• Generator heat rates and capacity factors are realistic for the type of prime mover being reported.

Some data validations are currently only specified within our test suite, including:

• The expected number of records within each table

• The fact that there are no entirely N/A columns

A variety of database integrity checks are also run either during the ETL process or when the data is loaded into
SQLite.

See our Testing PUDL documentation for more information.

20 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
https://github.com/catalyst-cooperative/pudl-examples
https://coiled.io/blog/how-to-learn-dask-in-2021/

PUDL, Release 0.4.0

8.2 Data Access

We publish the PUDL pipeline outputs in several ways to serve different users and use cases. We’re always trying to
increase accessibility of the PUDL data, so if you have suggestions or questions please open a GitHub issue or email
us at pudl@catalyst.coop.

8.2.1 How Should You Access PUDL Data?

We provide four primary ways of interacting with PUDL data. Here’s how to find out which one is right for you and
your use case.

Access
Method

Types of User Use Cases

Datasette Curious Explorer,
Spreadsheet Ana-
lyst, Web Devel-
oper

Explore the PUDL database interactively in a web browser. Select data to down-
load as CSVs for local analysis in spreadsheets. Create sharable links to a par-
ticular selection of data. Access PUDL data via a REST API.

Zenodo
Archives

Researcher,
Database User,
Notebook Analyst

Use a stable, citable, fully processed version of the PUDL on your own com-
puter. Use PUDL in Jupyer Notebooks running in a stable, archived Docker
container. Access the SQLite DB and Parquet files directly using any toolset.

Jupyter-
Hub

New Python User,
Notebook Analyst

Work through the PUDL example notebooks without any downloads or setup.
Perform your own notebook-based analyses using PUDL data and limited com-
putational resources.

Devel-
opment
Environ-
ment

Python Developer,
Data Wrangler

Run the PUDL data processing pipeline on your own computer. Edit the PUDL
source code and run the software tests and data validations. Integrate a new data
source or newly released data from one of existing sources.

Data
Pack-
ages

Deprecated For working with our published data prior to v0.4.0

8.2.2 Datasette

We provide web-based access to the PUDL data via a Datasette deployment at https://data.catalyst.coop.

Datasette is an open source tool that wraps SQLite databases in an interactive front-end. It allows users to browse
database tables, select portions of them using dropdown menus, build their own SQL queries, and download data to
CSVs. It also creates a REST API allowing the data in the database to be queried programmatically. All the query
parameters are stored in the URL so you can also share links to the data you’ve selected.

Note that only data that has been fully integrated into the SQLite databases are available here. Currently this includes
the core PUDL database and our concatenation of all historical FERC Form 1 databases.

8.2. Data Access 21

https://github.com/catalyst-cooperative/pudl/issues
mailto:pudl@catalyst.coop
https://datasette.io
https://data.catalyst.coop
https://data.catalyst.coop/pudl
https://data.catalyst.coop/ferc1

PUDL, Release 0.4.0

8.2.3 Zenodo Archives

We use Zenodo to archive our fully processed data as a SQLite databasees and Parquet files. We also archive a Docker
image that contains the software environment required to use PUDL within Jupyter Notebooks. You can find all our
archived data products in the Catalyst Cooperative Community on Zenodo.

• The current (beta) version of the archived data and Docker container can be downloaded from This Zenodo
archive

• Detailed instructions on how to access the archived PUDL data using a Docker container can be found in our
PUDL Examples repository.

• The SQLite databases and Parquet files containing the PUDL data, the complete FERC 1 database, and EPA
CEMS hourly data are contained in that same archive, if you want to access them directly without using PUDL.

Note: If you’re already familiar with Docker, you can also pull the image we use to run Jupyter directly:

$ docker pull catalystcoop/pudl-jupyter:latest

8.2.4 JupyterHub

We’ve set up a JupyterHub in collaboration with 2i2c.org to provide access to all of the processed PUDL data and the
software environment required to work with it. You don’t have to download or install anything to use it, but we do
need to create an account for you.

• Request an account by submitting this form.

• Once we’ve created an account for you follow this link to log in and open up the first example notebook on the
JupyterHub.

• You can create your own notebooks and upload, save, and download modest amounts of data on the hub.

We can only offer a small amount of memory (4-6GB) and processing power (1 CPU) per user on the JupyterHub
for free. If you need to work with lots of data or do computationally intensive analysis, you may want to look into
using the Zenodo Archives option on your own computer. The JupyterHub uses exactly the same data and software
environment as the Zenodo Archives. Eventually we also want to offer paid access to the JupyterHub with plenty of
computing power.

8.2.5 Development Environment

If you want to run the PUDL data processing pipeline yourself from scratch, run the software tests, or make changes to
the source code, you’ll need to set up our development environment. This is a bit involved, so it has its own separate
documentation.

Most users shouldn’t need to do this, and will probably find working with the pre-processed data via one of the other
access modes easier. But if you want to contribute to the project please give it a shot!

22 Chapter 8. About Catalyst Cooperative

https://zenodo.org/communities/catalyst-cooperative/
https://sandbox.zenodo.org/record/764417
https://sandbox.zenodo.org/record/764417
https://github.com/catalyst-cooperative/pudl-examples/
https://hub.docker.com/r/catalystcoop/pudl-jupyter
https://jupyter.org/hub
https://2i2c.org
https://forms.gle/TN3GuE2e2mnWoFC4A
https://bit.ly/pudl-examples-01

PUDL, Release 0.4.0

8.2.6 Data Packages

Note: Prior to v0.4.0 of PUDL we only published processed data as tabular data packages. As of v0.4.0 we are will
distribute the SQLite databases and Apache Parquet files alongside a set of data packages. As of PUDL v0.5.0 we will
be generating SQLite and Apache Parquet outputs directly, and will no longer be archiving tabular data packages as
the format of record, and the format conversions described below will no longer be necessary.

Archived Data Packages

We periodically publish data packages containing the full outputs from the PUDL ETL pipeline on Zenodo, an open
data archiving service provided by CERN. The most recent release can always be found through this concept DOI:
10.5281/zenodo.3653158. Each individual version of the data releases will be assigned its own unique DOI.

All of our archived products can be found in the Catalyst Cooperative Community on Zenodo. These archives and the
DOIs associated with them should be permanently accessible and are suitable for use as references in academic and
other publications.

Once you’ve downloaded or generated your own tabular data packages you will probably want to convert them into
a more analysis-oriented file format. We typically use SQLite for the core FERC and EIA data, and Apache Parquet
files for the very long tables like EPA CEMS.

Converting to SQLite

If you want to access the data via SQL, we have provided a script that loads several data packages into a local sqlite3
database. Note that these data packages must have all been generated by the same ETL run, or they will be considered
incompatible by the script. For example, to load three data packages generated by our example ETL configuration into
your local SQLite DB, you could run the following command from within your PUDL workspace:

$ datapkg_to_sqlite \
datapkg/pudl-example/ferc1-example/datapackage.json \
datapkg/pudl-example/eia-example/datapackage.json \

Run datapkg_to_sqlite --help for more details.

Converting to Apache Parquet

The EPA CEMS Hourly data approaches 100 GB in size uncompressed. This is too large to work with directly in
memory on most systems and take a very long time to load into SQLite. Instead, we recommend converting the
Hourly Emissions table into an Apache Parquet dataset which is stored on disk locally, and either reading in only parts
of it using pandas, or using Dask dataframes, to serialize or distribute your analysis tasks. Dask can also speed up
processing for in-memory tasks, especially if you have a powerful system with multiple cores, a solid state disk, and
plenty of memory.

If you have generated an EPA CEMS data package, you can use the epacems_to_parquet script to convert the
hourly emissions table like this:

$ epacems_to_parquet datapkg/pudl-example/epacems-eia-example/datapackage.json

The script will automatically generate a Parquet Dataset which is partitioned by year and state in the parquet/
epacems directory within your workspace. Run epacems_to_parquet --help for more details.

8.2. Data Access 23

https://frictionlessdata.io/specs/tabular-data-package/
https://zenodo.org
https://doi.org/10.5281/zenodo.3653158
https://zenodo.org/communities/catalyst-cooperative/
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://parquet.apache.org
https://dask.org

PUDL, Release 0.4.0

8.3 Data Sources

8.3.1 EIA Form 860

Source
URL

https://www.eia.gov/electricity/data/eia860/

Source
Descrip-
tion

The status of existing electric generating plants and associated equipment in the United States and
those scheduled for initial commercial operation within 10 years of the filing.

Respon-
dents

Utilities

Source
Format

Microsoft Excel (.xls/.xlsx)

Source
Years

2001-2019

Size
(Down-
load)

413.4 MB

PUDL
Code

eia860

Years Lib-
erated

2004-2019

Records
Liberated

~1 million

Issues Open EIA 860 issues

Background

The Form EIA-860 collects utility, owner, plant, and generator-level data from existing and planned entities with one
or more megawatt of capacity. The form also contains information regarding environmental control equipment and
construction cost data from 2013-2018.

• EIA-860 Instructions (PDF, to 2013-10-31)

• EIA-860 Instructions (PDF, to 2017-05-31)

• EIA-860 Instructions (PDF, to 2020-03-31)

• EIA-860 Instructions (PDF, to 2023-05-31)

As of 2019, the EIA-860 Form is organized into the following schedules:

• Schedule 1: Identification

• Schedule 2: Power plant data

• Schedule 3: Generator information

• Schedule 4: Ownership of generators

• Schedule 6: Boiler information

(Schedule 5 contained generator construction cost information)

24 Chapter 8. About Catalyst Cooperative

https://www.eia.gov/electricity/data/eia860/
https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aeia860

PUDL, Release 0.4.0

Who is required to fill out the form?

Respondents include all existing and proposed plants that have a total generator nameplate capacity (sum for generators
at a single site) of 1 Megawatt (MW) or greater and are connected to the local or regional electric power grid. Annual
responses are due between the beginning of January and the end of February.

Jointly owned plants must be reported only once by their operator or planned operator.

What does the original data look like?

Approximately a year after respondents submit their form, the EIA publishes the data in a series of spreadsheets that
reflect the thematic contents of the form. These spreadsheets can change year-to-year as the questions in the form
are updated or as EIA adopts new formatting standards for their outputs. They are accessible on the EIA website
as downloadable ZIP files categorized by year. To gain greater insight into year-to-year nuances of the form, we
recommend downloading multiple years of EIA-860 ZIP files and comparing both the Form and the Form Instructions
files. See below for our description of notable irregularities in the data.

How much of the data is accessible through PUDL?

EIA-860 data stretches back to 2001, and PUDL currently covers all years starting from 2004. The prior years are
published as DBF files and need a special process to read and extract. We intend to include these older years as soon
as we can.

PUDL does not currently include the files pertaining to specific renewable energy resources or interconnection.

Notable Irregularities

In 2012 and 2013, the Form was updated to include specific information about renewable generators. These new data
are not included in PUDL.

Prior to 2009, the Generators table was split into two spreadsheets: one for operating and one for proposed generation.
In 2007 and before, there was an additional file for proposed changes to existing generation. The latter is excluded
from PUDL while the former is combined into a single table during the transformation process.

EIA 860 includes a table in “Schedule 6: Boiler Information” which is an association table between boilers and
generators. This association is important because in EIA 923 the net generation is reported by generators and the fuel
consumption is reported by boilers - so a good boiler generator association is crucial for understanding heat rates.
Unfortunately, the reported associations are incomplete. We have implemented a methodology fills in many of the
missing links 2014 and later that covers more than 95% net generation reported in the generation_eia923 table. See
this blog post and pudl.transform.eia for more information.

PUDL Data Tables

We’ve segmented the processed EIA-860 data into the following normalized data tables. Clicking on the links will
show you a description of the table as well as the names and descriptions of each of its fields.

Data Dictionary Browse Online
generators_eia860 https://data.catalyst.coop/pudl/generators_eia860
ownership_eia860 https://data.catalyst.coop/pudl/ownership_eia860
boiler_generator_assn_eia860 https://data.catalyst.coop/pudl/boiler_generator_assn_eia860
plants_eia860 https://data.catalyst.coop/pudl/plants_eia860
utilities_eia860 https://data.catalyst.coop/pudl/utilities_eia860

8.3. Data Sources 25

https://www.eia.gov/electricity/data/eia860/
https://catalyst.coop/2018/08/07/boiler-generator-associations/
https://data.catalyst.coop/pudl/generators_eia860
https://data.catalyst.coop/pudl/ownership_eia860
https://data.catalyst.coop/pudl/boiler_generator_assn_eia860
https://data.catalyst.coop/pudl/plants_eia860
https://data.catalyst.coop/pudl/utilities_eia860

PUDL, Release 0.4.0

We’ve also created the following entity tables modeled after EIA data collected from multiple tables.

Data Dictionary Browse Online
boilers_entity_eia https://data.catalyst.coop/pudl/boilers_entity_eia
generators_entity_eia https://data.catalyst.coop/pudl/generators_entity_eia
plants_entity_eia https://data.catalyst.coop/pudl/plants_entity_eia
utilities_entity_eia https://data.catalyst.coop/pudl/utilities_entity_eia

PUDL Data Transformations

The PUDL transformation process cleans the input data so that it is adjusted for uniformity, corrected for errors, and
ready for bulk programmatic use.

To see the transformations applied to the data in each table, you can read the doc-strings for pudl.transform.
eia860 created for each tables’ respective transform function.

8.3.2 EIA Form 923

Source URL https://www.eia.gov/electricity/data/eia923/
Source De-
scription

Generation, consumption, stocks, receipts

Respondents Electric, CHP plants, and sometimes fuel transfer terminals with either 1MW+ or the ability to
receive and deliver power to the grid.

Source For-
mat

Microsoft Excel (.xls/.xlsx)

Source Years 2001-2019
Size (Down-
load)

243.3 MB

PUDL Code eia923
Years Liber-
ated

2001-2019

Records Lib-
erated

~3.6 million

Issues Open EIA 923 issues

Background

Form EIA-923 is known as the Power Plant Operations Report. The data include electric power generation, energy
source consumption, end of reporting period fossil fuel stocks, as well as the quality and cost of fossil fuel receipts
at the power plant and prime mover level (with a subset of +10MW steam-electric plants reporting at the boiler and
generator level. Information is available for non-utility plants starting in 1970 and utility plants beginning in 1999.
The Form EIA-923 has evolved over the years, beginning as an environmental add-on in 2007 and ultimately eclipsing
the information previously recorded in EIA-906, EIA-920, FERC 423, and EIA-423 by 2008.

• EIA-923 Instructions (PDF, to 2013-10-31)

• EIA-923 Instructions (PDF, to 2015-12-31)

• EIA-923 Instructions (PDF, to 2017-05-31)

• EIA-923 Instructions (PDF, to 2020-03-31)

• EIA-923 Instructions (PDF, to 2023-05-31)

26 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/boilers_entity_eia
https://data.catalyst.coop/pudl/generators_entity_eia
https://data.catalyst.coop/pudl/plants_entity_eia
https://data.catalyst.coop/pudl/utilities_entity_eia
https://www.eia.gov/electricity/data/eia923/
https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aeia923

PUDL, Release 0.4.0

As of 2019, the EIA-923 Form is organized into the following schedules:

• Schedule 2: fuel receipts and costs

• Schedules 3A & 5A: generator data including generation, fuel consumption and stocks

• Schedule 4: fossil fuel stocks

• Schedules 6 & 7: non-utility source and disposition of electricity

• Schedules 8A-F: environmental data

Who is required to fill out the form?

Respondents include all all electric and CHP plants, and in some cases fuel transfer terminals, that have a total gener-
ator nameplate capacity (sum for generators at a single site) of 1 Megawatt (MW) or greater and are connected to the
local or regional electric power grid.

Selected plants may be permitted to report schedules 1-4B monthly and 6-8 annually so as to lighten their reporting
burden. All other respondents must respond to the Form in its entirety once a year.

What does the original data look like?

Once the respondents have submitted their responses, the EIA creates a series of spreadsheets that reflect themes
within the form. These spreadsheets have changed over the years as the form itself evolves. They are accessible on the
EIA website as downloadable ZIP files categorized by year. The internal data are organized into excel spreadsheets.
To gain greater insight into year-to-year nuances of the form, we recommend downloading multiple years of EIA-923
ZIP files and comparing both the Form and the Form Instructions files.

How much of the data is accessible through PUDL?

EIA-923 data stretches back to 1970, and PUDL currently covers all years starting from 2009. Due to a difference in
reporting between the older and newer years, the older data will require more time to integrate. Monthly and year to
date releases are not yet integrated.

In addition, We have not yet integrated tables reporting fuel stocks, data from Puerto Rico, or EIA-923 schedules 6, 7,
and 8.

Notable Irregularities

File Naming Conventions

The naming conventions for the raw files are confusing and difficult to trace year to year. Subtle and not so sub-
tle changes to the form and published spreadsheets make aggregating pre-2009 data difficult from a programmatic
standpoint.

8.3. Data Sources 27

https://www.eia.gov/electricity/data/eia860/

PUDL, Release 0.4.0

Protected Data

In accordance with the Freedom of Information Act and the Trade Secrets Act, certain information reported to EIA-923
may remain undisclosed to the public until three months after its collection date. The fields subject to this legislation
include: total delivered cost of coal, natural gas, and petroleum received at non-utility power plants and the commodity
cost information for all plants (Schedule 2).

Net generation & fuel consumed reported in two seperate tables

Net generation and fuel consumption are reported in two seperate tables in EIA-923: in the generation_eia923 and gen-
eration_fuel_eia923 tables. The generation_fuel_eia923 table is more complete (the generation_eia923 table includes
only ~55% of the reported MWh), but the generation_eia923 table is more granular (it is reported at the generator
level).

Data Estimates

Plants that did not respond or reported unverified data were recorded as estimates rolled in with the state/fuel aggregates
values reported under the plant id 99999.

PUDL Database Tables

We’ve segmented the processed EIA-923 data into the following normalized data tables. Clicking on the links will
show you a description of the table as well as the names and descriptions of each of its fields.

EIA-923 Data Tables

These tables contain the bulk data reported in the EIA-923.

Data Dictionary Browse Online
boiler_fuel_eia923 https://data.catalyst.coop/pudl/boiler_fuel_eia923
coalmine_eia923 https://data.catalyst.coop/pudl/coalmine_eia923
fuel_receipts_costs_eia923 https://data.catalyst.coop/pudl/fuel_receipts_costs_eia923
generation_eia923 https://data.catalyst.coop/pudl/generation_eia923
generation_fuel_eia923 https://data.catalyst.coop/pudl/generation_fuel_eia923

EIA-923 Structural Tables

These tables define various codes and abbreviations more fully.

Data Dictionary Browse Online
energy_source_eia923 https://data.catalyst.coop/pudl/energy_source_eia923
fuel_type_aer_eia923 https://data.catalyst.coop/pudl/fuel_type_aer_eia923
fuel_type_eia923 https://data.catalyst.coop/pudl/fuel_type_eia923
prime_movers_eia923 https://data.catalyst.coop/pudl/prime_movers_eia923
transport_modes_eia923 https://data.catalyst.coop/pudl/transport_modes_eia923

28 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/boiler_fuel_eia923
https://data.catalyst.coop/pudl/coalmine_eia923
https://data.catalyst.coop/pudl/fuel_receipts_costs_eia923
https://data.catalyst.coop/pudl/generation_eia923
https://data.catalyst.coop/pudl/generation_fuel_eia923
https://data.catalyst.coop/pudl/energy_source_eia923
https://data.catalyst.coop/pudl/fuel_type_aer_eia923
https://data.catalyst.coop/pudl/fuel_type_eia923
https://data.catalyst.coop/pudl/prime_movers_eia923
https://data.catalyst.coop/pudl/transport_modes_eia923

PUDL, Release 0.4.0

PUDL Data Transformations

The PUDL transformation process cleans the input data so that it is adjusted for uniformity, corrected for errors, and
ready for bulk programmatic use.

To see the transformations applied to the data in each table, you can read the function level documentation in pudl.
transform.eia923.

8.3.3 EPA CEMS Hourly

Source URL ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly
Source Description Hourly CO2, SO2, NOx emissions and gross load
Respondents Coal and high-sulfur fueled plants
Source Format Comma Separated Value (.csv)
Source Years 1995-2020
Size (Download) 8.7 GB
PUDL Code epacems
Years Liberated 1995-2020
Records Liberated ~1 billion
Issues Open EPA CEMS issues

Background

As depicted by the EPA, Continuous Emissions Monitoring Systems (CEMS) are the “total equipment necessary for
the determination of a gas or particulate matter concentration or emission rate.” They are used to determine compliance
with EPA emissions standards and are therefore associated with a given “smokestack” and are categorized in the raw
data by a corresponding unitid. Because point sources of pollution are not alway correlated on a one-to-one basis
with generation units, the CEMS unitid serves as its own unique grouping. The EPA in collaboration with the
EIA has developed a crosswalk table that maps the EPA’s unitid onto EIA’s boiler_id, generator_id, and
plant_id_eia. This file has been integrated into the SQL database.

The EPA Clean Air Markets Division (CAMD) has collected emissions data from CEMS units stretching back to 1995.
Among the data included in CEMS are hourly SO2, CO2, NOx emission and gross load.

Who is required to install CEMS and report to EPA?

Part 75 of the Federal Code of Regulations (FRC), the backbone of the Clean Air Act Title IV and Acid Rain Program,
requires coal and other solid-combusting units (see §72.2) to install and use CEMS (see §75.2, §72.6). Certain low-
sulfur fueled gas and oil units (see §72.2) may seek exemption or alternative means of monitoring their emissions if
desired (see §§75.23, §§75.48, §§75.66). Once CEMS are installed, Part 75 requires hourly data recording, including
during startup, shutdown, and instances of malfunction as well as quarterly data reporting to the EPA. The regulation
further details the protocol for missing data calculations and backup monitoring for instances of CEMS failure (see
§§75,31-37).

A plain English explanation of the requirements of Part 75 is available in section 2.0 Overview of Part 75 Monitoring
Requirements

8.3. Data Sources 29

ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly
https://github.com/catalyst-cooperative/pudl/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aepacems
https://www.epa.gov/emc/emc-continuous-emission-monitoring-systems
https://github.com/USEPA/camd-eia-crosswalk
https://www.epa.gov/airmarkets
https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=d20546b42dd4ea978d0de7eabe15cbf4&mc=true&n=pt40.18.75&r=PART&ty=HTML#se40.18.75_12
https://www.epa.gov/sites/production/files/2015-05/documents/plain_english_guide_to_the_part_75_rule.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/plain_english_guide_to_the_part_75_rule.pdf

PUDL, Release 0.4.0

What does the original data look like?

EPA CAMD publishes the CEMS data in an online data portal . The files are available in a prepackaged format,
accessible via a user interface or FTP site with each downloadable zip file encompassing a year of data.

How much of the data is accessible through PUDL?

All of it!

Notable Irregularities

CEMS is by far the largest dataset in PUDL at the moment with hourly records for thousands of plants spanning
decades. Note that the ETL process can easily take all day for the full dataset. PUDL also provides a script that
converts the raw EPA CEMS data into Apache Parquet files that can be read and queried very efficiently with Dask.
Check out the EPA CEMS example notebook in our pudl-examples repository on GitHub for pointers on how to access
this big dataset efficiently using dask.

PUDL Data Tables

Clicking on the links will show you a description of the table as well as the names and descriptions of each of its fields.

Data Dictionary Browse Online
hourly_emissions_epacems Not Available via Datasette

PUDL Data Transformations

The PUDL transformation process cleans the input data so that it is adjusted for uniformity, corrected for errors, and
ready for bulk programmatic use.

To see the transformations applied to the data in each table, you can read the documentation for pudl.transform.
epacems created for their respective transform functions.

Thanks to Karl Dunkle Werner for contributing much of the EPA CEMS Hourly ETL code!

30 Chapter 8. About Catalyst Cooperative

https://ampd.epa.gov/ampd/
https://ampd.epa.gov/ampd/
ftp://newftp.epa.gov/DMDnLoad
https://github.com/catalyst-cooperative/pudl-examples/blob/main/notebooks/03-pudl-parquet.ipynb
https://github.com/catalyst-cooperative/pudl-examples
https://github.com/karldw

PUDL, Release 0.4.0

8.3.4 FERC Form 1

Source URL https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/
form-1-electric-utility-annual

Source De-
scription

Financial and operational information from electric utilities, licensees and others entities sub-
ject to FERC jurisdiction.

Respondents Major electric utilities and licensees.
Source Format FoxPro Database (.DBC/.DBF)
Source Years 1994-2019
Size (Down-
load)

1.3 GB

PUDL Code ferc1
Years Liber-
ated

1994-2019

Records Liber-
ated

~12 million (116 raw tables), ~316,000 (7 clean tables)

Issues Open FERC Form 1 issues

Background

The FERC Form 1, otherwise known as the Electric Utility Annual Report, contains financial and operating data for
major utilities and licensees. Much of it is not publicly available anywhere else.

• A diagram of the 2015 FERC Form 1 Database (PDF)

• Blank FERC Form 1 (PDF, to 2005-03-31)

• Blank FERC Form 1 (PDF, to 2007-06-30)

• Blank FERC Form 1 (PDF, to 2008-07-31)

• Blank FERC Form 1 (PDF, to 2011-12-31)

• Blank FERC Form 1 (PDF, to 2014-12-31)

• Blank FERC Form 1 (PDF, to 2016-11-30)

• Blank FERC Form 1 (PDF, to 2019-12-31)

• Blank FERC Form 1 (PDF, to 2022-11-30)

Who is required to fill out the form?

As outlined in the Commission’s Uniform System of Accounts Prescribed for Public Utilities and Licensees Subject
To the Provisions of The Federal Power Act (18 C.F.R. Part 101), to qualify as a respondent, entities must exceed at
least one of the following criteria for three consecutive years prior to reporting:

• 1 million MWh of total sales

• 100MWh of annual sales for resale

• 500MWh of annual power exchanges delivered

• 500MWh of annual wheeling for others (deliveries plus losses)

Annual responses are due in April of the following year. FERC typically releases the new data in October.

8.3. Data Sources 31

https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-1-electric-utility-annual
https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-1-electric-utility-annual
https://github.com/catalyst-cooperative/pudl/issues?q=is%3Aissue+is%3Aopen+label%3Aferc1

PUDL, Release 0.4.0

How much of the data is accessible through PUDL?

Thus far, we have integrated 7 tables into the full PUDL ETL pipeline. We focused on the tables pertaining to power
plants, their capital & operating expenses, and fuel consumption; however, we have the tools required to pull just about
any other table in as well.

What does the original data look like?

See also:

Explore the full FERC Form 1 dataset at: https://data.catalyst.coop/ferc1

The data is published as a collection of Visual FoxPro databases: one per year beginning in 1994. The databases
all share a very similar structure and contain a total of 116 data tables and ~8GB of raw data (though 90% of that
data is in 3 tables containing binary data). The final release of Visual FoxPro was v9.0 in 2007. Its extended support
period ended in 2015. The bridge application which allowed this database to be used in Microsoft Access has been
discontinued. FERC’s continued use of this database format creates a significant barrier to data access.

The FERC 1 database is poorly normalized and the data itself does not appear to be subject to much quality control.
For more detailed context and documentation on a table-by-table basis, look at FERC Form 1 Data Dictionary.

Notable Irregularities

Sadly, the FERC Form 1 database is not particularly. . . relational. The only foreign key relationships that exist map
respondent_id fields in the individual data tables back to f1_respondent_id. In theory, most of the data
tables use report_year, respondent_id, row_number, spplmnt_num and report_prd as a composite
primary key

In practice, there are several thousand records (out of ~12 million), including some in almost every table, that violate
the uniqueness constraint on those primary keys. Since there aren’t many meaningful foreign key relationships anyway,
rather than dropping the records with non-unique natural composite keys, we chose to preserve all of the records and
use surrogate auto-incrementing primary keys in the cloned SQLite database.

Lots of the data included in the FERC tables is extraneous and difficult to parse. None of the tables have record
identification and they sometimes contain multiple rows pertaining to the same plant or portion of a plant. For example,
a utility might report values for individual plants as well as the sum total, rendering any aggregations performed on the
column inaccurate. Sometimes there are values reported for the total rows and not the individual plants making them
difficult to simply remove. Moreover, these duplicate rows are incredibly difficult to identify.

To improve their usability, we have developed a complex system of regional mapping in order to create ids for each of
the plants that can then be compared to PUDL ids and used for integration with EIA and other data. We also remove
many of the duplicate rows and are in the midst of executing a more thorough review of the extraneous rows.

Over time we will pull in and clean up additional FERC Form 1 tables. If there’s data you need from Form 1 in bulk,
you can hire us to liberate it first.

32 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/ferc1
https://en.wikipedia.org/wiki/Visual_FoxPro
https://www.foxpro.co.uk/foxpro-end-of-life-and-you/
https://www.foxpro.co.uk/foxpro-end-of-life-and-you/
https://catalyst.coop/hire-catalyst/

PUDL, Release 0.4.0

PUDL Data Tables

We’ve segmented the processed FERC Form 1 data into the following normalized data tables. Clicking on the links
will show you a description of the table as well as the names and descriptions of each of its fields.

Data Dictionary Browse Online
fuel_ferc1 https://data.catalyst.coop/pudl/fuel_ferc1
plant_in_service_ferc1 https://data.catalyst.coop/pudl/plant_in_service_ferc1
plants_ferc1 https://data.catalyst.coop/pudl/plants_ferc1
plants_hydro_ferc1 https://data.catalyst.coop/pudl/plants_hydro_ferc1
plants_pumped_storage_ferc1 https://data.catalyst.coop/pudl/plants_pumped_storage_ferc1
plants_small_ferc1 https://data.catalyst.coop/pudl/plants_small_ferc1
plants_steam_ferc1 https://data.catalyst.coop/pudl/plants_steam_ferc1
purchased_power_ferc1 https://data.catalyst.coop/pudl/purchased_power_ferc1
utilities_ferc1 https://data.catalyst.coop/pudl/utilities_ferc1

PUDL Data Transformations

To see the transformations applied to the data in each table, you can read the pudl.transform.ferc1 module
documentation for more details. created for their respective transform functions.

8.3.5 Work in Progress & Future Datasets

Contents

• Work in Progress & Future Datasets

– Work in Progress

* Census DP1

* EIA Form 861

* EIA Form 176

* FERC Form 714

* FERC EQR

* FERC Form 2

* PHMSA Natural Gas Pipelines

* Machine Readable Clean Energy Standards

– Future Data of Interest

* Transmission and Distribution Systems

* EIA Water Usage

* MSHA Mines and Production

8.3. Data Sources 33

https://data.catalyst.coop/pudl/fuel_ferc1
https://data.catalyst.coop/pudl/plant_in_service_ferc1
https://data.catalyst.coop/pudl/plants_ferc1
https://data.catalyst.coop/pudl/plants_hydro_ferc1
https://data.catalyst.coop/pudl/plants_pumped_storage_ferc1
https://data.catalyst.coop/pudl/plants_small_ferc1
https://data.catalyst.coop/pudl/plants_steam_ferc1
https://data.catalyst.coop/pudl/purchased_power_ferc1
https://data.catalyst.coop/pudl/utilities_ferc1

PUDL, Release 0.4.0

Work in Progress

Thanks to a grant from the Alfred P. Sloan Foundation Energy & Environment Program, we have support to integrate
the following new datasets between April 2021 and March 2023.

There’s a huge variety and quantity of data about the US electric utility system available to the public. The data we
have integrated is just the beginning! Other data we’ve heard demand for are listed below. If you’re interested in using
one of them and would like to add it to PUDL check out our contribution guidelines. If there are other datasets you
think we should be looking at integration, don’t hesitate to open an issue on Github requesting the data and explaining
why it would be useful.

Census DP1

The US Census Demographic Profile 1 (DP1) provides Census tract, county, and state-level demographic information,
along with the geometries defining those areas. We use this information in generating historical utility and balancing
authority service territories based on FERC 714 and EIA 861 data. Currently, we are distributing the Census DP1 data
as a standalone SQLite DB.

EIA Form 861

The EIA Form 861, also known as the Annual Electric Power Industry Report, compiles information on load,
generation, capacity, sales, revenues, programs, and more. Right now we’ve got all of 861 integrated and are building
out our testing and data validation before publishing the data officially.

• EIA-861 Instructions (PDF, to 2013-10-31)

• EIA-861 Instructions (PDF, to 2015-12-31)

• EIA-861 Instructions (PDF, to 2017-05-31)

• EIA-861 Instructions (PDF, to 2020-03-31)

• EIA-861 Instructions (PDF, to 2023-05-31)

EIA Form 176

EIA Form 176, also known as the Annual Report of Natural and Supplemental Gas Supply and Disposition,
describes the origins, suppliers, and disposition of natural gas on a yearly and state by state basis.

FERC Form 714

FERC Form 714 includes hourly loads reported by load balancing authorities annually. This is a modestly sized
dataset, in the 100s of MB, distributed as CSV files exported from a Visual FoxPro database prior to publication. All
of the raw tables are being extracted, and a couple of them have been integrated into the transform process. None are
in the PUDL DB yet.

• FERC-714 Instructions (PDF, as of 2021-04-16)

34 Chapter 8. About Catalyst Cooperative

https://sloan.org/programs/research/energy-and-environment
https://github.com/catalyst-cooperative/pudl/issues
https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html
https://www.eia.gov/electricity/data/eia861/
https://www.eia.gov/dnav/ng/TblDefs/NG_DataSources.html#s176
https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-no-714-annual-electric/data

PUDL, Release 0.4.0

FERC EQR

The FERC Electric Quarterly Reports (EQR), also known as FERC Form 920, includes the details of transactions
between different utilities and transactions between utilities and merchant generators. It covers ancillary services as
well as energy and capacity, time and location of delivery, prices, contract length, etc. It’s one of the few public
sources of information about renewable energy power purchase agreements (PPAs). This is a large (~100s of GB)
dataset composed of a very large number of relatively clean CSV files, but it requires fuzzy processing to get at some
of the interesting and only indirectly reported attributes.

FERC Form 2

FERC Form 2 is analogous to FERC Form 1, but it pertains to gas rather than electric utilities. The data paint a detailed
picture of the finances of natural gas utilities.

PHMSA Natural Gas Pipelines

The PHMSA Natural Gas Annual Report, published by the Pipeline and Hazardous Materials Safety Administration
(part of the US Dept. of Transportation), collects data about natural gas gathering and transmission and distribution
systems (including their age, length, diameter, materials, and carrying capacity). PHAMSA also has information about
natural gas storage facilities and liquefied natural gas shipping facilities.

Machine Readable Clean Energy Standards

Renewable Portfolio Standards (RPS) and Clean Energy Standards (CES) have emerged as one of the primary pol-
icy tools to decarbonize the US electricity supply. Researchers who model future electricity systems need to include
these binding regulations as constraints on their models to ensure that the systems they explore are legally compliant.
Unfortunately for modelers, RPS and CES regulations vary from state to state. Sometimes there are carve outs for dif-
ferent types of generation, and sometimes there are different requirements for different types of utilities or distributed
resources. Our goal is to compile a programmatically usable database of RPS/CES policies in the US for quick and
easy reference by modelers.

Future Data of Interest

Transmission and Distribution Systems

In order to run electricity system operations models and cost optimizations, you need some kind of model of the
interconnections between generation and loads. There doesn’t appear to be a generally accepted, publicly available set
of these network descriptions (yet!).

EIA Water Usage

EIA Water records water use by thermal generating stations in the US.

8.3. Data Sources 35

https://www.ferc.gov/industries-data/electric/power-sales-and-markets/electric-quarterly-reports-eqr
https://www.ferc.gov/industries-data/natural-gas/overview/general-information/natural-gas-industry-forms/form-22a-data
https://www.phmsa.dot.gov/data-and-statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-liquids
https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx
https://www.eia.gov/electricity/data/water/

PUDL, Release 0.4.0

MSHA Mines and Production

The MSHA Mines & Production dataset describes coal production by mine and operating company along with statistics
about labor productivity and safety. This is a smaller dataset (100s of MB) available as relatively clean and well
structured CSV files.

8.4 Data Dictionaries

8.4.1 PUDL Data Dictionary

The following data tables have been cleaned and transformed by our ETL process.

assn_gen_eia_unit_epa

Pending description. Browse or query this table in Datasette.

Field
Name

Type Description

genera-
tor_id

string Generator identification code. Often numeric, but sometimes includes letters. It's a string!

plant_id_eia inte-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned by the
Energy Information Administration.

unit_id_epa string Smokestack unit monitored by EPA CEMS.

assn_plant_id_eia_epa

Pending description. Browse or query this table in Datasette.

Field
Name

Type Description

plant_id_eia inte-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned by the
Energy Information Administration.

plant_id_epainte-
ger

N/A

boiler_fuel_eia923

Pending description. Browse or query this table in Datasette.

36 Chapter 8. About Catalyst Cooperative

https://arlweb.msha.gov/OpenGovernmentData/OGIMSHA.asp
https://data.catalyst.coop/pudl/assn_gen_eia_unit_epa
https://data.catalyst.coop/pudl/assn_plant_id_eia_epa
https://data.catalyst.coop/pudl/boiler_fuel_eia923

PUDL, Release 0.4.0

Field
Name

Type Description

ash_content_pctnum-
ber

Ash content percentage by weight to the nearest 0.1 percent.

boiler_id string Boiler identification code. Alphanumeric.
fuel_consumed_unitsnum-

ber
Consumption of the fuel type in physical units. Note: this is the total quantity consumed for
both electricity and, in the case of combined heat and power plants, process steam production.

fuel_mmbtu_per_unitnum-
ber

Heat content of the fuel in millions of Btus per physical unit.

fuel_type_codestring The fuel code reported to EIA. Two or three letter alphanumeric.
fuel_type_code_pudlstring Standardized fuel codes in PUDL.
plant_id_eia in-

te-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned by the
Energy Information Administration.

re-
port_date

date Date reported.

sul-
fur_content_pct

num-
ber

Sulfur content percentage by weight to the nearest 0.01 percent.

boiler_generator_assn_eia860

Pending description. Browse or query this table in Datasette.

Field
Name

Type Description

bga_sourcestring The source from where the unit_id_pudl is compiled. The unit_id_pudl comes directly from EIA 860,
or string association (which looks at all the boilers and generators that are not associated with a unit
and tries to find a matching string in the respective collection of boilers or generator), or from a unit
connection (where the unit_id_eia is employed to find additional boiler generator connections).

boiler_idstring EIA-assigned boiler identification code.
gen-
er-
a-
tor_id

string EIA-assigned generator identification code.

plant_id_eiain-
te-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy
Information Administration.

re-
port_date

date Date reported.

unit_id_eiastring EIA-assigned unit identification code.
unit_id_pudlin-

te-
ger

Dynamically assigned PUDL unit id. WARNING: This ID is not guaranteed to be static long term as
the input data and algorithm may evolve over time.

8.4. Data Dictionaries 37

https://data.catalyst.coop/pudl/boiler_generator_assn_eia860

PUDL, Release 0.4.0

boilers_entity_eia

Pending description. Browse or query this table in Datasette.

Field Name Type Description
boiler_id string The EIA-assigned boiler identification code. Alphanumeric.
plant_id_eia inte-

ger
The unique six-digit facility identification number, also called an ORISPL, assigned by
the Energy Information Administration.

prime_mover_codestring Code for the type of prime mover (e.g. CT, CG)

coalmine_eia923

Pending description. Browse or query this table in Datasette.

Field
Name

Type Description

county_id_fipsin-
te-
ger

County ID from the Federal Information Processing Standard Publication 6-4.

mine_id_mshain-
te-
ger

MSHA issued mine identifier.

mine_id_pudlin-
te-
ger

PUDL issued surrogate key.

mine_name string Coal mine name.
mine_type_codestring Type of mine. P: Preparation plant, U: Underground, S: Surface, SU: Mostly Surface with

some Underground, US: Mostly Underground with some Surface.
state string Two letter US state abbreviations and three letter ISO-3166-1 country codes for international

mines.

energy_source_eia923

Pending description. Browse or query this table in Datasette.

Field Name Type Description
abbr string N/A
source string N/A

ferc_accounts

Account numbers from the FERC Uniform System of Accounts for Electric Plant, which is defined in Code of Federal
Regulations (CFR) Title 18, Chapter I, Subchapter C, Part 101. (See e.g. https://www.law.cornell.edu/cfr/text/18/
part-101). Browse or query this table in Datasette.

Field
Name

Type Description

description string Long description of the FERC Account.
ferc_account_idstring Account number, from FERC's Uniform System of Accounts for Electric Plant. Also in-

cludes higher level labeled categories.

38 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/boilers_entity_eia
https://data.catalyst.coop/pudl/coalmine_eia923
https://data.catalyst.coop/pudl/energy_source_eia923
https://www.law.cornell.edu/cfr/text/18/part-101
https://www.law.cornell.edu/cfr/text/18/part-101
https://data.catalyst.coop/pudl/ferc_accounts

PUDL, Release 0.4.0

ferc_depreciation_lines

PUDL assigned FERC Form 1 line identifiers and long descriptions from FERC Form 1 page 219, Accumulated
Provision for Depreciation of Electric Utility Plant (Account 108). Browse or query this table in Datasette.

Field
Name

Type Description

de-
scrip-
tion

string Description of the FERC depreciation account, as listed on FERC Form 1, Page 219.

line_id string A human readable string uniquely identifying the FERC depreciation account. Used in lieu of the
actual line number, as those numbers are not guaranteed to be consistent from year to year.

fuel_ferc1

Annual fuel cost and quanitiy for steam plants with a capacity of 25+ MW, internal combustion and gas-turbine plants
of 10+ MW, and all nuclear plants. As reported on page 402 of FERC Form 1 and extracted from the f1_fuel table in
FERC's FoxPro Database. Browse or query this table in Datasette.

Field
Name

Type Description

fuel_cost_per_mmbtunum-
ber

Average cost of fuel consumed in the report year, in nominal USD per mmBTU of fuel heat
content.

fuel_cost_per_unit_burnednum-
ber

Average cost of fuel consumed in the report year, in nominal USD per reported fuel unit.

fuel_cost_per_unit_deliverednum-
ber

Average cost of fuel delivered in the report year, in nominal USD per reported fuel unit.

fuel_mmbtu_per_unitnum-
ber

Average heat content of fuel consumed in the report year, in mmBTU per reported fuel unit.

fuel_qty_burnednum-
ber

Quantity of fuel consumed in the report year, in terms of the reported fuel units.

fuel_type_code_pudlstring PUDL assigned code indicating the general fuel type.
fuel_unit string PUDL assigned code indicating reported fuel unit of measure.
plant_name_ferc1string Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be

consistent across references to the same plant.
record_id string Identifier indicating original FERC Form 1 source record. format: {ta-

ble_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}.
Unique within FERC Form 1 DB tables which are not row-mapped.

report_year year Four-digit year in which the data was reported.
util-
ity_id_ferc1

in-
te-
ger

FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

8.4. Data Dictionaries 39

https://data.catalyst.coop/pudl/ferc_depreciation_lines
https://data.catalyst.coop/pudl/fuel_ferc1

PUDL, Release 0.4.0

fuel_receipts_costs_eia923

Pending description. Browse or query this table in Datasette.

Field Name Type Description
ash_content_pct num-

ber
Ash content percentage by weight to the nearest 0.1 percent.

chlorine_content_ppm num-
ber

N/A

con-
tract_expiration_date

date Date contract expires.Format: MMYY.

contract_type_code string Purchase type under which receipts occurred in the reporting month. C: Contract,
NC: New Contract, S: Spot Purchase, T: Tolling Agreement.

energy_source_code string The fuel code associated with the fuel receipt. Two or three character alphanu-
meric.

fuel_cost_per_mmbtu num-
ber

All costs incurred in the purchase and delivery of the fuel to the plant in cents
per million Btu(MMBtu) to the nearest 0.1 cent.

fuel_group_code string Groups the energy sources into fuel groups that are located in the Electric Power
Monthly: Coal, Natural Gas, Petroleum, Petroleum Coke.

fuel_group_code_simple string Simplified grouping of fuel_group_code, with Coal and Petroluem Coke as well
as Natural Gas and Other Gas grouped together.

fuel_qty_units num-
ber

Quanity of fuel received in tons, barrel, or Mcf.

fuel_type_code_pudl string Standardized fuel codes in PUDL.
heat_content_mmbtu_per_unitnum-

ber
Heat content of the fuel in millions of Btus per physical unit to the nearest 0.01
percent.

id in-
te-
ger

PUDL issued surrogate key.

mercury_content_ppm num-
ber

Mercury content in parts per million (ppm) to the nearest 0.001 ppm.

mine_id_pudl in-
te-
ger

PUDL mine identification number.

moisture_content_pct num-
ber

N/A

natu-
ral_gas_delivery_contract_type_code

string Contract type for natrual gas delivery service:

natu-
ral_gas_transport_code

string Contract type for natural gas transportation service.

plant_id_eia in-
te-
ger

The unique six-digit facility identification number, also called an ORISPL, as-
signed by the Energy Information Administration.

pri-
mary_transportation_mode_code

string Transportation mode for the longest distance transported.

report_date date Date reported.
sec-
ondary_transportation_mode_code

string Transportation mode for the second longest distance transported.

sulfur_content_pct num-
ber

Sulfur content percentage by weight to the nearest 0.01 percent.

supplier_name string Company that sold the fuel to the plant or, in the case of Natural Gas, pipline
owner.

40 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/fuel_receipts_costs_eia923

PUDL, Release 0.4.0

fuel_type_aer_eia923

Pending description. Browse or query this table in Datasette.

Field Name Type Description
abbr string N/A
fuel_type string N/A

fuel_type_eia923

Pending description. Browse or query this table in Datasette.

Field Name Type Description
abbr string N/A
fuel_type string N/A

generation_eia923

Pending description. Browse or query this table in Datasette.

Field Name Type Description
generator_id string Generator identification code. Often numeric, but sometimes includes letters. It's a

string!
net_generation_mwhnum-

ber
Net generation for specified period in megawatthours (MWh).

plant_id_eia inte-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned by
the Energy Information Administration.

report_date date Date reported.

8.4. Data Dictionaries 41

https://data.catalyst.coop/pudl/fuel_type_aer_eia923
https://data.catalyst.coop/pudl/fuel_type_eia923
https://data.catalyst.coop/pudl/generation_eia923

PUDL, Release 0.4.0

generation_fuel_eia923

Pending description. Browse or query this table in Datasette.

Field
Name

Type Description

fuel_consumed_for_electricity_mmbtunum-
ber

Total consumption of fuel to produce electricity, in physical units, year to date.

fuel_consumed_for_electricity_unitsnum-
ber

Consumption for electric generation of the fuel type in physical units.

fuel_consumed_mmbtunum-
ber

Total consumption of fuel in physical units, year to date. Note: this is the total quantity con-
sumed for both electricity and, in the case of combined heat and power plants, process steam
production.

fuel_consumed_unitsnum-
ber

Consumption of the fuel type in physical units. Note: this is the total quantity consumed for
both electricity and, in the case of combined heat and power plants, process steam production.

fuel_mmbtu_per_unitnum-
ber

Heat content of the fuel in millions of Btus per physical unit.

fuel_type string The fuel code reported to EIA. Two or three letter alphanumeric.
fuel_type_code_aerstring A partial aggregation of the reported fuel type codes into larger categories used by EIA in, for

example, the Annual Energy Review (AER).Two or three letter alphanumeric.
fuel_type_code_pudlstring Standardized fuel codes in PUDL.
net_generation_mwhnum-

ber
Net generation, year to date in megawatthours (MWh). This is total electrical output net of
station service. In the case of combined heat and power plants, this value is intended to include
internal consumption of electricity for the purposes of a production process, as well as power
put on the grid.

nu-
clear_unit_id

in-
te-
ger

For nuclear plants only. This unit ID appears to correspond directly to the generator ID, as
reported in the EIA-860. Nuclear plants are the only type of plants for which data are shown
explicitly at the generating unit level. Note that nuclear plants only report their fuel consump-
tion and net generation in the generation_fuel_eia923 table and not elsewhere.

plant_id_eia in-
te-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned by the
Energy Information Administration.

prime_mover_codestring Type of prime mover.
re-
port_date

date Date reported.

generators_eia860

Pending description. Browse or query this table in Datasette.

Field Name Type Description
capacity_mw number The highest value on the generator nameplate in megawatts rounded to the nearest tenth.
carbon_capture boolean Indicates whether the generator uses carbon capture technology.
cofire_fuels boolean Can the generator co-fire fuels?.
current_planned_operating_date date The most recently updated effective date on which the generator is scheduled to start operation
data_source string Source of EIA 860 data. Either Annual EIA 860 or the year-to-date updates from EIA 860M.
deliver_power_transgrid boolean Indicate whether the generator can deliver power to the transmission grid.
distributed_generation boolean Whether the generator is considered distributed generation
energy_source_1_transport_1 string Primary Mode of Transportaion for Energy Source 1
energy_source_1_transport_2 string Secondary Mode of Transportaion for Energy Source 1
energy_source_1_transport_3 string Third Mode of Transportaion for Energy Source 1

continues on next page

42 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/generation_fuel_eia923
https://data.catalyst.coop/pudl/generators_eia860

PUDL, Release 0.4.0

Table 1 – continued from previous page
Field Name Type Description
energy_source_2_transport_1 string Primary Mode of Transportaion for Energy Source 2
energy_source_2_transport_2 string Secondary Mode of Transportaion for Energy Source 2
energy_source_2_transport_3 string Third Mode of Transportaion for Energy Source 2
energy_source_code_1 string The code representing the most predominant type of energy that fuels the generator.
energy_source_code_2 string The code representing the second most predominant type of energy that fuels the generator
energy_source_code_3 string The code representing the third most predominant type of energy that fuels the generator
energy_source_code_4 string The code representing the fourth most predominant type of energy that fuels the generator
energy_source_code_5 string The code representing the fifth most predominant type of energy that fuels the generator
energy_source_code_6 string The code representing the sixth most predominant type of energy that fuels the generator
fuel_type_code_pudl string Standardized fuel codes in PUDL.
generator_id string Generator identification number.
minimum_load_mw number The minimum load at which the generator can operate at continuosuly.
multiple_fuels boolean Can the generator burn multiple fuels?
nameplate_power_factor number The nameplate power factor of the generator.
operational_status string The operating status of the generator. This is based on which tab the generator was listed in in EIA 860.
operational_status_code string The operating status of the generator.
other_modifications_date date Planned effective date that the generator is scheduled to enter commercial operation after any other planned modification is complete.
other_planned_modifications boolean Indicates whether there are there other modifications planned for the generator.
owned_by_non_utility boolean Whether any part of generator is owned by a nonutilty
ownership_code string Identifies the ownership for each generator.
planned_derate_date date Planned effective month that the generator is scheduled to enter operation after the derate modification.
planned_energy_source_code_1 string New energy source code for the planned repowered generator.
planned_modifications boolean Indicates whether there are any planned capacity uprates/derates, repowering, other modifications, or generator retirements scheduled for the next 5 years.
planned_net_summer_capacity_derate_mw number Decrease in summer capacity expected to be realized from the derate modification to the equipment.
planned_net_summer_capacity_uprate_mw number Increase in summer capacity expected to be realized from the modification to the equipment.
planned_net_winter_capacity_derate_mw number Decrease in winter capacity expected to be realized from the derate modification to the equipment.
planned_net_winter_capacity_uprate_mw number Increase in winter capacity expected to be realized from the uprate modification to the equipment.
planned_new_capacity_mw number The expected new namplate capacity for the generator.
planned_new_prime_mover_code string New prime mover for the planned repowered generator.
planned_repower_date date Planned effective date that the generator is scheduled to enter operation after the repowering is complete.
planned_retirement_date date Planned effective date of the scheduled retirement of the generator.
planned_uprate_date date Planned effective date that the generator is scheduled to enter operation after the uprate modification.
plant_id_eia integer The unique six-digit facility identification number, also called an ORISPL, assigned by the Energy Information Administration.
reactive_power_output_mvar number Reactive Power Output (MVAr)
report_date date Date reported.
retirement_date date Date of the scheduled or effected retirement of the generator.
startup_source_code_1 string The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.
startup_source_code_2 string The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.
startup_source_code_3 string The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.
startup_source_code_4 string The code representing the first, second, third or fourth start-up and flame stabilization energy source used by the combustion unit(s) associated with this generator.
summer_capacity_estimate boolean Whether the summer capacity value was an estimate
summer_capacity_mw number The net summer capacity.
summer_estimated_capability_mw number EIA estimated summer capacity (in MWh).
switch_oil_gas boolean Indicates whether the generator switch between oil and natural gas.
syncronized_transmission_grid boolean Indicates whether standby generators (SB status) can be synchronized to the grid.
technology_description string High level description of the technology used by the generator to produce electricity.
time_cold_shutdown_full_load_code string The minimum amount of time required to bring the unit to full load from shutdown.
turbines_inverters_hydrokinetics string Number of wind turbines, or hydrokinetic buoys.
turbines_num integer Number of wind turbines, or hydrokinetic buoys.

continues on next page

8.4. Data Dictionaries 43

PUDL, Release 0.4.0

Table 1 – continued from previous page
Field Name Type Description
uprate_derate_completed_date date The date when the uprate or derate was completed.
uprate_derate_during_year boolean Was an uprate or derate completed on this generator during the reporting year?
utility_id_eia integer EIA-assigned identification number for the company that is responsible for the day-to-day operations of the generator.
winter_capacity_estimate boolean Whether the winter capacity value was an estimate
winter_capacity_mw number The net winter capacity.
winter_estimated_capability_mw number EIA estimated winter capacity (in MWh).

generators_entity_eia

Pending description. Browse or query this table in Datasette.

Field Name Type Description
associ-
ated_combined_heat_power

booleanIndicates whether the generator is associated with a combined heat and power
system

bypass_heat_recovery booleanCan this generator operate while bypassing the heat recovery steam generator?
duct_burners booleanIndicates whether the unit has duct-burners for supplementary firing of the turbine

exhaust gas
fluidized_bed_tech booleanIndicates whether the generator uses fluidized bed technology
generator_id string Generator identification number
operating_date date Date the generator began commercial operation
operating_switch string Indicates whether the fuel switching generator can switch when operating
origi-
nal_planned_operating_date

date The date the generator was originally scheduled to be operational

other_combustion_tech booleanIndicates whether the generator uses other combustion technologies
plant_id_eia in-

te-
ger

The unique six-digit facility identification number, also called an ORISPL, as-
signed by the Energy Information Administration.

previously_canceled booleanIndicates whether the generator was previously reported as indefinitely postponed
or canceled

prime_mover_code string EIA assigned code for the prime mover (i.e. the engine, turbine, water wheel, or
similar machine that drives an electric generator)

pulverized_coal_tech booleanIndicates whether the generator uses pulverized coal technology
rto_iso_lmp_node_id string The designation used to identify the price node in RTO/ISO Locational Marginal

Price reports
rto_iso_location_wholesale_reporting_idstring The designation used to report ths specific location of the wholesale sales trans-

actions to FERC for the Electric Quarterly Report
solid_fuel_gasification booleanIndicates whether the generator is part of a solid fuel gasification system
stoker_tech booleanIndicates whether the generator uses stoker technology
subcritical_tech booleanIndicates whether the generator uses subcritical technology
supercritical_tech booleanIndicates whether the generator uses supercritical technology
top-
ping_bottoming_code

string If the generator is associated with a combined heat and power system, indicates
whether the generator is part of a topping cycle or a bottoming cycle

ultrasupercritical_tech booleanIndicates whether the generator uses ultra-supercritical technology

44 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/generators_entity_eia

PUDL, Release 0.4.0

hourly_emissions_epacems

Pending description. Browse or query this table in Datasette.

Field Name Type Description
co2_mass_measurement_codestring Identifies whether the reported value of emissions was measured, calculated, or

measured and substitute.
co2_mass_tons num-

ber
Carbon dioxide emissions in short tons.

facility_id inte-
ger

New EPA plant ID.

gross_load_mw num-
ber

Average power in megawatts delivered during time interval measured.

heat_content_mmbtu num-
ber

The energy contained in fuel burned, measured in million BTU.

nox_mass_lbs num-
ber

NOx emissions in pounds.

nox_mass_measurement_codestring Identifies whether the reported value of emissions was measured, calculated, or
measured and substitute.

nox_rate_lbs_mmbtu num-
ber

The average rate at which NOx was emitted during a given time period.

nox_rate_measurement_codestring Identifies whether the reported value of emissions was measured, calculated, or
measured and substitute.

operat-
ing_datetime_utc

date-
time

Date and time measurement began (UTC).

operat-
ing_time_hours

num-
ber

Length of time interval measured.

plant_id_eia inte-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned
by the Energy Information Administration.

so2_mass_lbs num-
ber

Sulfur dioxide emissions in pounds.

so2_mass_measurement_codestring Identifies whether the reported value of emissions was measured, calculated, or
measured and substitute.

state string State the plant is located in.
steam_load_1000_lbs num-

ber
Total steam pressure produced by a unit during the reported hour.

unit_id_epa inte-
ger

Smokestack unit monitored by EPA CEMS.

unitid string Facility-specific unit id (e.g. Unit 4)

8.4. Data Dictionaries 45

https://data.catalyst.coop/pudl/hourly_emissions_epacems

PUDL, Release 0.4.0

ownership_eia860

Pending description. Browse or query this table in Datasette.

Field Name Type Description
frac-
tion_owned

num-
ber

Proportion of generator ownership.

generator_id string Generator identification number.
owner_city string City of owner.
owner_name string Name of owner.
owner_state string Two letter US & Canadian state and territory abbreviations.
owner_street_addressstring Steet address of owner.
owner_utility_id_eiainte-

ger
EIA-assigned owner's identification number.

owner_zip_code string Zip code of owner.
plant_id_eia inte-

ger
The unique six-digit facility identification number, also called an ORISPL, assigned by
the Energy Information Administration.

report_date date Date reported.
utility_id_eia inte-

ger
EIA-assigned identification number for the company that is responsible for the day-to-
day operations of the generator.

plant_in_service_ferc1

Balances and changes to FERC Electric Plant in Service accounts, as reported on FERC Form 1. Data originally from
the f1_plant_in_srvce table in FERC's FoxPro database. Account numbers correspond to the FERC Uniform System
of Accounts for Electric Plant, which is defined in Code of Federal Regulations (CFR) Title 18, Chapter I, Subchapter
C, Part 101. (See e.g. https://www.law.cornell.edu/cfr/text/18/part-101). Each FERC respondent reports starting and
ending balances for each account annually. Balances are organization wide, and are not broken down on a per-plant
basis. End of year balance should equal beginning year balance plus the sum of additions, retirements, adjustments,
and transfers. Browse or query this table in Datasette.

Field Name Type Description
amount_type string String indicating which original FERC Form 1 column the listed amount came from. Each field should have one (potentially NA) value of each type for each utility in each year, and the ending_balance should equal the sum of starting_balance, additions, retirements, adjustments, and transfers.
distribution_acct360_land number FERC Account 360: Distribution Plant Land and Land Rights.
distribution_acct361_structures number FERC Account 361: Distribution Plant Structures and Improvements.
distribution_acct362_station_equip number FERC Account 362: Distribution Plant Station Equipment.
distribution_acct363_storage_battery_equip number FERC Account 363: Distribution Plant Storage Battery Equipment.
distribution_acct364_poles_towers number FERC Account 364: Distribution Plant Poles, Towers, and Fixtures.
distribution_acct365_overhead_conductors number FERC Account 365: Distribution Plant Overhead Conductors and Devices.
distribution_acct366_underground_conduit number FERC Account 366: Distribution Plant Underground Conduit.
distribution_acct367_underground_conductors number FERC Account 367: Distribution Plant Underground Conductors and Devices.
distribution_acct368_line_transformers number FERC Account 368: Distribution Plant Line Transformers.
distribution_acct369_services number FERC Account 369: Distribution Plant Services.
distribution_acct370_meters number FERC Account 370: Distribution Plant Meters.
distribution_acct371_customer_installations number FERC Account 371: Distribution Plant Installations on Customer Premises.
distribution_acct372_leased_property number FERC Account 372: Distribution Plant Leased Property on Customer Premises.
distribution_acct373_street_lighting number FERC Account 373: Distribution PLant Street Lighting and Signal Systems.
distribution_acct374_asset_retirement number FERC Account 374: Distribution Plant Asset Retirement Costs.
distribution_total number Distribution Plant Total (FERC Accounts 360-374).
electric_plant_in_service_total number Total Electric Plant in Service (FERC Accounts 101, 102, 103 and 106)

continues on next page

46 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/ownership_eia860
https://www.law.cornell.edu/cfr/text/18/part-101
https://data.catalyst.coop/pudl/plant_in_service_ferc1

PUDL, Release 0.4.0

Table 2 – continued from previous page
Field Name Type Description
electric_plant_purchased_acct102 number FERC Account 102: Electric Plant Purchased.
electric_plant_sold_acct102 number FERC Account 102: Electric Plant Sold (Negative).
experimental_plant_acct103 number FERC Account 103: Experimental Plant Unclassified.
general_acct389_land number FERC Account 389: General Land and Land Rights.
general_acct390_structures number FERC Account 390: General Structures and Improvements.
general_acct391_office_equip number FERC Account 391: General Office Furniture and Equipment.
general_acct392_transportation_equip number FERC Account 392: General Transportation Equipment.
general_acct393_stores_equip number FERC Account 393: General Stores Equipment.
general_acct394_shop_equip number FERC Account 394: General Tools, Shop, and Garage Equipment.
general_acct395_lab_equip number FERC Account 395: General Laboratory Equipment.
general_acct396_power_operated_equip number FERC Account 396: General Power Operated Equipment.
general_acct397_communication_equip number FERC Account 397: General Communication Equipment.
general_acct398_misc_equip number FERC Account 398: General Miscellaneous Equipment.
general_acct399_1_asset_retirement number FERC Account 399.1: Asset Retirement Costs for General Plant.
general_acct399_other_property number FERC Account 399: General Plant Other Tangible Property.
general_subtotal number General Plant Subtotal (FERC Accounts 389-398).
general_total number General Plant Total (FERC Accounts 389-399.1).
hydro_acct330_land number FERC Account 330: Hydro Land and Land Rights.
hydro_acct331_structures number FERC Account 331: Hydro Structures and Improvements.
hydro_acct332_reservoirs_dams_waterways number FERC Account 332: Hydro Reservoirs, Dams, and Waterways.
hydro_acct333_wheels_turbines_generators number FERC Account 333: Hydro Water Wheels, Turbins, and Generators.
hydro_acct334_accessory_equip number FERC Account 334: Hydro Accessory Electric Equipment.
hydro_acct335_misc_equip number FERC Account 335: Hydro Miscellaneous Power Plant Equipment.
hydro_acct336_roads_railroads_bridges number FERC Account 336: Hydro Roads, Railroads, and Bridges.
hydro_acct337_asset_retirement number FERC Account 337: Asset Retirement Costs for Hydraulic Production.
hydro_total number Hydraulic Production Plant Total (FERC Accounts 330-337)
intangible_acct301_organization number FERC Account 301: Intangible Plant Organization.
intangible_acct302_franchises_consents number FERC Account 302: Intangible Plant Franchises and Consents.
intangible_acct303_misc number FERC Account 303: Miscellaneous Intangible Plant.
intangible_total number Intangible Plant Total (FERC Accounts 301-303).
major_electric_plant_acct101_acct106_total number Total Major Electric Plant in Service (FERC Accounts 101 and 106).
nuclear_acct320_land number FERC Account 320: Nuclear Land and Land Rights.
nuclear_acct321_structures number FERC Account 321: Nuclear Structures and Improvements.
nuclear_acct322_reactor_equip number FERC Account 322: Nuclear Reactor Plant Equipment.
nuclear_acct323_turbogenerators number FERC Account 323: Nuclear Turbogenerator Units
nuclear_acct324_accessory_equip number FERC Account 324: Nuclear Accessory Electric Equipment.
nuclear_acct325_misc_equip number FERC Account 325: Nuclear Miscellaneous Power Plant Equipment.
nuclear_acct326_asset_retirement number FERC Account 326: Asset Retirement Costs for Nuclear Production.
nuclear_total number Total Nuclear Production Plant (FERC Accounts 320-326)
other_acct340_land number FERC Account 340: Other Land and Land Rights.
other_acct341_structures number FERC Account 341: Other Structures and Improvements.
other_acct342_fuel_accessories number FERC Account 342: Other Fuel Holders, Products, and Accessories.
other_acct343_prime_movers number FERC Account 343: Other Prime Movers.
other_acct344_generators number FERC Account 344: Other Generators.
other_acct345_accessory_equip number FERC Account 345: Other Accessory Electric Equipment.
other_acct346_misc_equip number FERC Account 346: Other Miscellaneous Power Plant Equipment.
other_acct347_asset_retirement number FERC Account 347: Asset Retirement Costs for Other Production.
other_total number Total Other Production Plant (FERC Accounts 340-347).
production_total number Total Production Plant (FERC Accounts 310-347).

continues on next page

8.4. Data Dictionaries 47

PUDL, Release 0.4.0

Table 2 – continued from previous page
Field Name Type Description
record_id string Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.
report_year year Four-digit year in which the data was reported.
rtmo_acct380_land number FERC Account 380: RTMO Land and Land Rights.
rtmo_acct381_structures number FERC Account 381: RTMO Structures and Improvements.
rtmo_acct382_computer_hardware number FERC Account 382: RTMO Computer Hardware.
rtmo_acct383_computer_software number FERC Account 383: RTMO Computer Software.
rtmo_acct384_communication_equip number FERC Account 384: RTMO Communication Equipment.
rtmo_acct385_misc_equip number FERC Account 385: RTMO Miscellaneous Equipment.
rtmo_total number Total RTMO Plant (FERC Accounts 380-386)
steam_acct310_land number FERC Account 310: Steam Plant Land and Land Rights.
steam_acct311_structures number FERC Account 311: Steam Plant Structures and Improvements.
steam_acct312_boiler_equip number FERC Account 312: Steam Boiler Plant Equipment.
steam_acct313_engines number FERC Account 313: Steam Engines and Engine-Driven Generators.
steam_acct314_turbogenerators number FERC Account 314: Steam Turbogenerator Units.
steam_acct315_accessory_equip number FERC Account 315: Steam Accessory Electric Equipment.
steam_acct316_misc_equip number FERC Account 316: Steam Miscellaneous Power Plant Equipment.
steam_acct317_asset_retirement number FERC Account 317: Asset Retirement Costs for Steam Production.
steam_total number Total Steam Production Plant (FERC Accounts 310-317).
transmission_acct350_land number FERC Account 350: Transmission Land and Land Rights.
transmission_acct352_structures number FERC Account 352: Transmission Structures and Improvements.
transmission_acct353_station_equip number FERC Account 353: Transmission Station Equipment.
transmission_acct354_towers number FERC Account 354: Transmission Towers and Fixtures.
transmission_acct355_poles number FERC Account 355: Transmission Poles and Fixtures.
transmission_acct356_overhead_conductors number FERC Account 356: Overhead Transmission Conductors and Devices.
transmission_acct357_underground_conduit number FERC Account 357: Underground Transmission Conduit.
transmission_acct358_underground_conductors number FERC Account 358: Underground Transmission Conductors.
transmission_acct359_1_asset_retirement number FERC Account 359.1: Asset Retirement Costs for Transmission Plant.
transmission_acct359_roads_trails number FERC Account 359: Transmission Roads and Trails.
transmission_total number Total Transmission Plant (FERC Accounts 350-359.1)
utility_id_ferc1 integer FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plant_unit_epa

Pending description. Browse or query this table in Datasette.

Field Name Type Description
plant_id_epa integer N/A
unit_id_epa string Smokestack unit monitored by EPA CEMS.

48 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/plant_unit_epa

PUDL, Release 0.4.0

plants_eia

Pending description. Browse or query this table in Datasette.

Field
Name

Type Description

plant_id_eia inte-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned by the
Energy Information Administration.

plant_id_pudl inte-
ger

N/A

plant_name_eiastring N/A

plants_eia860

Pending description. Browse or query this table in Datasette.

8.4. Data Dictionaries 49

https://data.catalyst.coop/pudl/plants_eia
https://data.catalyst.coop/pudl/plants_eia860

PUDL, Release 0.4.0

Field Name Type Description
ash_impoundment string Is there an ash impoundment (e.g. pond, reservoir) at the plant?
ash_impoundment_linedstring If there is an ash impoundment at the plant, is the impoundment lined?
ash_impoundment_statusstring If there is an ash impoundment at the plant, the ash impoundment status as of Decem-

ber 31 of the reporting year.
datum string N/A
energy_storage string Indicates if the facility has energy storage capabilities.
ferc_cogen_docket_nostring The docket number relating to the FERC qualifying facility cogenerator status.
ferc_exempt_wholesale_generator_docket_nostring The docket number relating to the FERC qualifying facility exempt wholesale gener-

ator status.
ferc_small_power_producer_docket_nostring The docket number relating to the FERC qualifying facility small power producer

status.
lique-
fied_natural_gas_storage

string Indicates if the facility have the capability to store the natural gas in the form of
liquefied natural gas.

natu-
ral_gas_local_distribution_company

string Names of Local Distribution Company (LDC), connected to natural gas burning
power plants.

natu-
ral_gas_pipeline_name_1

string The name of the owner or operator of natural gas pipeline that connects directly to
this facility or that connects to a lateral pipeline owned by this facility.

natu-
ral_gas_pipeline_name_2

string The name of the owner or operator of natural gas pipeline that connects directly to
this facility or that connects to a lateral pipeline owned by this facility.

natu-
ral_gas_pipeline_name_3

string The name of the owner or operator of natural gas pipeline that connects directly to
this facility or that connects to a lateral pipeline owned by this facility.

natu-
ral_gas_storage

string Indicates if the facility have on-site storage of natural gas.

nerc_region string NERC region in which the plant is located
net_metering string Did this plant have a net metering agreement in effect during the reporting year?

(Only displayed for facilities that report the sun or wind as an energy source). This
field was only reported up until 2015

pipeline_notes string Additional owner or operator of natural gas pipeline.
plant_id_eia in-

te-
ger

The unique six-digit facility identification number, also called an ORISPL, assigned
by the Energy Information Administration.

regula-
tory_status_code

string Indicates whether the plant is regulated or non-regulated.

report_date date Date reported.
transmis-
sion_distribution_owner_id

string EIA-assigned code for owner of transmission/distribution system to which the plant
is interconnected.

transmis-
sion_distribution_owner_name

string Name of the owner of the transmission or distribution system to which the plant is
interconnected.

transmis-
sion_distribution_owner_state

string State location for owner of transmission/distribution system to which the plant is in-
terconnected.

utility_id_eia in-
te-
ger

EIA-assigned identification number for the company that is responsible for the day-
to-day operations of the generator.

water_source string Name of water source associater with the plant.

50 Chapter 8. About Catalyst Cooperative

PUDL, Release 0.4.0

plants_entity_eia

Pending description. Browse or query this table in Datasette.

Field Name Type Description
balanc-
ing_authority_code_eia

string The plant's balancing authority code.

balanc-
ing_authority_name_eia

string The plant's balancing authority name.

city string The plant's city.
county string The plant's county.
ferc_cogen_status string Indicates whether the plant has FERC qualifying facility cogenerator status.
ferc_exempt_wholesale_generatorstring Indicates whether the plant has FERC qualifying facility exempt wholesale gen-

erator status
ferc_small_power_producerstring Indicates whether the plant has FERC qualifying facility small power producer

status
grid_voltage_2_kv num-

ber
Plant's grid voltage at point of interconnection to transmission or distibution facil-
ities

grid_voltage_3_kv num-
ber

Plant's grid voltage at point of interconnection to transmission or distibution facil-
ities

grid_voltage_kv num-
ber

Plant's grid voltage at point of interconnection to transmission or distibution facil-
ities

iso_rto_code string The code of the plant's ISO or RTO. NA if not reported in that year.
latitude num-

ber
Latitude of the plant's location, in degrees.

longitude num-
ber

Longitude of the plant's location, in degrees.

plant_id_eia inte-
ger

The unique six-digit facility identification number, also called an ORISPL, as-
signed by the Energy Information Administration.

plant_name_eia string Plant name.
pri-
mary_purpose_naics_id

num-
ber

North American Industry Classification System (NAICS) code that best describes
the primary purpose of the reporting plant

sector_id num-
ber

Plant-level sector number, designated by the primary purpose, regulatory status
and plant-level combined heat and power status

sector_name string Plant-level sector name, designated by the primary purpose, regulatory status and
plant-level combined heat and power status

service_area string Service area in which plant is located; for unregulated companies, it's the electric
utility with which plant is interconnected

state string Plant state. Two letter US state and territory abbreviations.
street_address string Plant street address
timezone string IANA timezone name
zip_code string Plant street address

8.4. Data Dictionaries 51

https://data.catalyst.coop/pudl/plants_entity_eia

PUDL, Release 0.4.0

plants_ferc1

Name, utility, and PUDL id for steam plants with a capacity of 25,000+ kW, internal combustion and gas-turbine
plants of 10,000+ kW, and all nuclear plants. Browse or query this table in Datasette.

Field
Name

Type Description

plant_id_pudl inte-
ger

A manually assigned PUDL plant ID. May not be constant over time.

plant_name_ferc1string Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be
consistent across references to the same plant.

util-
ity_id_ferc1

inte-
ger

FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_hydro_ferc1

Generating plant statistics for hydroelectric plants with an installed nameplate capacity of 10 MW. As reported on
FERC Form 1, pages 406-407 and extracted from the f1_hydro table in FERC's FoxPro database. Browse or query
this table in Datasette.

Field Name Type Description
asset_retirement_cost number Cost of plant: asset retirement costs. Nominal USD.
avg_num_employees number Average number of employees.
capacity_mw number Total installed (nameplate) capacity, in megawatts.
capex_equipment number Cost of plant: equipment. Nominal USD.
capex_facilities number Cost of plant: reservoirs, dams, and waterways. Nominal USD.
capex_land number Cost of plant: land and land rights. Nominal USD.
capex_per_mw number Cost of plant per megawatt of installed (nameplate) capacity. Nominal USD.
capex_roads number Cost of plant: roads, railroads, and bridges. Nominal USD.
capex_structures number Cost of plant: structures and improvements. Nominal USD.
capex_total number Total cost of plant. Nominal USD.
construction_type string Type of plant construction ('outdoor', 'semioutdoor', or 'conventional'). Categorized by PUDL based on our best guess of intended value in FERC1 freeform strings.
construction_year year Four digit year of the plant's original construction.
installation_year year Four digit year in which the last unit was installed.
net_capacity_adverse_conditions_mw number Net plant capability under the least favorable operating conditions, in megawatts.
net_capacity_favorable_conditions_mw number Net plant capability under the most favorable operating conditions, in megawatts.
net_generation_mwh number Net generation, exclusive of plant use, in megawatt hours.
opex_dams number Production expenses: maintenance of reservoirs, dams, and waterways. Nominal USD.
opex_electric number Production expenses: electric expenses. Nominal USD.
opex_engineering number Production expenses: maintenance, supervision, and engineering. Nominal USD.
opex_generation_misc number Production expenses: miscellaneous hydraulic power generation expenses. Nominal USD.
opex_hydraulic number Production expenses: hydraulic expenses. Nominal USD.
opex_misc_plant number Production expenses: maintenance of miscellaneous hydraulic plant. Nominal USD.
opex_operations number Production expenses: operation, supervision, and engineering. Nominal USD.
opex_per_mwh number Production expenses per net megawatt hour generated. Nominal USD.
opex_plant number Production expenses: maintenance of electric plant. Nominal USD.
opex_rents number Production expenses: rent. Nominal USD.
opex_structures number Production expenses: maintenance of structures. Nominal USD.
opex_total number Total production expenses. Nominal USD.
opex_water_for_power number Production expenses: water for power. Nominal USD.

continues on next page

52 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/plants_ferc1
https://data.catalyst.coop/pudl/plants_hydro_ferc1
https://data.catalyst.coop/pudl/plants_hydro_ferc1

PUDL, Release 0.4.0

Table 3 – continued from previous page
Field Name Type Description
peak_demand_mw number Net peak demand on the plant (60-minute integration), in megawatts.
plant_hours_connected_while_generating number Hours the plant was connected to load while generating.
plant_name_ferc1 string Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.
plant_type string Kind of plant (Run-of-River or Storage).
project_num integer FERC Licensed Project Number.
record_id string Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.
report_year year Four-digit year in which the data was reported.
utility_id_ferc1 integer FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_pudl

Home table for PUDL assigned plant IDs. These IDs are manually generated each year when new FERC and EIA
reporting is integrated, and any newly identified plants are added to the list with a new ID. Each ID maps to a power
plant which is reported in at least one FERC or EIA data set. This table is read in from a spreadsheet stored in the
PUDL repository: src/pudl/package_data/glue/mapping_eia923_ferc1.xlsx Browse or query this table in Datasette.

Field
Name

Type Description

plant_id_pudl in-
te-
ger

A manually assigned PUDL plant ID. May not be constant over time.

plant_name_pudlstring Plant name, chosen arbitrarily from the several possible plant names available in the plant
matching process. Included for human readability only.

plants_pumped_storage_ferc1

Generating plant statistics for hydroelectric pumped storage plants with an installed nameplate capacity of 10+ MW. As
reported on page 408 of FERC Form 1 and extracted from the f1_pumped_storage table in FERC's FoxPro Database.
Browse or query this table in Datasette.

Field Name Type Description
asset_retirement_cost number Cost of plant: asset retirement costs. Nominal USD.
avg_num_employees number Average number of employees.
capacity_mw number Total installed (nameplate) capacity, in megawatts.
capex_equipment_electric number Cost of plant: accessory electric equipment. Nominal USD.
capex_equipment_misc number Cost of plant: miscellaneous power plant equipment. Nominal USD.
capex_facilities number Cost of plant: reservoirs, dams, and waterways. Nominal USD.
capex_land number Cost of plant: land and land rights. Nominal USD.
capex_per_mw number Cost of plant per megawatt of installed (nameplate) capacity. Nominal USD.
capex_roads number Cost of plant: roads, railroads, and bridges. Nominal USD.
capex_structures number Cost of plant: structures and improvements. Nominal USD.
capex_total number Total cost of plant. Nominal USD.
capex_wheels_turbines_generators number Cost of plant: water wheels, turbines, and generators. Nominal USD.
construction_type string Type of plant construction ('outdoor', 'semioutdoor', or 'conventional'). Categorized by PUDL based on our best guess of intended value in FERC1 freeform strings.
construction_year year Four digit year of the plant's original construction.
energy_used_for_pumping_mwh number Energy used for pumping, in megawatt-hours.
installation_year year Four digit year in which the last unit was installed.
net_generation_mwh number Net generation, exclusive of plant use, in megawatt hours.

continues on next page

8.4. Data Dictionaries 53

https://data.catalyst.coop/pudl/plants_pudl
https://data.catalyst.coop/pudl/plants_pumped_storage_ferc1

PUDL, Release 0.4.0

Table 4 – continued from previous page
Field Name Type Description
net_load_mwh number Net output for load (net generation - energy used for pumping) in megawatt-hours.
opex_dams number Production expenses: maintenance of reservoirs, dams, and waterways. Nominal USD.
opex_electric number Production expenses: electric expenses. Nominal USD.
opex_engineering number Production expenses: maintenance, supervision, and engineering. Nominal USD.
opex_generation_misc number Production expenses: miscellaneous pumped storage power generation expenses. Nominal USD.
opex_misc_plant number Production expenses: maintenance of miscellaneous hydraulic plant. Nominal USD.
opex_operations number Production expenses: operation, supervision, and engineering. Nominal USD.
opex_per_mwh number Production expenses per net megawatt hour generated. Nominal USD.
opex_plant number Production expenses: maintenance of electric plant. Nominal USD.
opex_production_before_pumping number Total production expenses before pumping. Nominal USD.
opex_pumped_storage number Production expenses: pumped storage. Nominal USD.
opex_pumping number Production expenses: We are here to PUMP YOU UP! Nominal USD.
opex_rents number Production expenses: rent. Nominal USD.
opex_structures number Production expenses: maintenance of structures. Nominal USD.
opex_total number Total production expenses. Nominal USD.
opex_water_for_power number Production expenses: water for power. Nominal USD.
peak_demand_mw number Net peak demand on the plant (60-minute integration), in megawatts.
plant_capability_mw number Net plant capability in megawatts.
plant_hours_connected_while_generating number Hours the plant was connected to load while generating.
plant_name_ferc1 string Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.
project_num integer FERC Licensed Project Number.
record_id string Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.
report_year year Four-digit year in which the data was reported.
utility_id_ferc1 integer FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_small_ferc1

Generating plant statistics for steam plants with less than 25 MW installed nameplate capacity and internal combustion
plants, gas turbine-plants, conventional hydro plants, and pumped storage plants with less than 10 MW installed
nameplate capacity. As reported on FERC Form 1 pages 410-411, and extracted from the FERC FoxPro database
table f1_gnrt_plant. Browse or query this table in Datasette.

54 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/plants_small_ferc1

PUDL, Release 0.4.0

Field
Name

Type Description

capac-
ity_mw

num-
ber

Name plate capacity in megawatts.

capex_per_mwnum-
ber

Plant costs (including asset retirement costs) per megawatt. Nominal USD.

con-
struc-
tion_year

year Original year of plant construction.

ferc_license_idin-
te-
ger

FERC issued operating license ID for the facility, if available. This value is extracted from the
original plant name where possible.

fuel_cost_per_mmbtunum-
ber

Average fuel cost per mmBTU (if applicable). Nominal USD.

fuel_type string Kind of fuel. Originally reported to FERC as a freeform string. Assigned a canonical value by
PUDL based on our best guess.

net_generation_mwhnum-
ber

Net generation excluding plant use, in megawatt-hours.

opex_fuel num-
ber

Production expenses: Fuel. Nominal USD.

opex_maintenancenum-
ber

Production expenses: Maintenance. Nominal USD.

opex_total num-
ber

Total plant operating expenses, excluding fuel. Nominal USD.

peak_demand_mwnum-
ber

Net peak demand for 60 minutes. Note: in some cases peak demand for other time periods may
have been reported instead, if hourly peak demand was unavailable.

plant_name_ferc1string PUDL assigned simplified plant name.
plant_name_originalstring Original plant name in the FERC Form 1 FoxPro database.
plant_type string PUDL assigned plant type. This is a best guess based on the fuel type, plant name, and other

attributes.
record_id string Identifier indicating original FERC Form 1 source record. format: {ta-

ble_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}.
Unique within FERC Form 1 DB tables which are not row-mapped.

re-
port_year

year Four-digit year in which the data was reported.

to-
tal_cost_of_plant

num-
ber

Total cost of plant. Nominal USD.

util-
ity_id_ferc1

in-
te-
ger

FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

plants_steam_ferc1

Generating plant statistics for steam plants with a capacity of 25+ MW, internal combustion and gas-turbine plants of
10+ MW, and all nuclear plants. As reported on page 402 of FERC Form 1 and extracted from the f1_gnrt_plant table
in FERC's FoxPro Database. Browse or query this table in Datasette.

Field Name Type Description
asset_retirement_cost number Asset retirement cost.
avg_num_employees number Average number of plant employees during report year.

continues on next page

8.4. Data Dictionaries 55

https://data.catalyst.coop/pudl/plants_steam_ferc1

PUDL, Release 0.4.0

Table 5 – continued from previous page
Field Name Type Description
capacity_mw number Total installed plant capacity in MW.
capex_equipment number Capital expense for equipment.
capex_land number Capital expense for land and land rights.
capex_per_mw number Capital expenses per MW of installed plant capacity.
capex_structures number Capital expense for structures and improvements.
capex_total number Total capital expenses.
construction_type string Type of plant construction ('outdoor', 'semioutdoor', or 'conventional'). Categorized by PUDL based on our best guess of intended value in FERC1 freeform strings.
construction_year year Year the plant's oldest still operational unit was built.
installation_year year Year the plant's most recently built unit was installed.
net_generation_mwh number Net generation (exclusive of plant use) in MWh during report year.
not_water_limited_capacity_mw number Plant capacity in MW when not limited by condenser water.
opex_allowances number Allowances.
opex_boiler number Maintenance of boiler (or reactor) plant.
opex_coolants number Cost of coolants and water (nuclear plants only)
opex_electric number Electricity expenses.
opex_engineering number Maintenance, supervision, and engineering.
opex_fuel number Total cost of fuel.
opex_misc_power number Miscellaneous steam (or nuclear) expenses.
opex_misc_steam number Maintenance of miscellaneous steam (or nuclear) plant.
opex_operations number Production expenses: operations, supervision, and engineering.
opex_per_mwh number Total operating expenses per MWh of net generation.
opex_plants number Maintenance of electrical plant.
opex_production_total number Total operating epxenses.
opex_rents number Rents.
opex_steam number Steam expenses.
opex_steam_other number Steam from other sources.
opex_structures number Maintenance of structures.
opex_transfer number Steam transferred (Credit).
peak_demand_mw number Net peak demand experienced by the plant in MW in report year.
plant_capability_mw number Net continuous plant capability in MW
plant_hours_connected_while_generating number Total number hours the plant was generated and connected to load during report year.
plant_id_ferc1 integer Algorithmically assigned PUDL FERC Plant ID. WARNING: NOT STABLE BETWEEN PUDL DB INITIALIZATIONS.
plant_name_ferc1 string Name of the plant, as reported to FERC. This is a freeform string, not guaranteed to be consistent across references to the same plant.
plant_type string Simplified plant type, categorized by PUDL based on our best guess of what was intended based on freeform string reported to FERC. Unidentifiable types are null.
record_id string Identifier indicating original FERC Form 1 source record. format: {table_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}. Unique within FERC Form 1 DB tables which are not row-mapped.
report_year year Four-digit year in which the data was reported.
utility_id_ferc1 integer FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.
water_limited_capacity_mw number Plant capacity in MW when limited by condenser water.

prime_movers_eia923

Pending description. Browse or query this table in Datasette.

Field Name Type Description
abbr string N/A
prime_mover string N/A

56 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/prime_movers_eia923

PUDL, Release 0.4.0

purchased_power_ferc1

Purchased Power (Account 555) including power exchanges (i.e. transactions involving a balancing of debits and
credits for energy, capacity, etc.) and any settlements for imbalanced exchanges. Reported on pages 326-327 of
FERC Form 1. Extracted from the f1_purchased_pwr table in FERC's FoxPro database. Browse or query this table in
Datasette.

Field
Name

Type Description

billing_demand_mwnum-
ber

Monthly average billing demand (for requirements purchases, and any transactions involving de-
mand charges). In megawatts.

co-
inci-
dent_peak_demand_mw

num-
ber

Average monthly coincident peak (CP) demand (for requirements purchases, and any transactions
involving demand charges). Monthly CP demand is the metered demand during the hour (60-minute
integration) in which the supplier's system reaches its monthly peak. In megawatts.

deliv-
ered_mwh

num-
ber

Gross megawatt-hours delivered in power exchanges and used as the basis for settlement.

de-
mand_charges

num-
ber

Demand charges. Nominal USD.

en-
ergy_charges

num-
ber

Energy charges. Nominal USD.

non_coincident_peak_demand_mwnum-
ber

Average monthly non-coincident peak (NCP) demand (for requirements purhcases, and any trans-
actions involving demand charges). Monthly NCP demand is the maximum metered hourly (60-
minute integration) demand in a month. In megawatts.

other_chargesnum-
ber

Other charges, including out-of-period adjustments. Nominal USD.

pur-
chase_type

string Categorization based on the original contractual terms and conditions of the service. Must be
one of 'requirements', 'long_firm', 'intermediate_firm', 'short_firm', 'long_unit', 'intermediate_unit',
'electricity_exchange', 'other_service', or 'adjustment'. Requirements service is ongoing high reli-
ability service, with load integrated into system resource planning. 'Long term' means 5+ years.
'Intermediate term' is 1-5 years. 'Short term' is less than 1 year. 'Firm' means not interruptible for
economic reasons. 'unit' indicates service from a particular designated generating unit. 'exchange'
is an in-kind transaction.

pur-
chased_mwh

num-
ber

Megawatt-hours shown on bills rendered to the respondent.

re-
ceived_mwh

num-
ber

Gross megawatt-hours received in power exchanges and used as the basis for settlement.

record_idstring Identifier indicating original FERC Form 1 source record. format: {ta-
ble_name}_{report_year}_{report_prd}_{respondent_id}_{spplmnt_num}_{row_number}.
Unique within FERC Form 1 DB tables which are not row-mapped.

re-
port_year

year Four-digit year in which the data was reported.

seller_namestring Name of the seller, or the other party in an exchange transaction.
tariff string FERC Rate Schedule Number or Tariff. (Note: may be incomplete if originally reported on multiple

lines.)
to-
tal_settlement

num-
ber

Sum of demand, energy, and other charges. For power exchanges, the settlement amount for the
net receipt of energy. If more energy was delivered than received, this amount is negative. Nominal
USD.

util-
ity_id_ferc1

in-
te-
ger

FERC assigned respondent_id, identifying the reporting entity. Stable from year to year.

8.4. Data Dictionaries 57

https://data.catalyst.coop/pudl/purchased_power_ferc1
https://data.catalyst.coop/pudl/purchased_power_ferc1

PUDL, Release 0.4.0

transport_modes_eia923

Pending description. Browse or query this table in Datasette.

Field Name Type Description
abbr string N/A
mode string N/A

utilities_eia

Pending description. Browse or query this table in Datasette.

Field Name Type Description
utility_id_eia integer The EIA Utility Identification number.
utility_id_pudl integer A manually assigned PUDL utility ID. May not be stable over time.
utility_name_eia string The name of the utility.

utilities_eia860

Pending description. Browse or query this table in Datasette.

58 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/transport_modes_eia923
https://data.catalyst.coop/pudl/utilities_eia
https://data.catalyst.coop/pudl/utilities_eia860

PUDL, Release 0.4.0

Field
Name

Type Description

address_2 string N/A
atten-
tion_line

string N/A

city string Name of the city in which operator/owner is located
con-
tact_firstname

string N/A

con-
tact_firstname_2

string N/A

con-
tact_lastname

string N/A

con-
tact_lastname_2

string N/A

con-
tact_title

string N/A

con-
tact_title_2

string N/A

entity_type string Entity type of principle owner (C = Cooperative, I = Investor-Owned Utility, Q = Independent
Power Producer, M = Municipally-Owned Utility, P = Political Subdivision, F = Federally-
Owned Utility, S = State-Owned Utility, IND = Industrial, COM = Commercial

phone_extension_1string Phone extension for contact 1
phone_extension_2string Phone extension for contact 2
phone_number_1string Phone number for contact 1
phone_number_2string Phone number for contact 2
plants_reported_asset_managerstring Is the reporting entity an asset manager of power plants reported on Schedule 2 of the form?
plants_reported_operatorstring Is the reporting entity an operator of power plants reported on Schedule 2 of the form?
plants_reported_other_relationshipstring Does the reporting entity have any other relationship to the power plants reported on Schedule

2 of the form?
plants_reported_ownerstring Is the reporting entity an owner of power plants reported on Schedule 2 of the form?
report_date date Date reported.
state string State of the operator/owner
street_address string Street address of the operator/owner
util-
ity_id_eia

in-
te-
ger

EIA-assigned identification number for the company that is responsible for the day-to-day
operations of the generator.

zip_code string Zip code of the operator/owner
zip_code_4 string N/A

utilities_entity_eia

Pending description. Browse or query this table in Datasette.

Field Name Type Description
utility_id_eia integer The EIA Utility Identification number.
utility_name_eia string The name of the utility.

8.4. Data Dictionaries 59

https://data.catalyst.coop/pudl/utilities_entity_eia

PUDL, Release 0.4.0

utilities_ferc1

This table maps the manually assigned PUDL utility ID to a FERC respondent ID, enabling a connection between
the FERC and EIA data sets. It also stores the utility name associated with the FERC respondent ID. Those values
originate in the f1_respondent_id table in FERC's FoxPro database, which is stored in a file called F1_1.DBF. This
table is generated from a spreadsheet stored in the PUDL repository: results/id_mapping/mapping_eia923_ferc1.xlsx
Browse or query this table in Datasette.

Field Name Type Description
utility_id_ferc1 inte-

ger
FERC assigned respondent_id, identifying the reporting entity. Stable from year to
year.

utility_id_pudl inte-
ger

A manually assigned PUDL utility ID. May not be stable over time.

util-
ity_name_ferc1

string Name of the responding utility, as it is reported in FERC Form 1. For human read-
ability only.

utilities_pudl

Home table for PUDL assigned utility IDs. These IDs are manually generated each year when new FERC and EIA
reporting is integrated, and any newly found utilities are added to the list with a new ID. Each ID maps to a power
plant owning or operating entity which is reported in at least one FERC or EIA data set. This table is read in from a
spreadsheet stored in the PUDL repository: src/pudl/package_data/glue/mapping_eia923_ferc1.xlsx Browse or query
this table in Datasette.

Field
Name

Type Description

util-
ity_id_pudl

in-
te-
ger

A manually assigned PUDL utility ID. May not be stable over time.

util-
ity_name_pudl

string Utility name, chosen arbitrarily from the several possible utility names available in the utility
matching process. Included for human readability only.

utility_plant_assn

Pending description. Browse or query this table in Datasette.

Field Name Type Description
plant_id_pudl integer N/A
utility_id_pudl integer N/A

8.4.2 FERC Form 1 Data Dictionary

We have mapped the Visual FoxPro DBF files to their corresponding FERC Form 1 database tables and provided a
short description of the contents of each table here.

Note:

• The Table Names link to the contents of the database table on our FERC Form 1 Datasette deployment where
you can browse and query the raw data yourself or download the SQLite DB in its entirety.

60 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/pudl/utilities_ferc1
https://data.catalyst.coop/pudl/utilities_pudl
https://data.catalyst.coop/pudl/utilities_pudl
https://data.catalyst.coop/pudl/utility_plant_assn
https://data.catalyst.coop/ferc1

PUDL, Release 0.4.0

• The mapping of File Name to Table Name is consistent across all years of data.

• Page numbers correspond to the pages of the FERC Form 1 PDF as it appeared in 2015 and may not be valid
for other years.

• Many tables without descriptions were discontinued prior to 2015.

• The “Freq” column indicates the reporting frequency – A for Annual; Q for Quarterly. A/Q if the data is reported
both annually and quarterly.

Table Name / Data Link File Name Pages Freq Table Description
f1_106_2009 F1_106_2009.DBF 106 A Information on Formula Rates
f1_106a_2009 F1_106A_2009.DBF 106 A Information on Formula Rates
f1_106b_2009 F1_106B_2009.DBF 106 A Information on Formula Rates
f1_208_elc_dep F1_208_ELC_DEP.DBF 208 Q Electric Plant In Service and Accumulated Provision For Depreciation by Function
f1_231_trn_stdycst F1_231_TRN_STDYCST.DBF 231 A/Q Transmission Service and Generation Interconnection Study Costs
f1_324_elc_expns F1_324_ELC_EXPNS.DBF 324 Q Electric Production, Other Power Supply Expenses, Transmission and Distribution Expenses
f1_325_elc_cust F1_325_ELC_CUST.DBF 325 Q Electric Customer Accounts, Service, Sales, Administration and General Expenses
f1_331_transiso F1_331_TRANSISO.DBF 331 A/Q Transmission of Electricity by ISO/RTOs
f1_338_dep_depl F1_338_DEP_DEPL.DBF 338 Q Depreciation, Depletion and Amortization of Electric Plant (FERC Accounts 403, 403.1, 404, and 405, except Amortization of Acquisition Adjustments)
f1_397_isorto_stl F1_397_ISORTO_STL.DBF 397 A/Q Amounts Included in ISO/RTO Settlement Statements
f1_398_ancl_ps F1_398_ANCL_PS.DBF 398 A Purchases and Sales of Ancillary Services
f1_399_mth_peak F1_399_MTH_PEAK.DBF 399 A/Q Monthly Peak Loads and Energy Output
f1_400_sys_peak F1_400_SYS_PEAK.DBF 400 A/Q Monthly Transmission System Peak Load
f1_400a_iso_peak F1_400A_ISO_PEAK.DBF 980, 400a A/Q Monthly ISO/RTO Transmission System Peak Load
f1_429_trans_aff F1_429_TRANS_AFF.DBF 429 A Transactions with Associated (Affiliated) Companies
f1_acb_epda F1_2.DBF 336-337 A Depreciation & Amortization of Electric Plant (Basis for Amortization Charges)
f1_accumdepr_prvsn F1_3.DBF 219 A Accumulated Provision for Depreciation of Elecric Utility Plant (Account 108)
f1_accumdfrrdtaxcr F1_4.DBF 266-267 A Accumulated Deferred Investment Tax Credits
f1_adit_190_detail F1_5.DBF 234-234a A Accumulated Deferred Income Taxes (Individual Schedule Lines)
f1_adit_190_notes F1_6.DBF 234-234b A Accumulated Deferred Income Taxes (Notes)
f1_adit_amrt_prop F1_7.DBF 272-273 A Accumulated Deferred Income Taxes - Accelerated Amortization Property
f1_adit_other F1_8.DBF 276-277 A Accumulated Deferred Income Taxes - Other
f1_adit_other_prop F1_9.DBF 274-275 A Accumulated Deferred Income Taxes - Other Property
f1_allowances F1_10.DBF 228-229 A Allowances
f1_allowances_nox F1_ALLOWANCES_NOX.DBF 230-230a A
f1_audit_log F1_78.DBF
f1_bal_sheet_cr F1_11.DBF 112-113 A/Q Comparative Balance Sheet (Liabilities & Other Credits)
f1_capital_stock F1_12.DBF 250-251 A Capital Stock
f1_cash_flow F1_13.DBF 120-121 A/Q Statement of Cash Flows
f1_cmmn_utlty_p_e F1_14.DBF 356 A Common Utility Plant & Expenses
f1_cmpinc_hedge F1_CMPINC_HEDGE.DBF 990, 122(a)(b) A/Q Statement of Accumulated Comparative Income, Comparative Income, and Hedging Activities
f1_cmpinc_hedge_a F1_CMPINC_HEDGE_A.DBF 990
f1_co_directors F1_18.DBF 105 A Names, Titles, and Addresses of Directors
f1_codes_val F1_76.DBF
f1_col_lit_tbl F1_79.DBF Descriptive headers for each column in the Form 1. Useful for discerning their semantic content.
f1_comp_balance_db F1_15.DBF 110-111 A/Q Comparative Balance Sheet (Assets & Other Debits)
f1_construction F1_16.DBF 217 Spending on Construction (1994-2002 only)
f1_control_respdnt F1_17.DBF 102 A Control Over Respondent
f1_cptl_stk_expns F1_19.DBF 254-254b A Capital Stock Expense
f1_csscslc_pcsircs F1_20.DBF 252
f1_dacs_epda F1_21.DBF 336-337 A Depreciation & Amortization of Electric Plant (Depreciation & Amortization Charges)

continues on next page

8.4. Data Dictionaries 61

https://data.catalyst.coop/ferc1/f1_106_2009
https://data.catalyst.coop/ferc1/f1_106a_2009
https://data.catalyst.coop/ferc1/f1_106b_2009
https://data.catalyst.coop/ferc1/f1_208_elc_dep
https://data.catalyst.coop/ferc1/f1_231_trn_stdycst
https://data.catalyst.coop/ferc1/f1_324_elc_expns
https://data.catalyst.coop/ferc1/f1_325_elc_cust
https://data.catalyst.coop/ferc1/f1_331_transiso
https://data.catalyst.coop/ferc1/f1_338_dep_depl
https://data.catalyst.coop/ferc1/f1_397_isorto_stl
https://data.catalyst.coop/ferc1/f1_398_ancl_ps
https://data.catalyst.coop/ferc1/f1_399_mth_peak
https://data.catalyst.coop/ferc1/f1_400_sys_peak
https://data.catalyst.coop/ferc1/f1_400a_iso_peak
https://data.catalyst.coop/ferc1/f1_429_trans_aff
https://data.catalyst.coop/ferc1/f1_acb_epda
https://data.catalyst.coop/ferc1/f1_accumdepr_prvsn
https://data.catalyst.coop/ferc1/f1_accumdfrrdtaxcr
https://data.catalyst.coop/ferc1/f1_adit_190_detail
https://data.catalyst.coop/ferc1/f1_adit_190_notes
https://data.catalyst.coop/ferc1/f1_adit_amrt_prop
https://data.catalyst.coop/ferc1/f1_adit_other
https://data.catalyst.coop/ferc1/f1_adit_other_prop
https://data.catalyst.coop/ferc1/f1_allowances
https://data.catalyst.coop/ferc1/f1_allowances_nox
https://data.catalyst.coop/ferc1/f1_audit_log
https://data.catalyst.coop/ferc1/f1_bal_sheet_cr
https://data.catalyst.coop/ferc1/f1_capital_stock
https://data.catalyst.coop/ferc1/f1_cash_flow
https://data.catalyst.coop/ferc1/f1_cmmn_utlty_p_e
https://data.catalyst.coop/ferc1/f1_cmpinc_hedge
https://data.catalyst.coop/ferc1/f1_cmpinc_hedge_a
https://data.catalyst.coop/ferc1/f1_co_directors
https://data.catalyst.coop/ferc1/f1_codes_val
https://data.catalyst.coop/ferc1/f1_col_lit_tbl
https://data.catalyst.coop/ferc1/f1_comp_balance_db
https://data.catalyst.coop/ferc1/f1_construction
https://data.catalyst.coop/ferc1/f1_control_respdnt
https://data.catalyst.coop/ferc1/f1_cptl_stk_expns
https://data.catalyst.coop/ferc1/f1_csscslc_pcsircs
https://data.catalyst.coop/ferc1/f1_dacs_epda

PUDL, Release 0.4.0

Table 6 – continued from previous page
Table Name / Data Link File Name Pages Freq Table Description
f1_dscnt_cptl_stk F1_22.DBF 254
f1_edcfu_epda F1_23.DBF 336-337 A Depreciation & Amortization of Electric Plant (Factors Used in Estimating Depreciation Charges)
f1_elc_op_mnt_expn F1_27.DBF 320-323 A Electric Operation & Maintenance Expenses
f1_elc_oper_rev_nb F1_26.DBF 300-301b A/Q Electric Operating Revenues (Unbilled Revenues Only)
f1_elctrc_erg_acct F1_24.DBF 401-401a A Electric Energy Account
f1_elctrc_oper_rev F1_25.DBF 300-301a A/Q Electric Operating Revenues (Individual Schedule Lines)
f1_electric F1_28.DBF 429
f1_email F1_EMAIL.DBF
f1_envrnmntl_expns F1_29.DBF 431
f1_envrnmntl_fclty F1_30.DBF 430
f1_footnote_data F1_85.DBF 450 A/Q Footnote Data
f1_footnote_tbl F1_87.DBF
f1_freeze F1_FREEZE.DBF
f1_fuel F1_31.DBF 402-403b A Steam-Electric Generation Plant Statistics - Large Plants (Fuel Details)
f1_general_info F1_32.DBF 101 A General Information
f1_gnrt_plant F1_33.DBF 410-411 A Generating Plant Statistics (Small Plants)
f1_hydro F1_86.DBF 406-407 A Hydroelectric Gen Plant Stats (Large Plants)
f1_ident_attsttn F1_88.DBF 1 A/Q Identification & Attestation
f1_important_chg F1_34.DBF 108-109 A/Q Important Changes During the Quarter/Year
f1_incm_stmnt_2 F1_35.DBF 114-117b A/Q Statement of Income (Other Income & Deductions, Interest Charges, Extraordinary Items)
f1_income_stmnt F1_36.DBF 114-117a A/Q Statement of Income
f1_leased F1_90.DBF 213 A Electric Plant Leased to Others
f1_load_file_names F1_80.DBF
f1_long_term_debt F1_93.DBF 256-257 A Long-Term Debt
f1_misc_dfrrd_dr F1_38.DBF 233 A Miscellaneous Deferred Debits
f1_miscgen_expnelc F1_37.DBF 335 A Miscellaneous General Expenses - Electric
f1_mthly_peak_otpt F1_39.DBF 401-401b A Monthly Peaks & Output
f1_mtrl_spply F1_40.DBF 227, 228-229 A Materials & Supplies
f1_nbr_elc_deptemp F1_41.DBF 320
f1_nonutility_prop F1_42.DBF 221
f1_note_fin_stmnt F1_43.DBF 122-123 A/Q Notes to Financial Statements
f1_nuclear_fuel F1_44.DBF 202-203 A Nuclear Fuel Materials
f1_officers_co F1_45.DBF 104 A Officers
f1_othr_dfrrd_cr F1_46.DBF 269 A Other Deferred Credits
f1_othr_pd_in_cptl F1_47.DBF 253 A Other Paid-in Capital
f1_othr_reg_assets F1_48.DBF 232 A/Q Other Regulatory Assets
f1_othr_reg_liab F1_49.DBF 278 A/Q Other Regulatory Liabilities
f1_overhead F1_50.DBF 218
f1_pccidica F1_51.DBF 340
f1_pins F1_PINS.DBF
f1_plant F1_92.DBF 204, 214 A Electric Plant Held for Future Use
f1_plant_in_srvce F1_52.DBF 204-207 A Electric Plant in Service
f1_privilege F1_81.DBF
f1_pumped_storage F1_53.DBF 408-409 A Pumped Storage Generating Plant Statistics (Large Plants)
f1_purchased_pwr F1_54.DBF 326-327 A Purchased Power
f1_r_d_demo_actvty F1_59.DBF 352-353 A Research, Development & Demonstration Activities
f1_reconrpt_netinc F1_55.DBF 261 A Reconciliation of Reported Net Income with Taxable Income for Federal Income Taxes
f1_reg_comm_expn F1_56.DBF 350-351 A Regulatory Commission Expenses
f1_respdnt_control F1_57.DBF 103 A Corporations Controlled by Respondent

continues on next page

62 Chapter 8. About Catalyst Cooperative

https://data.catalyst.coop/ferc1/f1_dscnt_cptl_stk
https://data.catalyst.coop/ferc1/f1_edcfu_epda
https://data.catalyst.coop/ferc1/f1_elc_op_mnt_expn
https://data.catalyst.coop/ferc1/f1_elc_oper_rev_nb
https://data.catalyst.coop/ferc1/f1_elctrc_erg_acct
https://data.catalyst.coop/ferc1/f1_elctrc_oper_rev
https://data.catalyst.coop/ferc1/f1_electric
https://data.catalyst.coop/ferc1/f1_email
https://data.catalyst.coop/ferc1/f1_envrnmntl_expns
https://data.catalyst.coop/ferc1/f1_envrnmntl_fclty
https://data.catalyst.coop/ferc1/f1_fuel
https://data.catalyst.coop/ferc1/f1_general_info
https://data.catalyst.coop/ferc1/f1_gnrt_plant
https://data.catalyst.coop/ferc1/f1_hydro
https://data.catalyst.coop/ferc1/f1_ident_attsttn
https://data.catalyst.coop/ferc1/f1_important_chg
https://data.catalyst.coop/ferc1/f1_incm_stmnt_2
https://data.catalyst.coop/ferc1/f1_income_stmnt
https://data.catalyst.coop/ferc1/f1_leased
https://data.catalyst.coop/ferc1/f1_load_file_names
https://data.catalyst.coop/ferc1/f1_long_term_debt
https://data.catalyst.coop/ferc1/f1_misc_dfrrd_dr
https://data.catalyst.coop/ferc1/f1_miscgen_expnelc
https://data.catalyst.coop/ferc1/f1_mthly_peak_otpt
https://data.catalyst.coop/ferc1/f1_mtrl_spply
https://data.catalyst.coop/ferc1/f1_nbr_elc_deptemp
https://data.catalyst.coop/ferc1/f1_nonutility_prop
https://data.catalyst.coop/ferc1/f1_nuclear_fuel
https://data.catalyst.coop/ferc1/f1_officers_co
https://data.catalyst.coop/ferc1/f1_othr_dfrrd_cr
https://data.catalyst.coop/ferc1/f1_othr_pd_in_cptl
https://data.catalyst.coop/ferc1/f1_othr_reg_assets
https://data.catalyst.coop/ferc1/f1_othr_reg_liab
https://data.catalyst.coop/ferc1/f1_overhead
https://data.catalyst.coop/ferc1/f1_pccidica
https://data.catalyst.coop/ferc1/f1_plant
https://data.catalyst.coop/ferc1/f1_plant_in_srvce
https://data.catalyst.coop/ferc1/f1_privilege
https://data.catalyst.coop/ferc1/f1_pumped_storage
https://data.catalyst.coop/ferc1/f1_purchased_pwr
https://data.catalyst.coop/ferc1/f1_r_d_demo_actvty
https://data.catalyst.coop/ferc1/f1_reconrpt_netinc
https://data.catalyst.coop/ferc1/f1_reg_comm_expn
https://data.catalyst.coop/ferc1/f1_respdnt_control

PUDL, Release 0.4.0

Table 6 – continued from previous page
Table Name / Data Link File Name Pages Freq Table Description
f1_respondent_id F1_1.DBF Respondent ID
f1_retained_erng F1_58.DBF 118-119 A/Q Statement of Retained Earnings for the Year
f1_rg_trn_srv_rev F1_RG_TRN_SRV_REV.DBF 302 A/Q Regional Transmission Service Revenues (Account 457.1)
f1_row_lit_tbl F1_84.DBF Descriptive labels for each numbered row in the Form 1. Useful for identifying semantic content and changes in line numbers from year to year.
f1_s0_checks F1_S0_CHECKS.DBF
f1_s0_filing_log F1_S0_FILING_LOG.DBF
f1_sale_for_resale F1_61.DBF 310-311 A Sales for Resale
f1_sales_by_sched F1_60.DBF 304 A Sales of Electricity by Rate Schedules
f1_sbsdry_detail F1_91.DBF 224-225 A Investment in Subsidiary Companies (Account 123.1)
f1_sbsdry_totals F1_62.DBF 224-225 A Investment in Subsidiary Companies (Total Line for Schedule)
f1_sched_lit_tbl F1_77.DBF
f1_schedules_list F1_63.DBF 002-004 A/Q List of Schedules
f1_security F1_SECURITY.DBF 106
f1_security_holder F1_64.DBF 106
f1_slry_wg_dstrbtn F1_65.DBF 354-355 A Distribution of Salaries & Wages
f1_steam F1_89.DBF 402-403a A Steam-Electric Generation Plant Statistics - Large Plants (Plant Information)
f1_substations F1_66.DBF 426-427 A Substations
f1_sys_error_log F1_82.DBF
f1_taxacc_ppchrgyr F1_67.DBF 262-263 A Taxes Accrued, Prepaid & Charged During Year
f1_unique_num_val F1_83.DBF
f1_unrcvrd_cost F1_68.DBF 230-230b A Unrecovered Plant & Regulatory Study Costs
f1_utltyplnt_smmry F1_69.DBF 200-201 A/Q Summary of Utility Plant & Accumulated Provisions for Depreciation, Amortization, & Depletion
f1_work F1_70.DBF 216 A Construction Work in Progress - Electric
f1_xmssn_adds F1_71.DBF 424-425 A Transmission Lines Added During Year
f1_xmssn_elc_bothr F1_72.DBF 332 A/Q Transmission of Electricity by Others
f1_xmssn_elc_fothr F1_73.DBF 328-330 A/Q Transmission of Electricity for Others
f1_xmssn_line F1_74.DBF 422-423 A Transmission Line Statistics
f1_xtraordnry_loss F1_75.DBF 230-230a A Extraordinary Property Losses

8.5 Contributing to PUDL

Welcome! We’re excited that you’re interested in contributing to the Public Utility Data Liberation effort! The work
is currently being coordinated by the members of the Catalyst Cooperative. PUDL is meant to serve a wide variety of
public interests including academic research, climate advocacy, data journalism, and public policy making. This open
source project has been supported by a combination of volunteer contributions, grant funding from the Alfred P. Sloan
Foundation, and reinvestment of net income from the cooperative’s client projects.

Please make sure you review our code of conduct, which is based on the Contributor Covenant. We want to make the
PUDL project welcoming to contributors with different levels of experience and diverse personal backgrounds.

8.5. Contributing to PUDL 63

https://data.catalyst.coop/ferc1/f1_respondent_id
https://data.catalyst.coop/ferc1/f1_retained_erng
https://data.catalyst.coop/ferc1/f1_rg_trn_srv_rev
https://data.catalyst.coop/ferc1/f1_row_lit_tbl
https://data.catalyst.coop/ferc1/f1_s0_checks
https://data.catalyst.coop/ferc1/f1_s0_filing_log
https://data.catalyst.coop/ferc1/f1_sale_for_resale
https://data.catalyst.coop/ferc1/f1_sales_by_sched
https://data.catalyst.coop/ferc1/f1_sbsdry_detail
https://data.catalyst.coop/ferc1/f1_sbsdry_totals
https://data.catalyst.coop/ferc1/f1_sched_lit_tbl
https://data.catalyst.coop/ferc1/f1_schedules_list
https://data.catalyst.coop/ferc1/f1_security
https://data.catalyst.coop/ferc1/f1_security_holder
https://data.catalyst.coop/ferc1/f1_slry_wg_dstrbtn
https://data.catalyst.coop/ferc1/f1_steam
https://data.catalyst.coop/ferc1/f1_substations
https://data.catalyst.coop/ferc1/f1_sys_error_log
https://data.catalyst.coop/ferc1/f1_taxacc_ppchrgyr
https://data.catalyst.coop/ferc1/f1_unique_num_val
https://data.catalyst.coop/ferc1/f1_unrcvrd_cost
https://data.catalyst.coop/ferc1/f1_utltyplnt_smmry
https://data.catalyst.coop/ferc1/f1_work
https://data.catalyst.coop/ferc1/f1_xmssn_adds
https://data.catalyst.coop/ferc1/f1_xmssn_elc_bothr
https://data.catalyst.coop/ferc1/f1_xmssn_elc_fothr
https://data.catalyst.coop/ferc1/f1_xmssn_line
https://data.catalyst.coop/ferc1/f1_xtraordnry_loss
https://catalyst.coop
https://sloan.org
https://sloan.org
https://www.contributor-covenant.org/

PUDL, Release 0.4.0

8.5.1 How to Get Involved

We welcome just about any kind of contribution to the project. Alone, we’ll never be able to understand every use
case or integrate all the available data. The project will serve the community better if other folks get involved.

There are lots of ways to contribute – it’s not all about code!

• Ask questions on Github using the issue tracker.

• Suggest new data and features that would be useful.

• File bug reports on Github.

• Help expand and improve the documentation, or create new example notebooks

• Help us create more and better software test cases.

• Give us feedback on overall usability – what’s confusing?

• Tell us a story about how you’re using of the data.

• Point us at interesting publications related to open energy data, open source energy system modeling, how
energy policy can be affected by better data, or open source tools we should check out.

• Cite PUDL using DOIs from Zenodo if you use the software or data in your own published work.

• Point us toward appropriate grant funding opportunities and meetings where we might present our work.

• Share your Jupyter notebooks and other analyses that use PUDL.

• Hire Catalyst to do analysis for your organization using the PUDL data – contract work helps us self-fund
ongoing open source development.

• Contribute code via pull requests. See the developer setup for more details.

• And of course. . . we also appreciate financial contributions.

See also:

• Development Setup for instructions on how to set up the PUDL development environment.

8.5.2 Find us on GitHub

Github is the primary platform we use to manage the project, integrate contributions, write and publish documentation,
answer user questions, automate testing & deployment, etc. Signing up for a GitHub account (even if you don’t intend
to write code) will allow you to participate in online discussions and track projects that you’re interested in.

Asking (and answering) questions is a valuable contribution! As noted in How to support open-source software
and stay sane, it’s much more efficient to ask and answer questions in a public forum because then other users and
contributors who are having the same problem can find answers without having to re-ask the same question. The forum
we’re using is our Github issues.

Even if you feel like you have a basic question, we want you to feel comfortable asking for help in public – we
(Catalyst) only recently came to this data work from being activists and policy wonks – so it’s easy for us to remember
when it all seemed frustrating and alien! Sometimes it still does. We want people to use the software and data to do
good things in the world. We want you to be able to access it. Using a public forum also enables the community of
users to help each other!

Don’t hesitate to open an issue with a feature request, a pointer to energy data that needs liberating, or a reference to
documentation that’s out of date, unclear, or missing. Understanding how people are using the software, and how they
would like to be using the software, is very valuable and will help us make it more useful and usable.

64 Chapter 8. About Catalyst Cooperative

https://github.com/catalyst-cooperative/pudl/issues
https://github.com/catalyst-cooperative/pudl/issues/new?template=feature_request.md
https://github.com/catalyst-cooperative/pudl/issues/new?template=bug_report.md
https://github.com/catalyst-cooperative/pudl-examples/
https://zenodo.org/communities/catalyst-cooperative/
https://catalyst.coop/hire-catalyst/
https://help.github.com/en/articles/about-pull-requests
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=PZBZDFNKBJW5E&source=url
https://github.com/join
https://www.nature.com/articles/d41586-019-02046-0
https://www.nature.com/articles/d41586-019-02046-0
https://github.com/catalyst-cooperative/pudl/issues
https://github.com/catalyst-cooperative/pudl/issues/new?template=feature_request.md

PUDL, Release 0.4.0

8.6 Development

8.6.1 Development Setup

This page will walk you through what you need to do if you want to be able to contribute code or documentation to
the PUDL project.

These instructions assume that you are working on a Unix-like operating system (MacOS or Linux) and are already
familiar with git, GitHub, and the Unix shell.

Warning: While it should be possible to set up the development environment on Windows, we haven’t done it. In
the future we may create a Docker image that provides the development environment. E.g. for use with VS Code’s
Containers extension.

Note: If you’re new to git and GitHub , you’ll want to check out:

• The Github Workflow

• Collaborative Development Models

• Forking a Repository

• Cloning a Repository

Install conda

We use the conda package manager to specify and update our development environment, preferentially installing
packages from the community maintained conda-forge distribution channel. We recommend using miniconda rather
than the large pre-defined collection of scientific packages bundled together in the Anaconda Python distribution. You
may also want to consider using mamba – a faster drop-in replacement for conda written in C++.

After a conda package manager, make sure it’s configured to use strict channel priority with the following commands:

$ conda update conda
$ conda config --set channel_priority strict

Fork and Clone the PUDL Repository

Unless you’re part of the Catalyst Cooperative organization already, you’ll need to fork the PUDL repository This
makes a copy of it in your personal (or organizational) account on GitHub that is independent of, but linked to, the
original “upstream” project.

Then, clone the repository from your fork to your local computer where you’ll be editing the code or docs. This will
download the whole history of the project, including the most recent version, and put it in a local directory where you
can make changes.

8.6. Development 65

https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://github.com
https://guides.github.com/introduction/flow/
https://help.github.com/en/articles/about-collaborative-development-models
https://help.github.com/en/articles/fork-a-repo
https://help.github.com/articles/cloning-a-repository/
https://conda-forge.org
https://docs.conda.io/en/latest/miniconda.html
https://github.com/mamba-org/mamba
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-channels.html
https://github.com/catalyst-cooperative/pudl
https://help.github.com/articles/cloning-a-repository/

PUDL, Release 0.4.0

Create the PUDL Dev Environment

Inside the devtools directory of your newly cloned repository, you’ll see an environment.yml file that specifies
the pudl-dev conda environment. You can create and activate that environment from within the main repository
directory by running:

$ conda update conda
$ conda env create --name pudl-dev --file devtools/environment.yml
$ conda activate pudl-dev

This environment installs the catalystcoop.pudl package directly using the code in your cloned repository so
that it can be edited during development. It also installs all of the software PUDL depends on, some packages for
testing and quality control, packages for working with interactive Jupyter Notebooks, and a few Python packages that
have binary dependencies which can be easier to satisfy through conda packages.

Getting and Storing an EIA API Key

PUDL accesses Energy Information Agency (EIA) datasets via an API, which requires permission from the EIA. New
users must register for an API key, which is free, nearly instantaneous, and only requires you give an email address.

To make this key accessible to pudl, store it in an environment variable and reactivate the environment:

$ conda activate pudl-dev
$ conda env config vars set API_KEY_EIA='your_api_key_here'
$ conda activate pudl-dev

Updating the PUDL Dev Environment

You will need to periodically update your development (pudl-dev) conda environment to get you newer versions
of existing dependencies and incorporate any changes to the environment specification that have been made by other
contributors. The most reliable way to do this is to remove the existing environment and recreate it.

Note: Different development branches within the repository may specify their own slightly different versions of the
pudl-dev conda environment. As a result, you may need to update your environment when switching from one
branch to another.

If you want to work with the most recent version of the code on a branch named new-feature, then from within
the top directory of the PUDL repository you would do:

$ git checkout new-feature
$ git pull
$ conda deactivate
$ conda update conda
$ conda env remove --name pudl-dev
$ conda env create --name pudl-dev --file devtools/environment.yml
$ conda activate pudl-dev

If you find yourself recreating the environment frequently, and are frustrated by how long it takes conda to solve the
dependencies, we recommend using the mamba solver. You’ll want to install it in your base conda environment –
i.e. with no conda environment activated):

$ conda deactivate
$ conda install mamba

66 Chapter 8. About Catalyst Cooperative

https://www.eia.gov/opendata/
https://github.com/mamba-org/mamba

PUDL, Release 0.4.0

Then the above development environment update process would become:

$ git checkout new-feature
$ git pull
$ conda deactivate
$ mamba update mamba
$ mamba env remove --name pudl-dev
$ mamba env create --name pudl-dev --file devtools/environment.yml
$ conda activate pudl-dev

If you are working with locally processed data and there have been changes to the expectations about that data in the
PUDL software, you may also need to regenerate your PUDL SQLite database or other outputs. See Running the ETL
Pipeline for more details.

Set Up Code Linting

We use several automated tools to apply uniform coding style and formatting across the project codebase. This is
known as code linting, and it reduces merge conflicts, makes the code easier to read, and helps catch some types of
bugs before they are committed. These tools are part of the pudl-dev conda environment and their configuration
files are checked into the GitHub repository. If you’ve cloned the pudl repo and are working inside the pudl conda
environment, they should be installed and ready to go.

Git Pre-commit Hooks

Git hooks let you automatically run scripts at various points as you manage your source code. “Pre-commit” hook
scripts are run when you try to make a new commit. These scripts can review your code and identify bugs, formatting
errors, bad coding habits, and other issues before the code gets checked in. This gives you the opportunity to fix those
issues before publishing them.

To make sure they are run before you commit any code, you need to enable the pre-commit hooks scripts with this
command:

$ pre-commit install

The scripts that run are configured in the .pre-commit-config.yaml file.

See also:

• The pre-commit project: A framework for managing and maintaining multi-language pre-commit hooks.

• Real Python Code Quality Tools and Best Practices gives a good overview of available linters and static code
analysis tools.

Code and Docs Linters

Flake8 is a popular Python linting framework, with a large selection of plugins. We use it to check the formatting
and syntax of the code and docstrings embedded within the PUDL packages. Doc8 is a lot like flake8, but for Python
documentation written in the reStructuredText format and built by Sphinx. This is the de-facto standard for Python
documentation. The doc8 tool checks for syntax errors and other formatting issues in the documentation source files
under the docs/ directory.

8.6. Development 67

https://en.wikipedia.org/wiki/Lint_(software)
https://pre-commit.com/
https://pre-commit.com/
https://realpython.com/python-code-quality/
http://flake8.pycqa.org/en/latest/
https://en.wikipedia.org/wiki/Lint_(software)
https://github.com/PyCQA/doc8
https://www.sphinx-doc.org/en/master/

PUDL, Release 0.4.0

Automatic Formatting

Rather than alerting you that there’s a style issue in your Python code, autopep8 tries to fix it for you automatically,
applying consistent formatting rules based on PEP 8. Similarly isort automatically groups and orders Python import
statements in each module to minimize diffs and merge conflicts.

Linting Within Your Editor

If you are using an editor designed for Python development many of these code linting and formatting tools can be
run automatically in the background while you write code or documentation. Popular editors that work with the above
tools include:

• Visual Studio Code, from Microsoft (free)

• Atom developed by GitHub (free), and

• Sublime Text (paid).

Each of these editors have their own collection of plugins and settings for working with linters and other code analysis
tools.

See also:

Real Python Guide to Code Editors and IDEs

Creating a Workspace

PUDL needs to know where to store its big piles of inputs and outputs. It also comes with some example configuration
files. The pudl_setup script lets PUDL know where all this stuff should go. We call this a “PUDL workspace”:

$ pudl_setup <PUDL_DIR>

Here <PUDL_DIR> is the path to the directory where you want PUDL to do its business – this is where the datastore
will be located and where any outputs that are generated end up. The script will also put a configuration file called
.pudl.yml in your home directory that records the location of this workspace and uses it by default in the future. If
you run pudl_setup with no arguments, it assumes you want to use the current working directory.

The workspace is laid out like this:

Directory / File Contents
data/ Raw data, automatically organized by source, year, etc.
datapkg/ Tabular data packages generated by PUDL.
parquet/ Apache Parquet files generated by PUDL.
settings/ Example configuration files for controlling PUDL scripts.
sqlite/ sqlite3 databases generated by PUDL.

68 Chapter 8. About Catalyst Cooperative

https://github.com/hhatto/autopep8
https://www.python.org/dev/peps/pep-0008
https://isort.readthedocs.io/en/latest/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://realpython.com/python-ides-code-editors-guide/
https://frictionlessdata.io/specs/tabular-data-package/
https://parquet.apache.org/
https://docs.python.org/3/library/sqlite3.html#module-sqlite3

PUDL, Release 0.4.0

8.6.2 Settings Files

Several of the scripts provided as part of PUDL require more arguments than can be easily managed on the command
line. It’s also useful to preserve a record of how the data processing pipeline was run in one instance so that it can
be re-run in exactly the same way. We have these scripts read their settings from YAML files, examples of which are
included in the distribution.

There are two example files that are deployed into a users workspace with the pudl_setup script (see: Creating a
Workspace). The two settings files direct PUDL to process 1 year (“fast”) and all years (“full”) of data respectively.
Each file contains parameters for both the ferc1_to_sqlite and the pudl_etl scripts.

Setttings for ferc1_to_sqlite

Parameter Description
ferc1_to_sqlite_refyearA single 4-digit year to use as the reference for inferring FERC Form 1 database’s structure.

Typically, the most recent year of available data.
ferc1_to_sqlite_yearsA list of years to be included in the cloned FERC Form 1 database. You should only use a

continuous range of years. 1994 is the earliest year available.
ferc1_to_sqlite_tablesA list of strings indicating what tables to load. The list of acceptable tables can be found in the the

example settings file and corresponds to the values found in the ferc1_dbf2tbl dictionary
in pudl.constants.

Settings for pudl_etl

The pudl_etl script requires a YAML settings file. In the repository this example file is lives in src/pudl/
package_data/settings. This example file (etl_example.yml) is deployed onto a user’s system in the
settings directory within the PUDL workspace when the pudl_setup script is run. Once this file is in the
settings directory, users can copy it and modify it as appropriate for their own use.

This settings file allows users to determine the scope of the integrated by PUDL. Most datasets can be used to generate
stand-alone data packages. If you only want to use FERC Form 1, you can remove the other data package specifications
or alter their parameters such that none of their data is processed (e.g. by setting the list of years to be an empty list).
The settings are verified early on in the ETL process, so if you got something wrong, you should get an assertion error
quickly.

While PUDL largely keeps datasets disentangled for ETL purposes (enabling stand-alone ETL), the EPA CEMS and
EIA datasets are exceptions. EPA CEMS cannot be loaded without EIA because it relies on IDs that come from
EIA 860. Similarly, EIA Forms 860 and 923 are very tightly related. You can load only EIA 860, but the settings
verification will automatically add in a few 923 tables that are needed to generate the complete list of plants and
generators.

Warning: If you are processing the EIA 860/923 data, we strongly recommend including the same years in both
datasets. We only test two combinations of inputs:

• That all available years of EIA 860/923 can be processed together, and

• That the most recent year of both datasets can be processed together.

Other combinations of years may yield unexpected results.

8.6. Development 69

PUDL, Release 0.4.0

Structure of the pudl_etl Settings File

The general structure of the settings file and the names of the keys of the dictionaries should not be changed,
but the values of those dictionaries can be edited. There are two high-level elements of the settings file which
pertain to the entire bundle of tabular data packages which will be generated: datapkg_bundle_name and
datapkg_bundle_settings. The datapkg_bundle_name determines which directory the data packages
are written into. The elements and structure of the datapkg_bundle_settings are described below:

datapkg_bundle_settings
name : unique name identifying the data package
title : short human readable title for the data package
description : a longer description of the data package
datasets

dataset name
dataset etl parameter (e.g. states) : list of states
dataset etl parameter (e.g. years) : list of years

dataset name
dataset etl parameter (e.g. states) : list of states
dataset etl parameter (e.g. years) : list of years

another data package...

The dataset names must not be changed. The dataset names enabled include: eia (which includes Forms 860/923
only for now), ferc1, and epacems. Any other dataset name will result in an assertion error.

Note: We strongly recommend leaving the arguments that specify which database tables are generated unchanged
– i.e. always include all of the tables; many analyses require data from multiple tables, and removing a few tables
doesn’t change how long the ETL process takes by much.

Dataset ETL parameters (like years, states, tables) will only register if they are a part of the correct dataset. If you put
some FERC Form 1 ETL parameter in an EIA dataset specification, FERC Form 1 will not be loaded as a part of that
dataset. For an exhaustive listing of the available parameters, see the etl_example.yml file.

8.6.3 Running the ETL Pipeline

So you want to run the PUDL data processing pipeline? This is the most involved way to get access to PUDL data.
It’s only recommended if you want to edit the ETL process or contribute to the code base. Check out the Data Access
documentation if you just want to use the processed data.

These instructions assume you have already gone through the development setup (see: Development Setup).

There are four main scripts that are involved in the PUDL processing pipeline:

1. ferc1_to_sqlite converts the FERC Form 1 DBF files into a single large SQLite database so that the data
is easier to extract.

2. pudl_etl is where the magic happens. This is the main script which coordinates the “Extract, Transform,
Load” process that generates Tabular Data Packages.

3. datapkg_to_sqlite converts the Tabular Data Packages into a SQLite database. We recommend doing
this for all of the smaller to medium sized tables, which is currently everything but the hourly EPA CEMS data.

4. epacems_to_parquet converts the (~1 billion row) EPA CEMS Data Package into Apache Parquet files
for fast on-disk querying.

Settings files dictate which datasets, years, tables, or states get run through the the processing pipeline. Two example
settings files are provided in the settings folder that is created when you run pudl_setup.

70 Chapter 8. About Catalyst Cooperative

https://frictionlessdata.io/specs/tabular-data-package/

PUDL, Release 0.4.0

See also:

• Creating a Workspace for more on how to create a PUDL data workspace.

• Settings Files for info details on the contents of the settings files.

The Fast ETL

Running the fast ETL processes one year of data for each dataset. This is what we do in our software integration tests.

$ ferc1_to_sqlite settings/etl_fast.yml
$ pudl_etl settings/etl_fast.yml
$ datapkg_to_sqlite \

datapkg/pudl-fast/ferc1/datapackage.json \
datapkg/pudl-fast/epacems-eia/datapackage.json

$ epacems_to_parquet --years 2019 --states ID -- \
datapkg/pudl-fast/epacems-eia/datapackage.json

The Full ETL

The full ETL setting file includes all the datasets with all of the years and tables with the exception of EPA CEMS. A
full ETL for EPA CEMS can take up to 15 hours of processing time, so the example setting here is all years of CEMS
for one state (Idaho!) and takes around 20 minutes to process.

$ ferc1_to_sqlite settings/etl_full.yml
$ pudl_etl settings/etl_full.yml
$ datapkg_to_sqlite datapkg/pudl-full/ferc1/datapackage.json \

datapkg/pudl-full/eia/datapackage.json
$ epacems_to_parquet --states ID -- datapkg/pudl-full/epacems-eia/datapackage.json

Additional Notes

These commands should result in a bunch of Python logging output describing what the script is doing, file outputs
in the sqlite, datapkg, and parquet directories within your workspace. When the ETL is complete, you should
see new files at sqlite/ferc1.sqlite and sqlite/pudl.sqlite as well as a new directory at datapkg/
pudl-fast or datapkg/pudl-full containing several datapackage directories – one for each of the ferc1,
eia (Forms 860 and 923), and epacems-eia datasets.

Each of the data packages that are part of the bundle have metadata describing their structure. This metadata is stored
in the associated datapackage.json file. The data are stored in a bunch of CSV files (some of which may be
gzip compressed) in the data/ directories of each data package.

You can use the pudl_etl script to process more or different data by copying and editing either of the settings files
and running the script again with your new settings file as an argument. Comments in the example settings file explain
the available parameters. Know that these example files are the only configurations that are tested automatically and
supported.

If you want to re-run pudl_etl and replace an existing bundle of data packages, you can use --clobber. If you
want to generate a new data packages with a new or modified settings file, you can change the name of the output
datapackage bundle in the configuration file.

All of the PUDL scripts have help messages if you want additional information (run script_name --help).

8.6. Development 71

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/gzip.html#module-gzip

PUDL, Release 0.4.0

8.6.4 Project Management

The people working on PUDL are distributed all over North America. Collaboration takes place online. We make
extensive use of Github’s project management tools as well as Zenhub which provides additional features for sprint
planning, task estimation, and progress reports.

Issues and Project Tracking

We use Github issues to track bugs, enhancements, support requests, and just about any other work that goes into the
project. Try to make sure that issues have informative tags so we can find them easily.

We use Zenhub Sprints, Epics, and Releases to track our progress. These won’t be visible unless you have the ZenHub
browser extension installed.

GitHub Workflow

• We have 2 persistent branches: main and dev.

• We create temporary feature branches off of dev and make pull requests to dev throughout our 2 week long
sprints.

• At the end of each sprint, assuming all the tests are passing, dev is merged into main.

Pull Requests

• Before making a PR, make sure the tests run and pass locally, including the code linters and pre-commit hooks.
See Set Up Code Linting for details.

• Don’t forget to merge any new commits to the dev branch into your feature branch before making a PR.

• If for some reason the continuous integration tests fail for your PR, try and figure out why and fix it, or ask for
help. If the tests fail, we don’t want to merge it into dev. You can see the status of the CI builds in the GitHub
Actions for the PUDL repo.

• Please don’t decrease the overall test coverage – if you introduce new code, it also needs to be exercised by the
tests. See Testing PUDL for details.

• Write good docstrings using the Google format

• Pull Requests should update the documentation to reflect changes to the code, especially if it changes something
user-facing, like how one of the command line scripts works.

Releases

• Periodically, we tag a new release on main and upload the packages to the Python Package Index and conda-
forge.

• Whenever we tag a release on Github, the repository is archived on Zenodo and issued a DOI.

• For some software releases we archive processed data on Zenodo along with a Docker container that encapsu-
lates the necessary software environment.

72 Chapter 8. About Catalyst Cooperative

https://www.zenhub.com
https://github.com/catalyst-cooperative/pudl/issues
https://www.zenhub.com/extension
https://www.zenhub.com/extension
https://github.com/catalyst-cooperative/pudl/actions
https://github.com/catalyst-cooperative/pudl/actions
https://www.sphinx-doc.org/en/master/usage/extensions/example_google.html#example-google
https://conda-forge.org/
https://conda-forge.org/
https://zenodo.org

PUDL, Release 0.4.0

User Support

We don’t (yet) have funding to do user support, so it’s currently all community and volunteer based. In order to ensure
that others can find the answers to questions that have already been asked, we try to do all support in public using
Github issues.

8.6.5 Testing PUDL

We use Tox to coordinate our software testing and to manage other build and sanity checking tools. Under the hood,
it invokes a variety of other collections of command-line tools in predefined combinations that are described in tox.
ini. These include software tests defined using pytest, code linters like flake8, documentation generators like
Sphinx, and sanity checks defined as git pre-commit hooks. Each of these tools, or sometimes collections of related
tools, can be selected at the command line. They can also be run independently without using Tox, but for the sake
of simplicitly and standardization, we try to mostly just run them using the predefined settings we have configured in
Tox.

The simplest way to test PUDL – which is also how the code is tested automatically by our continuous integration
setup – is to just run Tox alone with no arguments. This will typically take 25 minutes to run.

$ tox

Note: If you aren’t familiar with pytest and Tox already, you may want to go peruse their introductory documentation.

• Getting Started with pytest

• Tox Documentation

Software Tests

Our pytest based software tests are all stored under the test/ directory in the main repository. They are organized
into 3 broad categories, each with its own subdirectory:

• Software Unit Tests (test/unit/) can be run in seconds and don’t require any external data. They test the
basic functionality of various functions and classes, often using minimal inline data structures that are specified
in the test modules themselves.

• Software Integration Tests (test/integration/) test larger collections of functionality including the
interactions between different parts of the overall software system and in some cases interactions with external
systems requiring network connectivity. The main thing our integration tests do is run the full PUDL data
processing pipeline for the most recent year of data. This takes around 15 minutes.

• Data Validations (test/validate/) sanity check the PUDL outputs generated by the data processing
pipeline. This helps us catch issues with the input data as well as more subtle bugs that don’t prevent the
code from executing but do have unintended or unexpected impacts on the output data. The data validation
requires a fully populated PUDL database and is quite different from the other tests.

8.6. Development 73

https://tox.readthedocs.io
https://pytest.org
https://docs.pytest.org/en/latest/getting-started.html
https://tox.readthedocs.io/en/latest/

PUDL, Release 0.4.0

Running tests with Tox

Tox installs the PUDL package in a fresh Python environment, ensuring that the tests only have access to packages
which would be installed on a new user’s computer. Tox’s overall behavior is configured with the tox.ini file in
the main repository directory. There are several different “test environments” defined to test different aspects of the
software or to perform other actions like building the documentation. We’ll go through some of the most common
ones below.

Continuous Integration Tests

Our default tox test environment is ci – that includes all of the tests that will be run in continuous integration using
a GitHub Action. You should run these tests before pushing code to the repository or making a pull request. Because
it’s the default test environment, it will be run if you call Tox without any arguments:

$ tox

This is equivalent to:

$ tox -e ci

If the PUDL package’s dependencies have been changed (in setup.py) or you recently ran the tests while on another
branch of the repository with other dependencies, you may need to tell Tox to recreate the software environment it
uses with the -r flag. This behavior is turned on by default for the ci, full, and validate tests since they take a
long time to run and the extra time required to recreate the software environment is short by comparison.

Note: You will need to register for an EIA API key to run the integration tests which are included as part of
the ci tests. We use data from the EIA API to fill in missing monthly fuel costs in the marginal cost of electricity
calculations. Once you have the API key, you’ll need to store it in an environment variable named API_KEY_EIA
within the shell where you are running the tests. You may want to add it to your .bashrc or .zshrc so that it’s
automatically available to PUDL in the future. There are many tutorials on how to manage environment variables
online. Here’s one tutorial from Digital Ocean.

In addition to running the unit and integration tests, the CI test environment lints the code and documentation
input files and uses Sphinx to build the documentation. It also generates a test coverage report. Running the full set of
CI tests takes 20-25 minutes and requires a fair amount of data. If you don’t already have that data downloaded, it will
be downloaded automatically and put in your local datastore

Note: Locally the tests will run using whatever version of Python is part of your pudl-dev conda environment, but
we have our CI set up to test on both Python 3.8 and 3.9 in parallel.

Software Unit and Integration Tests

To run the unit or integration tests on their own, you use the -e flag to choose those test environments explic-
itly:

$ tox -e unit

or:

74 Chapter 8. About Catalyst Cooperative

https://github.com/features/actions
https://www.eia.gov/opendata/register.php
https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-linux

PUDL, Release 0.4.0

$ tox -e integration

Full ETL Tests

As mentioned above, the CI tests process a single year of data. If you would like to more exhaustively test the ETL
process without affecting your existing FERC 1 and PUDL databases, you can use the full test environment which
may take close to an hour to run:

$ tox -e full

This will process all years of data for the EIA and FERC datasets and all years of EPA CEMS data for a single state
(Idaho). The ETL parameters for this test are defined in test/settings/full-integration-tests.yml

Running Other Commands with Tox

You can run any of the individual test environments that tox -av lists on their own:

$ tox -av

default environments:
ci -> Run all continuous integration (CI) checks & generate test
→˓coverage.

additional environments:
flake8 -> Run the full suite of flake8 linters on the PUDL codebase.
pre_commit -> Run git pre-commit hooks not covered by the other linters.
bandit -> Check the PUDL codebase for common insecure code patterns.
linters -> Run the pre-commit, flake8, and bandit linters.
doc8 -> Check the documentation input files for syntactical correctness.
docs -> Remove old docs output and rebuild HTML from scratch with Sphinx
unit -> Run all the software unit tests.
ferc1_solo -> Test whether FERC 1 can be loaded into the PUDL database alone.
integration -> Run all software integration tests and process a full year of
→˓data.
validate -> Run all data validation tests. This requires a complete PUDL DB.
ferc1_schema -> Verify FERC Form 1 DB schema are compatible for all years.
full_integration -> Run ETL and integration tests for all years and data sources.
full -> Run all CI checks, but for all years of data.
build -> Prepare Python source and binary packages for release.
testrelease -> Do a dry run of Python package release using the PyPI test server.
release -> Release the PUDL package to the production PyPI server.

Note that not all of them literally run tests. For instance, to lint and build the documentation you can run:

$ tox -e docs

To run all of the code and documentation linters, but not run any of the other tests:

$ tox -e linters

Each of the test environments defined in tox.ini is just a collection of dependencies and commands. To see what
they consist of, you can open the file in your text editor. Each section starts with [testenv:xxxxxx] and the
section called commands is a list of shell commands that that test environment will run.

8.6. Development 75

PUDL, Release 0.4.0

Selecting Input Data for Integration Tests

The software integration tests need a year’s worth of input data to process. By default they will look in your local
PUDL datastore to find it. If the data they need isn’t available locally, they will download it from Zenodo and put it in
the local datastore.

However, if you’re editing code that affects how the datastore works, you probably don’t want to risk contaminating
your working datastore. You can use a disposable temporary datastore instead by having Tox pass the --tmp-data
flag in to pytest like this:

$ tox -e integration -- --tmp-data

The floating -- isn’t a typo, it tells Tox that you’re done giving it command line arguments, and that any additional
arguments it gets should be passed through to pytest. We’ve configured pytest (through the test/conftest.
py configuration file) to be on the lookout for the --tmp-data flag and act accordingly.

See also:

• Development Setup for more on how to set up a PUDL workspace, including a datastore.

• Working with the Datastore for more on how to work with the datastore.

Data Validation

Given the processed outputs of the PUDL ETL pipeline, we have a collection of tests that can be run to verify that
the outputs look correct. We run all available data validations before each data release is archived on Zenodo. It is
useful to run the data validation tests prior to making a pull request that makes changes to the ETL process or output
functions to ensure that the outputs have not been unintentionally affected.

These data validation tests are organized into datasource specific modules under test/validate. Running the
full data validation can take as much as an hour, depending on your computer. These tests require a fully populated
PUDL database which contains all available FERC and EIA data, as specified by the src/pudl/package_data/
settings/etl_full.yml input file. They are run against the “live” SQLite database in your pudl workspace at
sqlite/pudl.sqlite. To run the full data validation against an existing database:

$ tox -e validate

The data validation cases that pertain to the contents of the data tables are currently stored as part of the pudl.
validate module.

The expected number of records in each output table is stored in the validation test modules under test/validate
as pytest parameterizations.

Data Validation Notebooks

We have a collection of Jupyter Notebooks that run the same functions as the data validation. The notebooks also
produce some visualizations of the data to make it easier to understand what’s wrong when validation fails. These
notebooks are stored in test/notebooks

Like the data validations, the notebooks will only run successfully when there’s a full PUDL SQLite database available
in your PUDL workspace.

76 Chapter 8. About Catalyst Cooperative

PUDL, Release 0.4.0

Running pytest Directly

Running tests directly with pytest gives you the ability to run only tests from a particular test module or even a
single individual test case. It’s also faster because there’s no testing environment to set up. Instead, it just uses your
Python environment which should be the pudl-dev conda environment discussed in Development Setup. This is
convenient if you’re debugging something specific or developing new test cases, but it’s not as robust as using Tox.

Running specific tests

To run the software unit tests with pytest directly (the same set of tests that would be run by tox -e unit):

$ pytest test/unit

To run only the unit tests for the Excel spreadsheet extraction module:

$ pytest test/unit/extract/excel_test.py

To run only the unit tests defined by a single test class within that module:

$ pytest test/unit/extract/excel_test.py::TestGenericExtractor

Custom PUDL pytest flags

We have defined several custom flags to control pytest’s behavior when running the PUDL tests. They are mostly
intended for use internally to specify the behavior we want in the high level Tox test environments.

You can always check to see what custom flags exist by running pytest --help and looking at the custom
options section:

custom options:
--live-dbs Use existing PUDL/FERC1 DBs instead of creating temporary ones.
--tmp-data Download fresh input data for use with this test run only.
--etl-settings=ETL_SETTINGS

Path to a non-standard ETL settings file to use.
--gcs-cache-path=GCS_CACHE_PATH

If set, use this GCS path as a datastore cache layer.
--sandbox Use raw inputs from the Zenodo sandbox server.

The main flexibility that these custom options provide is in selecting where the raw input data comes from and what
data the tests should be run against. Being able to specify the tests to run and the data to run them against independently
simplifies the test suite and keeps the data and tests very clearly separated.

The --live-dbs option lets you use your existing FERC 1 and PUDL databases instead of building a new database
at all. This can be useful if you want to test code that only operates on an existing database, and has nothing to do with
the construction of that database. For example, the output routines:

$ pytest --live-dbs test/integration/fast_output_test.py

We also use this option to run the data validations.

Assuming you do want to run the ETL and build new databases as part of the test you’re running, the contents of
that database are determined by an ETL settings file. By default, the settings file that’s used is test/settings/
integration-test.yml But it’s also possible to use a different input file, generating a different database, and
then run some tests against that database.

8.6. Development 77

PUDL, Release 0.4.0

For example, we test that FERC 1 data can be loaded into a PUDL database all by itself by running the ETL tests
with a settings file that includes only A couple of FERC 1 tables for a single year. This is the ferc1_solo Tox test
environment:

$ pytest --etl-settings=test/settings/ferc1-solo-test.yml test/integration/etl_test.py

Similarly, we use the test/settings/full-integration-test.yml settings file to specify an exhaustive
collection of input data, and then we run a test that checks that the database schemas extracted from all historical
FERC 1 databases are compatible with each other. This is the ferc1_schema test:

$ pytest --etl-settings test/settings/full-integration-test.yml test/integration/etl_
→˓test.py::test_ferc1_schema

The raw input data that all the tests use is ultimately coming from our archives on Zenodo. However, you can optionally
tell the tests to look in a different places for more rapidly accessible caches of that data and to force the download of
a fresh copy (especially useful when you are testing the datastore functionality specifically). By default, the tests will
use the datastore that’s part of your local PUDL workspace.

For example, to run the ETL portion of the integration tests and download fresh input data to a temporary datastore
that’s later deleted automatically:

$ pytest --tmp-data test/integration/etl_test.py

8.6.6 Building the Documentation

We use Sphinx and Read The Docs to semi-automatically build and host our documentation.

Sphinx is tightly integrated with the Python programming language and needs to be able to import and parse the source
code to do its job. Thus, it also needs to be able to create an appropriate python environment. This process is controlled
by docs/conf.py.

If you are editing the documentation and need to regenerate the outputs as you go to see your changes reflected locally,
the most reliable option is to use Tox. Tox will remove the previously generated outputs and regenerate everything
from scratch:

$ tox -e docs

If you’re just working on a single page and don’t care about the entire set of documents being regenerated and linked
together, you can call Sphinx directly:

$ sphinx-build -b html docs docs/_build/html

This will only update any files that have been changed since the last time the documentation was generated.

To view the documentation that’s been output at HTML, you’ll need to open the docs/_build/html/index.
html file within the PUDL repository with a web browser. You may also be able to set up automatic previewing of
the rendered documentation in your text editor with appropriate plugins.

Note: Some of the documentation files are dynamically generated. We use the sphinx-apidoc utility to generate RST
files from the docstrings embedded in our source code, so you should never edit the files under docs/api. If you
create a new module, the corresponding documentation file will also need to be checked in to version control.

Similarly the PUDL Data Dictionary is generated dynamically by the pudl.convert.datapkg_to_rst script
that gets run by Tox when it builds the docs.

78 Chapter 8. About Catalyst Cooperative

https://zenodo.org/communities/catalyst-cooperative
https://www.sphinx-doc.org/
https://readthedocs.io

PUDL, Release 0.4.0

8.6.7 Working with the Datastore

The input data that PUDL processes comes from a variety of US government agencies. However, these agencies
typically make the data available on their websites or via FTP without planning for programmatic access. To ensure
reproducible, programmatic access, we periodically archive the input files on the Zenodo research archiving service
maintained by CERN. (See our pudl-scrapers and pudl-zenodo-storage repositories on GitHub for more information.)

When PUDL needs a data resource, it will attempt to automatically retrieve it from Zenodo and store it locally in a file
hierarchy organized by dataset and the versioned DOI of the corresponding Zenodo deposition.

The pudl_datastore script can also be used to pre-download the raw input data in bulk. It uses the routines defined
in the pudl.workspace.datastore module. For details on what data is available, for what time periods, and
how much of it there is, see the PUDL Data Sources. At present the pudl_datastore script downloads the entire
collection of data available for each dataset. For the FERC Form 1 and EPA CEMS datasets, this is several gigabytes.

For example, to download the full EIA Form 860 dataset (covering 2001-present) you would use:

$ pudl_datastore --dataset eia860

For more detailed usage information, see:

$ pudl_datastore --help

The downloaded data will be used by the script to populate a datastore under the data directory in your workspace,
organized by data source, form, and date:

data/censusdp1tract/
data/eia860/
data/eia861/
data/eia923/
data/epacems/
data/ferc1/
data/ferc714/

If the download fails to complete successfully, the script can be run repeatedly until all the files are downloaded. It
will not try and re-download data which is already present locally.

Adding a new Dataset to the Datastore

There are three components necessary to prepare a new datastet for use with the PUDL datastore.

1. Create a pudl-scraper to download the raw data.

2. Use pudl-zenodo-storage to upload the data to Zenodo.

3. Prepare the datastore to retrieve the data from Zenodo.

In the event that data is already available on Zenodo in the appropriate format, it may be possible to skip steps 1 and 2.

8.6. Development 79

https://zenodo.org/communities/catalyst-cooperative/
https://github.com/catalyst-cooperative/pudl-scrapers
https://github.com/catalyst-cooperative/pudl-zenodo-storage

PUDL, Release 0.4.0

Create a scraper

Where possible, we use Scrapy to handle data collection. Our scrapy spiders, as well as any custom scripts, are located
in our scrapers repo. Familiarize yourself with scrapy, and note the following.

From a scraper, a correct ouput directory takes the form:

`pudl_scrapers.helpers.new_output_dir(self.settings["OUTPUT_DIR"] /
"datastet_name")`

The pudl_scrapers.settings and pudl_scrapers.helpers can be imported outside the context of a
Scrapy scraper to achieve the same effect as needed.

To take advantage of the existing file saving pipeline, create a custom item in the items.py collection. Make sure
that it inherits from the existing DataFile class, and ensure that your spider yields the new item. See the items.py
for examples.

If you follow those guidelines, your new scraper should play well with the rest of the environment.

Prepare zenodo_store

Our zenodo_store script initializes and updates data sources that we maintain on Zenodo . It prepares Frictionless
Datapackages from scraped files and uploads them to the appropriate Zenodo archive.

To add a new archive to our Zenodo storage collection:

• Update zs.metadata with a UUID and metadata for the new Zenodo archive. These details will be
used by Zenodo to identify and describe the archive on the website. The UUID is used to uniquely distin-
guish the archive prior to the creation of a DOI.

• Prepare a new library to handle the frictionless datapackage descriptor of the archive.

– The library name should take the form frictionless.DATASET_raw.

– The library must contain frictionless data metadata describing the archive.

– The library must contain a datapackager(dfiles) function that:

* receives a list of zenodo file descriptors

* converts each to an appropriate frictionless datapackage resource descriptor

* Important: The resource descriptor must include an additional descriptor["remote_url"]
that contains the zenodo url to download its resource. This will be the same as the
descriptor["path"] at this stage.

* If there are criteria by which you wish to be able to discover or filter specific resources,
descriptor["parts"][...] should be used to denote those details. For example,
descriptor["parts"]["year"] = 2018 would be appropriate to allow filtering by year.

* Combines the resource descriptors and frictionless metadata to produce the complete datapackage
descriptor as a python dict.

• In the bin/zenodo_store.py script:

– Import the new frictionless library.

– Add the new source to the archive_selection function; follow the format of the existing selectors.

– Add the new source name to the help text in the parse_main() .. deposition argument.

80 Chapter 8. About Catalyst Cooperative

https://docs.scrapy.org/en/latest/
https://github.com/catalyst-cooperative/pudl-scrapers
https://github.com/catalyst-cooperative/pudl-zenodo-storage
https://zenodo.org/
https://frictionlessdata.io/
https://frictionlessdata.io/
https://specs.frictionlessdata.io/data-package/#language
https://developers.zenodo.org/#deposition-files
https://specs.frictionlessdata.io/data-resource/#language

PUDL, Release 0.4.0

The above steps should be sufficient to allow automatic initialization and updates of the new data source on Zenodo.

You initialize an archive (preferably starting with the sandbox) by running zenodo_store.py --initialize
--verbose --sandbox

If successful, the DOI and url for your archive will be printed. You will need to visit the url to review and publish the
Zenodo archive before it can be used.

If you lose track of the DOI, you can look up the archive on Zenodo using the UUID from zs.metadata.

Prepare the Datastore

If you have used a scraper and zenodo_store to prepare a Zenodo archive as above, you can add support for your
archive to the datastore by adding the DOI to pudl.workspace.datastore.DOI, under “sandbox” or “production” as
appropriate.

If you want to prepare an archive for the datastore separately, the following are required.

#. The root path must contain a datapackage.json file that conforms to the frictionless datapackage spec #. Each
listed resource among the datapackage.json resources must include:

• path containing the zenodo download url for the specific file.

• remote_url with the same url as the path

• name of the file

• hash with the md5 hash of the file

• parts a set of key / value pairs defining additional attributes that can be used to select a subset of the whole
datapackage. For example, the epacems dataset is partitioned by year and state, and "parts": {"year":
2010, "state": "ca"} would indicate that the resource contains data for the state of California in the
year 2010. Unpartitioned datasets like the ferc714 which includes all years in a single file, would have an
empty "parts": {}

8.6.8 Cloning the FERC Form 1 DB

FERC Form 1 is. . . special.

The FERC Form 1 is published in a particularly inaccessible format (proprietary binary FoxPro database files), and
the data itself is unclean and poorly organized. As a result, very few people are currently able to use it. This means
that, while we have not yet integrated the vast majority of the available data into PUDL, it’s useful to just provide
programmatic access to the bulk raw data, independent of the cleaner subset of the data included within PUDL.

To provide that access, we’ve broken the pudl.extract.ferc1 process down into two distinct steps:

1. Clone the entire FERC Form 1 database from FoxPro into a local file-based sqlite3 database. This includes
116 distinct tables, with thousands of fields, covering the time period from 1994 to the present.

2. Pull a subset of the data out of that database for further processing and integration into the PUDL data packages
and sqlite3 database.

If you want direct access to the original FERC Form 1 database, you can just do the database cloning and connect
directly to the resulting database. This has become especially useful since Microsoft recently discontinued the database
driver that until late 2018 had allowed users to load the FoxPro database files into Microsoft Access.

In any case, cloning the original FERC database is the first step in the PUDL ETL process. This can be done with
the ferc1_to_sqlite script (which is an entrypoint into the pudl.convert.ferc1_to_sqlite module)
which is installed as part of the PUDL Python package. It takes its instructions from a YAML file, an example of

8.6. Development 81

https://specs.frictionlessdata.io/data-package/
https://en.wikipedia.org/wiki/FoxPro
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://docs.python.org/3/library/sqlite3.html#module-sqlite3

PUDL, Release 0.4.0

which is included in the settings directory in your PUDL workspace. Once you’ve created a datastore, you can
try this example:

$ ferc1_to_sqlite settings/etl-full.yml

This should create an SQLite database that you can find in your workspace at sqlite/ferc1.sqlite By de-
fault, the script pulls in all available years of data and all but 3 of the 100+ database tables. The excluded tables
(f1_footnote_tbl, f1_footnote_data and f1_note_fin_stmnt) contain unreadable binary data, and
increase the overall size of the database by a factor of ~10 (to ~8 GB rather than 800 MB). If for some reason you
need access to those tables, you can create your own settings file and un-comment those tables in the list of tables that
it directs the script to load.

Note: This script pulls all of the FERC Form 1 data into a single database, but FERC distributes a separate database
for each year. Virtually all the database tables contain a report_year column that indicates which year they
came from, preventing collisions between records in the merged multi-year database. One notable exception is the
f1_respondent_id table, which maps respondent_id to the names of the respondents. For that table, we
have allowed the most recently reported record to take precedence, overwriting previous mappings if they exist.

Note: There are a handful of respondent_id values that appear in the FERC Form 1 database tables but do not
show up in f1_respondent_id. This renders the foreign key relationships between those tables invalid. During
the database cloning process we add these respondent_id values to the f1_respondent_id table with a
respondent_name indicating that the ID was filled in by PUDL.

8.6.9 Naming Conventions

In the PUDL codebase, we aspire to follow the naming and other conventions detailed in PEP 8.

Admittedly we have a lot of. . . named things in here, and we haven’t been perfect about following conventions
everywhere. We’re trying to clean things up as we come across them again in maintaining the code.

• Imperative verbs (e.g. connect) should precede the object being acted upon (e.g. connect_db), unless the
function returns a simple value (e.g. datadir).

• No duplication of information (e.g. form names).

• lowercase, underscores separate words (i.e. snake_case).

• Semi-private helper functions (functions used within a single module only and not exposed via the public API)
should be preceded by an underscore.

• When the object is a table, use the full table name (e.g. ingest_fuel_ferc1).

• When dataframe outputs are built from multiple tables, identify the type of information being pulled (e.g.
“plants”) and the source of the tables (e.g. eia or ferc1). When outputs are built from a single table, simply
use the table name (e.g. boiler_fuel_eia923).

82 Chapter 8. About Catalyst Cooperative

https://www.python.org/dev/peps/pep-0008

PUDL, Release 0.4.0

Glossary of Abbreviations

General Abbreviations

Abbreviation Definition
abbr abbreviation
assn association
avg average (mean)
bbl barrel (quantity of liquid fuel)
capex capital expense
corr correlation
db database
df & dfs dataframe & dataframes
dir directory
epxns expenses
equip equipment
info information
mcf thousand cubic feet (volume of gas)
mmbtu million British Thermal Units
mw Megawatt
mwh Megawatt Hours
num number
opex operating expense
pct percent
ppm parts per million
ppb parts per billion
q (fiscal) quarter
qty quantity
util & utils utility & utilities
us United States
usd US Dollars

Data Source Specific Abbreviations

Abbreviation Definition
frc_eia923 Fuel Receipts and Costs (EIA Form 923)
gen_eia923 Generation (EIA Form 923)
gf_eia923 Generation Fuel (EIA Form 923)
gens_eia923 Generators (EIA Form 923)
utils_eia860 Utilities (EIA Form 860)
own_eia860 Ownership (EIA Form 860)

8.6. Development 83

PUDL, Release 0.4.0

Data Extraction Functions

The lower level namespace uses an imperative verb to identify the action the function performs followed by the
object of extraction (e.g. get_eia860_file). The upper level namespace identifies the dataset where extraction is
occurring.

Output Functions

When dataframe outputs are built from multiple tables, identify the type of information being pulled (e.g. plants)
and the source of the tables (e.g. eia or ferc1). When outputs are built from a single table, simply use the table
name (e.g. boiler_fuel_eia923).

Table Names

See this article on database naming conventions.

• Table names in snake_case

• The data source should follow the thing it applies to e.g. plant_id_ferc1

Columns and Field Names

• total should come at the beginning of the name (e.g. total_expns_production)

• Identifiers should be structured type + _id_ + source where source is the agency or organization that has
assigned the ID. (e.g. plant_id_eia)

• The data source or label (e.g. plant_id_pudl) should follow the thing it is describing

• Units should be appended to field names where applicable (e.g. net_generation_mwh). This includes “per
unit” signifiers (e.g. _pct for percent, _ppm for parts per million, or a generic _per_unit when the type of
unit varies, as in columns containing a heterogeneous collection of fuels)

• Financial values are assumed to be in nominal US dollars.

• _id indicates the field contains a usually numerical reference to another table, which will not be intelligible
without looking up the value in that other table.

• The suffix _code indicates the field contains a short abbreviation from a well defined list of values, that proba-
bly needs to be looked up if you want to understand what it means.

• The suffix _type (e.g. fuel_type) indicates a human readable category from a well defined list of values.
Whenever possible we try to use these longer descriptive names rather than codes.

• _name indicates a longer human readable name, that is likely not well categorized into a small set of acceptable
values.

• _date indicates the field contains a Date object.

• _datetime indicates the field contains a full Datetime object.

• _year indicates the field contains an integer 4-digit year.

• capacity refers to nameplate capacity (e.g. capacity_mw)– other specific types of capacity are annotated.

• Regardless of what label utilities are given in the original data source (e.g. operator in EIA or respondent
in FERC) we refer to them as utilities in PUDL.

84 Chapter 8. About Catalyst Cooperative

http://www.vertabelo.com/blog/technical-articles/naming-conventions-in-database-modeling

PUDL, Release 0.4.0

8.6.10 Data and ETL Design Guidelines

Here we list some technical norms and expectations that we strive to adhere to and hope that contributors can also
follow.

We’re all learning as we go – if you have suggestions for best practices we might want to adopt, let us know!

Input vs. Output Data

It’s important to differentiate between the original data we’re attempting to provide easy access to and analyses or data
products that are derived from that original data. The original data is meant to be archived and re-used as an alternative
to other users re-processing the raw data from various public agencies. For the sake of reproducibility, it’s important
that we archive the inputs alongside the ouputs – since the reporting agencies often go back and update the data they
have published without warning and without version control.

Minimize Data Alteration

We are trying to provide a uniform, easy-to-use interface to existing public data. We want to provide access to the
original data, insofar as that is possible, while still having it be uniform and easy-to-use. Some alteration is unavoidable
and other changes make the data much more usable, but these should be made with care and documentation.

• Make sure data is available at its full, original resolution. Don’t aggregate the data unnecessarily when it is
brought into PUDL. However, creating tools to aggregate it in derived data products is very useful.

Todo: Need fuller enumeration of data alteration / preservation principles.

Examples of Acceptable Changes

• Converting all power plant capacities to MW, or all generation to MWh.

• Assigning uniform NA values.

• Standardizing datetime types.

• Re-naming columns to be the same across years and datasets.

• Assigning simple fuel type codes when the original data source uses free-form strings that are not programmat-
ically usable.

Examples of Unacceptable Changes

• Applying an inflation adjustment to a financial variable like fuel cost. There are a variety of possible inflation
indices users might want to use, so that transformation should be applied in the output layer that sits on top of
the original data.

• Aggregating data that has date/time information associated with it into a time series when the individual records
do not pertain to unique timesteps. For example, the EIA 923 Fuel Receipts and Costs table lists fuel deliveries
by month, but each plant might receive several deliveries from the same supplier of the same fuel type in a
month – the individual delivery information should be retained.

• Computing heat rates for generators in an original table that contains both fuel heat content and net electricity
generation. The heat rate would be a derived value and not part of the original data.

8.6. Development 85

https://docs.python.org/3/library/datetime.html#module-datetime

PUDL, Release 0.4.0

Make Tidy Data

The best practices in data organization go by different names in data science, statistics, and database design, but they
all try to minimize data duplication and ensure an easy to transform uniform structure that can be used for a wide
variety of purposes – at least in the source data (i.e. database tables or the published data packages).

• Each column in a table represents a single, homogeneous variable.

• Each row in a table represents a single observation – i.e. all of the variables reported in that row pertain to the
same case/instance of something.

• Don’t store the same value in more than one pace – each piece of data should have an authoritative source.

• Don’t store derived values in the archived data sources.

Reading on Tidy Data

• Tidy Data A paper on the benefits of organizing data into single variable, homogeneously typed columns, and
complete single observation records. Oriented toward the R programming language, but the ideas apply univer-
sally to organizing data. (Hadley Wickham, The Journal of Statistical Software, 2014)

• Good enough practices in scientific computing A whitepaper from the organizers of Software and Data Carpentry
on good habits to ensure your work is reproducible and reusable — both by yourself and others! (Greg Wilson
et al., PLOS Computational Biology, 2017)

• Best practices for scientific computing An earlier version of the above whitepaper aimed at a more technical,
data-oriented set of scientific users. (Greg Wilson et al., BLOS Biology, 2014)

• A Simple Guide to Five Normal Forms A classic 1983 rundown of database normalization. Concise, informal,
and understandable, with a few good illustrative examples. Bonus points for the ASCII art.

Use Simple Data Types

The Frictionless Data TableSchema standard includes a modest selection of data types that are meant to be very widely
usable in other contexts. Make sure that whatever data type you’re using is included within that specification, but also
be as specific as possible within that collection of options.

This is one aspect of a broader “least common denominator” strategy that is common within the open data. This
strategy is also behind our decision to distribute the processed data as CSV files (with metadata stored as JSON).

Use Consistent Units

Different data sources often use different units to describe the same type of quantities. Rather than force users to do
endless conversions while using the data, we try to convert similar quantities into the same units during ETL. For
example, we typically convert all electrical generation to MWh, plant capacities to MW, and heat content to MMBTUs
(though, MMBTUs are awful: seriously M=1000 because Roman numerals? So MM is a million, despite the fact
that M/Mega is a million in SI. And a BTU is. . . the amount of energy required to raise the temperature of one an
avoirdupois pound of water by 1 degree Farenheit?! What century even is this?).

86 Chapter 8. About Catalyst Cooperative

https://vita.had.co.nz/papers/tidy-data.pdf
https://doi.org/10.1371/journal.pcbi.1005510
https://carpentries.org/
https://doi.org/10.1371/journal.pbio.1001745
http://www.bkent.net/Doc/simple5.htm
https://frictionlessdata.io/specs/table-schema/
https://en.wikipedia.org/wiki/British_thermal_unit

PUDL, Release 0.4.0

Silo the ETL Process

It should be possible to run the ETL process on each data source independently and with any combination of data
sources included. This allows users to include only the data need. In some cases, like the EIA 860 and EIA 923 data,
two data sources may be so intertwined that keeping them separate doesn’t really make sense. This should be the
exception, however, not the rule.

Separate Data from Glue

The glue that relates different data sources to each other should be applied after or alongside the ETL process and not
as a mandatory part of ETL. This makes it easy to pull individual data sources in and work with them even when the
glue isn’t working or doesn’t yet exist.

Partition Big Data

Our goal is for users to be able to run the ETL process on a decent laptop. However, some of the utility datasets are
hundreds of gigabytes in size (e.g. EPA CEMS Hourly, FERC EQR). Many users will not need to use the entire dataset
for the work they are doing. Partitioning the data allows them to pull in only certain years, certain states, or other
sensible partitions of the data so that they don’t run out of memory or disk space or have to wait hours while data they
don’t need is being processed.

Naming Conventions

There are only two hard problems in computer science: caching, naming things, and off-by-one errors.

Use Consistent Names

If two columns in different tables record the same quantity in the same units, give them the same name. That way
if they end up in the same dataframe for comparison it’s easy to automatically rename them with suffixes indicating
where they came from. For example, net electricity generation is reported to both FERC Form 1 and EIA 923, so we’ve
named columns net_generation_mwh in each of those data sources. Similarly, give non-comparable quantities
reported in different data sources different column names. This helps make it clear that the quantities are actually
different.

Follow Existing Conventions

We are trying to use consistent naming conventions for the data tables, columns, data sources, and functions. Gener-
ally speaking PUDL is a collection of subpackages organized by purpose (extract, transform, load, analysis, output,
datastore. . .), containing a module for each data source. Each data source has a short name that is used everywhere
throughout the project and is composed of the reporting agency and the form number or another identifying abbrevia-
tion: ferc1, epacems, eia923, eia861, etc. See the naming conventions document for more details.

8.6. Development 87

PUDL, Release 0.4.0

Complete, Continuous Time Series

Most of the data in PUDL are time series’ ranging from hourly to annual in resolution.

• Assume and provide contiguous time series. Otherwise there are just too many possible combinations of cases
to deal with. E.g. don’t expect things to work if you pull in data from 2009-2010, and then also from 2016-2018,
but not 2011-2015.

• Assume and provide complete time series. In data that is indexed by date or time, ensure that it is available
as a complete time series even if some values are missing (and thus NA). Many time series analyses only work
when all the timesteps are present.

8.6.11 Packaging and Dependencies

In order to distribute a ready-to-use package to others via the Python Package Index and conda-forge, we need to
encapsulate it with some metadata and define its dependencies. When we first packaged up PUDL Python packaging
systems, they were a bit of a mess. Changes to the Python packaging & build system implemented as a result of PEP
517 and PEP 518 have improved the available options, and we should look at using a simpler more modern setup. The
online Python Packages book is a great guide to current best / better practices.

setup.py

The setup.py script in the top level of the repository coordinates the packaging process using setuptools, a part
of the Python standard library. setup.py is really just a single function call to setuptools.setup(), and the
parameters of that function are metadata related to the Python package. Most of them are relatively self explanatory –
like the name of the package, the license it’s being released under, search keywords, etc. – but a few are more arcane:

• use_scm_version: Instead of having a hard-coded version that’s stored in the repository somewhere,
handed off to the packaging script, and often out of date, pull the version from the source code management
(SCM) system, in our case git (and Github). To make a release, we will first need to tag a particular revision in
git with a version like v0.1.0.

• python_requires='>=3.8': Specifies what versions of Python the package is expected to run on. In this
case, it’s anything greater than or equal to 3.8.

• setup_requires=['setuptools_scm']: What other packages need to be installed in order for the
packaging script to run? Because we are obtaining the package version from our SCM (git/Github), we need the
special package that lets us do that magic: setuptools_scm. This automatically generated version number can
then be accessed in the package metadata, as is done our top-level __init__.py file:

__version__ = pkg_resources.get_distribution(__name__).version

This is admittedly convoluted.

• install_requires: lists all the other packages that need to be installed before pudl can be installed.
These are our package dependencies. This list plays a role similar to the environment.yml file in the main
pudl repository, but it depends on pip not conda – in the packaging system we do not have access to conda.
It turns out this makes our lives difficult because of the kind of Python packages we depend on. More on this
below.

• extras_require: a dictionary describing optional packages that can be conditionally installed depending
on the expected usage of the install. For now, this is mostly used in conjunction with Tox to ensure that the
required documentation and testing packages are installed alongside PUDL in the virtual environment.

• packages=find_packages('src'): The packages parameter takes a list of all the python packages
to be included in the distribution that is being packaged. The setuptools.find_packages function

88 Chapter 8. About Catalyst Cooperative

https://www.python.org/dev/peps/pep-0517
https://www.python.org/dev/peps/pep-0517
https://www.python.org/dev/peps/pep-0518
https://py-pkgs.org/
https://help.github.com/en/articles/creating-releases
https://github.com/pypa/setuptools_scm

PUDL, Release 0.4.0

automatically searches whatever directories it is given for any packages and all of their subpackages. All of the
code we want to distribute to users lives under the src directory.

• package_dir={'': 'src'}: this tells the packaging to treat any modules or packages found in the src
directory as part of the root package of the distribution. This is a vestigial parameter that pertains to the
distutils which are the predecessor to setuptools. . . but the system still depends on them deep down
inside. In our case, we don’t have any modules that aren’t part of any package – everything is within pudl.

• include_package_data=True: This tells the packaging system to include any non-python files that it
finds in the directories it has been told to package. In our case, this is all the stuff inside package_data
including example settings files, metadata, glue, etc.

• entry_points: This parameter tells the packaging what executable scripts should be installed on the user’s
system and which modules:functions implement those scripts.

MANIFEST.in

In addition to generating a version number automatically based on our git repository, setuptools_scm pulls every
single file tracked by the repository and every other random file sitting in the working repository directory into the
distribution. This is. . . not what we want. MANIFEST.in allows us to specify in more detail which files should
be included and excluded. Mostly, we are just including the python package and supporting data that exist under the
src/pudl directory.

pyproject.toml

The adoption of PEP 517 and PEP 518 has opened up the possibility of using build and packaging systems besides
setuptools. The new system uses pyproject.toml to specify the build system requirements.

8.7 The MIT License

Copyright 2017-2019 Catalyst Cooperative and the Climate Policy Initiative

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8.7. The MIT License 89

https://docs.python.org/3/library/distutils.html#module-distutils
https://www.python.org/dev/peps/pep-0517
https://www.python.org/dev/peps/pep-0518

PUDL, Release 0.4.0

8.8 Catalyst Cooperative Code of Conduct

8.8.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

8.8.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

8.8.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

8.8.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

90 Chapter 8. About Catalyst Cooperative

PUDL, Release 0.4.0

8.8.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at pudl@catalyst.coop. The project team will review and investigate all complaints, and will respond in a way that it
deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the
reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

8.8.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant version 1.4, available at http://contributor-covenant.
org/version/1/4/

8.9 PUDL Release Notes

8.9.1 0.4.0 (2021-08-16)

This is a ridiculously large update including more than a year and a half’s worth of work.

New Data Coverage

• EIA Form 860 for 2004-2008 + 2019, plus eia860m through 2020.

• EIA Form 923 for 2001-2008 + 2019

• EPA CEMS Hourly for 2019-2020

• FERC Form 1 for 2019

• US Census Demographic Profile (DP1) for 2010

• FERC Form 714 for 2006-2019 (experimental)

• EIA Form 861 for 2001-2019 (experimental)

Documentation & Data Accessibility

We’ve updated and (hopefully) clarified the documentation, and no longer expect most users to perform the data
processing on their own. Instead, we are offering several methods of directly accessing already processed data:

• Processed data archives on Zenodo that include a Docker container preserving the required software environment
for working with the data.

• A repository of PUDL example notebooks

• A JupyterHub instance hosted in collaboration with 2i2c

• Browsable database access via Datasette at https://data.catalyst.coop

Users who still want to run the ETL themselves will need to set up the set up the PUDL development environment

8.9. PUDL Release Notes 91

mailto:pudl@catalyst.coop
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/
https://github.com/catalyst-cooperative/pudl-examples
https://catalyst-cooperative.pilot.2i2c.cloud/
https://2i2c.org
https://datasette.io
https://data.catalyst.coop

PUDL, Release 0.4.0

Data Cleaning & Integration

• We now inject placeholder utilities in the cloned FERC Form 1 database when respondent IDs appear in the
data tables, but not in the respondent table. This addresses a bunch of unsatisfied foreign key constraints in the
original databases published by FERC.

• We’re doing much more software testing and data validation, and so hopefully we’re catching more issues early
on.

Hourly Electricity Demand and Historical Utility Territories

With support from GridLab and in collaboration with researchers at Berkeley’s Center for Environmental Public Policy,
we did a bunch of work on spatially attributing hourly historical electricity demand. This work was largely done by
@ezwelty and @yashkumar1803 and included:

• Semi-programmatic compilation of historical utility and balancing authority service territory geometries based
on the counties associated with utilities, and the utilities associated with balancing authorities in the EIA 861
(2001-2019). See e.g. #670 but also many others.

• A method for spatially allocating hourly electricity demand from FERC 714 to US states based on the overlap-
ping historical utility service territories described above. See #741

• A fast timeseries outlier detection routine for cleaning up the FERC 714 hourly data using correlations between
the time series reported by all of the different entities. See #871

Net Generation and Fuel Consumption for All Generators

We have developed an experimental methodology to produce net generation and fuel consumption for all generators.
The process has known issues and is being actively developed. See #989

Net electricity generation and fuel consumption are reported in multiple ways in the EIA 923. The genera-
tion_fuel_eia923 table reports both generation and fuel consumption, and breaks them down by plant, prime mover,
and fuel. In parallel, the generation_eia923 table reports generation by generator, and the boiler_fuel_eia923 table
reports fuel consumption by boiler.

The generation_fuel_eia923 table is more complete, but the generation_eia923 + boiler_fuel_eia923 tables are more
granular. The generation_eia923 table includes only ~55% of the total MWhs reported in the generation_fuel_eia923
table.

The pudl.analysis.allocate_net_gen module estimates the net electricity generation and fuel con-
sumption attributable to individual generators based on the more expansive reporting of the data in the genera-
tion_fuel_eia923 table.

Data Management and Archiving

• We now use a series of web scrapers to collect snapshots of the raw input data that is processed by PUDL. These
original data are archived as Frictionless Data Packages on Zenodo, so that they can be accessed reproducibly
and programmatically via a REST API. This addresses the problems we were having with the v0.3.x releases,
in which the original data on the agency websites was liable to be modified long after its “final” release, ren-
dering it incompatible with our software. These scrapers and the Zenodo archiving scripts can be found in our
pudl-scrapers and pudl-zenodo-storage repositories. The archives themselves can be found within the Catalyst
Cooperative community on Zenodo

• There’s an experimental caching system that allows these Zenodo archives to work as long-term “cold storage”
for citation and reproducibility, with cloud object storage acting as a much faster way to access the same data
for day to day non-local use, implemented by @rousik

92 Chapter 8. About Catalyst Cooperative

https://gridlab.org
https://gspp.berkeley.edu/faculty-and-impact/centers/cepp
https://github.com/ezwelty
https://github.com/yashkumar1803
https://github.com/catalyst-cooperative/pudl/pull/670
https://github.com/catalyst-cooperative/pudl/pull/741
https://github.com/catalyst-cooperative/pudl/pull/871
https://github.com/catalyst-cooperative/pudl/pull/989
https://specs.frictionlessdata.io/data-package/
https://zenodo.org
https://github.com/catalyst-cooperative/pudl-scrapers
https://github.com/catalyst-cooperative/pudl-zenodo-storage
https://zenodo.org/communities/catalyst-cooperative/
https://zenodo.org/communities/catalyst-cooperative/
https://github.com/rousik

PUDL, Release 0.4.0

• We’ve decided to shift to producing a combination of relational databases (SQLite files) and columnar data
stores (Apache Parquet files) as the primary outputs of PUDL. Tabular Data Packages didn’t end up serving
either database or spreadsheet users very well. The CSV file were often too large to access via spreadsheets,
and users missed out on the relationships between data tables. Needing to separately load the data packages into
SQLite and Parquet was a hassle and generated a lot of overly complicated and fragile code.

Known Issues

• The EIA 861 and FERC 714 data are not yet integrated into the SQLite database outputs, because we need to
overhaul our entity resolution process to accommodate them in the database structure. That work is ongoing,
see #639

• The EIA 860 and EIA 923 data don’t cover exactly the same rage of years. EIA 860 only goes back to 2004,
while EIA 923 goes back to 2001. This is because the pre-2004 EIA 860 data is stored in the DBF file format,
and we need to update our extraction code to deal with the different format. This means some analyses that
require both EIA 860 and EIA 923 data (like the calculation of heat rates) can only be performed as far back as
2004 at the moment. See #848

• There are 387 EIA utilities and 228 EIA palnts which appear in the EIA 923, but which haven’t yet been
assigned PUDL IDs and associated with the corresponding utilities and plants reported in the FERC Form 1.
These entities show up in the 2001-2008 EIA 923 data that was just integrated. These older plants and utilities
can’t yet be used in conjuction with FERC data. When the EIA 860 data for 2001-2003 has been integrated, we
will finish this manual ID assignment process. See #848#1069

• 52 of the algorithmically assigned plant_id_ferc1 values found in the plants_steam_ferc1 table are
currently associated with more than one plant_id_pudl value (99 PUDL plant IDs are involved), indicating
either that the algorithm is making poor assignments, or that the manually assigned plant_id_pudl values
are incorrect. This is out of several thousand distinct plant_id_ferc1 values. See #954

• The county FIPS codes associated with coal mines reported in the Fuel Receipts and Costs table are being treated
inconsistently in terms of their data types, especially in the output functions, so they are currently being output
as floating point numbers that have been cast to strings, rather than zero-padded integers that are strings. See
#1119

8.9.2 0.3.2 (2020-02-17)

The primary changes in this release:

• The 2009-2010 data for EIA 860 have been integrated, including updates to the data validation test cases.

• Output tables are more uniform and less restrictive in what they include, no longer requiring PUDL Plant &
Utility IDs in some tables. This release was used to compile v1.1.0 of the PUDL Data Release, which is
archived at Zenodo under this DOI: https://doi.org/10.5281/zenodo.3672068

With this release, the EIA 860 & 923 data now (finally!) cover the same span of time. We do not anticipate
integrating any older EIA 860 or 923 data at this time.

8.9. PUDL Release Notes 93

https://specs.frictionlessdata.io/tabular-data-package/
https://github.com/catalyst-cooperative/pudl/issues/639
https://github.com/catalyst-cooperative/pudl/issues/848
https://github.com/catalyst-cooperative/pudl/issues/848
https://github.com/catalyst-cooperative/pudl/issues/1069
https://github.com/catalyst-cooperative/pudl/issues/954
https://github.com/catalyst-cooperative/pudl/issues/1119
https://doi.org/10.5281/zenodo.3672068

PUDL, Release 0.4.0

8.9.3 0.3.1 (2020-02-05)

A couple of minor bugs were found in the preparation of the first PUDL data release:

• No maximum version of Python was being specified in setup.py. PUDL currently only works on Python 3.7, not
3.8.

• epacems_to_parquet conversion script was erroneously attempting to verify the availability of raw input
data files, despite the fact that it now relies on the packaged post-ETL epacems data. Didn’t catch this before
since it was always being run in a context where the original data was lying around. . . but that’s not the case
when someone just downloads the released data packages and tries to load them.

8.9.4 0.3.0 (2020-01-30)

This release is mostly about getting the infrastructure in place to do regular data releases via Zenodo, and updating
ETL with 2018 data.

Added lots of data validation / quality assurance test cases in anticipation of archiving data. See the pudl.validate
module for more details.

New data since v0.2.0 of PUDL:

• EIA Form 860 for 2018

• EIA Form 923 for 2018

• FERC Form 1 for 1994-2003 and 2018 (select tables)

We removed the FERC Form 1 accumulated depreciation table from PUDL because it requires detailed row-mapping
in order to be accurate across all the years. It and many other FERC tables will be integrated soon, using new row-
mapping methods.

Lots of new plants and utilities integrated into the PUDL ID mapping process, for the earlier years (1994-2003). All
years of FERC 1 data should be integrated for all future ferc1 tables.

Command line interfaces of some of the ETL scripts have changed, see their help messages for details.

8.9.5 0.2.0 (2019-09-17)

This is the first release of PUDL to generate data packages as the canonical output, rather than loading data into a local
PostgreSQL database. The data packages can then be used to generate a local SQLite database, without relying on any
software being installed outside of the Python requirements specified for the catalyst.coop package.

This change will enable easier installation of PUDL, as well as archiving and bulk distribution of the data products in
a platform independent format.

8.9.6 0.1.0 (2019-09-12)

This is the only release of PUDL that will be made that makes use of PostgreSQL as the primary data product. It is
provided for reference, in case there are users relying on this setup who need access to a well defined release.

94 Chapter 8. About Catalyst Cooperative

PUDL, Release 0.4.0

8.10 pudl

8.10.1 pudl package

Subpackages

pudl.analysis package

Submodules

pudl.analysis.allocate_net_gen module

Allocate data from generation_fuel_eia923 table to generator level.

Net electricity generation and fuel consumption are reported in mutiple ways in the EIA 923. The genera-
tion_fuel_eia923 table reports both generation and fuel consumption, and breaks them down by plant, prime mover,
and fuel. In parallel, the generation_eia923 table reports generation by generator, and the boiler_fuel_eia923 table
reports fuel consumption by boiler.

The generation_fuel_eia923 table is more complete, but the generation_eia923 + boiler_fuel_eia923 tables are more
granular. The generation_eia923 table includes only ~55% of the total MWhs reported in the generation_fuel_eia923
table.

This module estimates the net electricity generation and fuel consumption attributable to individual generators based
on the more expansive reporting of the data in the generation_fuel_eia923 table. The main coordinating function here
is pudl.analysis.allocate_net_gen.allocate_gen_fuel_by_gen().

The algorithm we’re using assumes:

• The generation_eia923 table is the authoritative source of information about how much generation is attributable
to an individual generator, if it reports in that table.

• The generation_fuel_eia923 table is the authoritative source of information about how much generation and fuel
consumption is attributable to an entire plant.

• The generators_eia860 table provides an exhaustive list of all generators whose generation is being reported in
the generation_fuel_eia923 table.

We allocate the net generation reported in the generation_fuel_eia923 table on the basis of plant, prime mover, and
fuel type among the generators in each plant that have matching fuel types. Generation is allocated proportional to
reported generation if it’s available, and proportional to each generator’s capacity if generation is not available.

In more detail: within each year of data, we split the plants into three groups:

• Plants where ALL generators report in the more granular generation_eia923 table.

• Plants where NONE of the generators report in the generation_eia923 table.

• Plants where only SOME of the generators report in the generation_eia923 table.

In plant-years where ALL generators report more granular generation, the total net generation reported in the gener-
ation_fuel_eia923 table is allocated in proportion to the generation each generator reported in the generation_eia923
table. We do this instead of using net_generation_mwh from generation_eia923 because there are some small discrep-
ancies between the total amounts of generation reported in these two tables.

In plant-years where NONE of the generators report more granular generation, we create a generator record for each
associated fuel type. Those records are merged with the generation_fuel_eia923 table on plant, prime mover code, and
fuel type. Each group of plant, prime mover, and fuel will have some amount of reported net generation associated with

8.10. pudl 95

PUDL, Release 0.4.0

it, and one or more generators. The net generation is allocated among the generators within the group in proportion to
their capacity. Then the allocated net generation is summed up by generator.

In the hybrid case, where only SOME of of a plant’s generators report the more granular generation data, we use
a combination of the two allocation methods described above. First, the total generation reported across a plant in
the generation_fuel_eia923 table is allocated between the two categories of generators (those that report fine-grained
generation, and those that don’t) in direct proportion to the fraction of the plant’s generation which is reported in the
generation_eia923 table, relative to the total generation reported in the generation_fuel_eia923 table.

Note that this methology does not distinguish between primary and secondary fuel_types for generators. It associates
portions of net generation to each generators in the same plant do not report detailed generation, have the same
prime_mover_code, and use the same fuels, but have very different capacity factors in reality, this methodology will
allocate generation such that they end up with very similar capacity factors. We imagine this is an uncommon scenario.

This methodology has several potential flaws and drawbacks. Because there is no indicator of what portion of the
energy_source_codes (ie. fuel_type), we associate the net generation equally among them. In effect, if a plant had
multiple generators with the same prime_mover_code but opposite primary and secondary fuels (eg. gen 1 has a pri-
mary fuel of ‘NG’ and secondary fuel of ‘DFO’, while gen 2 has a primary fuel of ‘DFO’ and a secondary fuel of
‘NG’), the methodology associates the generation_fuel_eia923 records similarly across these two generators. How-
ever, the allocated net generation will still be porporational to each generator’s net generation (if it’s reported) or
capacity (if generation is not reported).

pudl.analysis.allocate_net_gen.DATA_COLS = ['net_generation_mwh', 'fuel_consumed_mmbtu']
Data columns from generation_fuel_eia923 that are being allocated.

pudl.analysis.allocate_net_gen.IDX_GENS = ['plant_id_eia', 'generator_id', 'report_date']
Id columns for generators.

pudl.analysis.allocate_net_gen.IDX_PM_FUEL = ['plant_id_eia', 'prime_mover_code', 'fuel_type', 'report_date']
Id columns for plant, prime mover & fuel type records.

pudl.analysis.allocate_net_gen.agg_by_generator(gen_pm_fuel)
Aggreate the allocated gen fuel data to the generator level.

Parameters gen_pm_fuel (pandas.DataFrame) – result of allo-
cate_gen_fuel_by_gen_pm_fuel()

pudl.analysis.allocate_net_gen.allocate_gen_fuel_by_gen(pudl_out)
Allocate gen fuel data columns to generators.

The generation_fuel_eia923 table includes net generation and fuel consumption data at the plant/fuel type/prime
mover level. The most granular level of plants that PUDL typically uses is at the plant/generator level. This
method converts the generation_fuel_eia923 table to the level of plant/generators.

Parameters pudl_out (pudl.output.pudltabl.PudlTabl) – An object used to create
the tables for EIA and FERC Form 1 analysis.

Returns table with columns IDX_GENS and DATA_COLS. The DATA_COLS will be scaled to the
level of the IDX_GENS.

Return type pandas.DataFrame

pudl.analysis.allocate_net_gen.allocate_gen_fuel_by_gen_pm_fuel(gf, gen, gens,
drop_interim_cols=True)

Proportionally allocate net gen from gen_fuel table to generators.

Two main steps here:

• associate generation_fuel_eia923 table data w/ generators

• allocate generation_fuel_eia923 table data proportionally

96 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

The association process happens via associate_generator_tables().

The allocation process (via calc_allocation_fraction()) entails generating a fraction for each record within
a IDX_PM_FUEL group. We have two data points for generating this ratio: the net generation in the
generation_eia923 table and the capacity from the generators_eia860 table. The end result is a frac column
which is unique for each generator/prime_mover/fuel record and is used to allocate the associated net
generation from the generation_fuel_eia923 table.

Args:

gf (pandas.DataFrame): generator_fuel_eia923 table with columns: IDX_PM_FUEL and
net_generation_mwh and fuel_consumed_mmbtu.

gen (pandas.DataFrame): generation_eia923 table with columns: IDX_GENS and
net_generation_mwh.

gens (pandas.DataFrame): generators_eia860 table with cols: IDX_GENS, capacity_mw,
prime_mover_code, and all of the energy_source_code columns

drop_interim_cols (boolean): True/False flag for dropping interim columns which are used to
generate the net_generation_mwh column (they are mostly the frac column and net generataion
reported in the original generation_eia923 and generation_fuel_eia923 tables) that are useful for
debugging. Default is False, which will drop the columns.

Returns pandas.DataFrame

pudl.analysis.allocate_net_gen.associate_generator_tables(gf, gen, gens)
Associate the three tables needed to assign net gen to generators.

Parameters

• gf (pandas.DataFrame) – generator_fuel_eia923 table with columns: IDX_PM_FUEL
and net_generation_mwh and fuel_consumed_mmbtu.

• gen (pandas.DataFrame) – generation_eia923 table with columns: IDX_GENS and
net_generation_mwh.

• gens (pandas.DataFrame) – generators_eia860 table with cols: IDX_GENS and all of
the energy_source_code columns

TODO: Convert these groupby/merges into transforms.

pudl.analysis.allocate_net_gen.calc_allocation_fraction(gen_pm_fuel,
drop_interim_cols=True)

Make frac column to allocate net gen from the generation fuel table.

There are three main types of generators:

• “all gen”: generators of plants which fully report to the generators_eia860 table.

• “some gen”: generators of plants which partially report to the generators_eia860 table.

• “gf only”: generators of plants which do not report at all to the generators_eia860 table.

• “no pm”: generators that have missing prime movers.

Each different type of generator needs to be treated slightly differently, but all will end up with a frac column
that can be used to allocate the net_generation_mwh_gf_tbl.

Parameters

• gen_pm_fuel (pandas.DataFrame) – output of prep_alloction_fraction().

8.10. pudl 97

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• drop_interim_cols (boolean) – True/False flag for dropping interim columns which
are used to generate the frac column (they are mostly interim frac columns and totals of net
generataion from various groupings of generators) that are useful for debugging. Default is
False.

pudl.analysis.allocate_net_gen.prep_alloction_fraction(gen_assoc)
Make flags and aggregations to prepare for the calc_allocation_ratios().

In calc_allocation_ratios(), we will break the generators out into four types - see calc_allocation_ratios() docs
for details. This function adds flags for splitting the generators. It also adds

pudl.analysis.allocate_net_gen.remove_retired_generators(gen_assoc)
Remove the retired generators.

We don’t want to associate net generation to generators that are retired (or proposed! or any other opera-
tional_status besides existing).

We do want to keep the generators that retire mid-year and have generator specific data from the genera-
tion_eia923 table. Removing the generators that retire mid-report year and don’t report to the generation_eia923
table is not exactly a great assumption. For now, we are removing them. We should employ a strategy that allo-
cates only a portion of the generation to them based on their operational months (or by doing the allocation on
a monthly basis).

Parameters gen_assoc (pandas.DataFrame) – table of generators with stacked fuel types
and broadcasted net generation data from the generation_eia923 and generation_fuel_eia923
tables. Output of associate_generator_tables().

pudl.analysis.allocate_net_gen.stack_generators(gens, cat_col='energy_source_code_num',
stacked_col='fuel_type')

Stack the generator table with a set of columns.

Parameters

• gens (pandas.DataFrame) – generators_eia860 table with cols: IDX_GENS and all of
the energy_source_code columns

• cat_col (string) – name of category column which will end up having the column
names of cols_to_stack

• stacked_col (string) – name of column which will end up with the stacked data from
cols_to_stack

Returns a dataframe with these columns: idx_stack, cat_col, stacked_col

Return type pandas.DataFrame

pudl.analysis.mcoe module

A module with functions to aid generating MCOE.

pudl.analysis.mcoe.capacity_factor(pudl_out, min_cap_fact=0, max_cap_fact=1.5)
Calculate the capacity factor for each generator.

Capacity Factor is calculated by using the net generation from eia923 and the nameplate capacity from eia860.
The net gen and capacity are pulled into one dataframe, then the dates from that dataframe are pulled out to de-
termine the hours in each period based on the frequency. The number of hours is used in calculating the capacity
factor. Then records with capacity factors outside the range specified by min_cap_fact and max_cap_fact are
dropped.

pudl.analysis.mcoe.fuel_cost(pudl_out)
Calculate fuel costs per MWh on a per generator basis for MCOE.

98 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

Fuel costs are reported on a per-plant basis, but we want to estimate them at the generator level. This is compli-
cated by the fact that some plants have several different types of generators, using different fuels. We have fuel
costs broken out by type of fuel (coal, oil, gas), and we know which generators use which fuel based on their
energy_source_code and reported prime_mover. Coal plants use a little bit of natural gas or diesel to get started,
but based on our analysis of the “pure” coal plants, this amounts to only a fraction of a percent of their overal
fuel consumption on a heat content basis, so we’re ignoring it for now.

For plants whose generators all rely on the same fuel source, we simply attribute the fuel costs proportional to
the fuel heat content consumption associated with each generator.

For plants with more than one type of generator energy source, we need to split out the fuel costs according to
fuel type – so the gas fuel costs are associated with generators that have energy_source_code gas, and the coal
fuel costs are associated with the generators that have energy_source_code coal.

pudl.analysis.mcoe.heat_rate_by_gen(pudl_out)
Convert per-unit heat rate to by-generator, adding fuel type & count.

Heat rates really only make sense at the unit level, since input fuel and output electricity are comingled at the
unit level, but it is useful in many contexts to have that per-unit heat rate associated with each of the underlying
generators, as much more information is available about the generators.

To combine the (potentially) more granular temporal information from the per-unit heat rates with annual gen-
erator level attributes, we have to do a many-to-many merge. This can’t be done easily with merge_asof(), so
we treat the year and month fields as categorial variables, and do a normal inner merge that broadcasts monthly
dates in one direction, and generator IDs in the other.

Returns with columns report_date, plant_id_eia, unit_id_pudl, generator_id,
heat_rate_mmbtu_mwh, fuel_type_code_pudl, fuel_type_count. The output will have a
time frequency corresponding to that of the input pudl_out. Output data types are set to their
canonical values before returning.

Return type pandas.DataFrame

Raises ValueError if pudl_out.freq is None. –

pudl.analysis.mcoe.heat_rate_by_unit(pudl_out)
Calculate heat rates (mmBTU/MWh) within separable generation units.

Assumes a “good” Boiler Generator Association (bga) i.e. one that only contains boilers and generators which
have been completely associated at some point in the past.

The BGA dataframe needs to have the following columns:

• report_date (annual)

• plant_id_eia

• unit_id_pudl

• generator_id

• boiler_id

The unit_id is associated with generation records based on report_date, plant_id_eia, and generator_id. Anal-
ogously, the unit_id is associated with boiler fuel consumption records based on report_date, plant_id_eia, and
boiler_id.

Then the total net generation and fuel consumption per unit per time period are calculated, allowing the calcu-
lation of a per unit heat rate. That per unit heat rate is returned in a dataframe containing:

• report_date

• plant_id_eia

8.10. pudl 99

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• unit_id_pudl

• net_generation_mwh

• fuel_consumed_mmbtu

• heat_rate_mmbtu_mwh

pudl.analysis.mcoe.mcoe(pudl_out, min_heat_rate=5.5, min_fuel_cost_per_mwh=0.0,
min_cap_fact=0.0, max_cap_fact=1.5, all_gens=True)

Compile marginal cost of electricity (MCOE) at the generator level.

Use data from EIA 923, EIA 860, and (someday) FERC Form 1 to estimate the MCOE of individual generating
units. The calculation is performed over the range of times and at the time resolution of the input pudl_out
object.

Parameters

• pudl_out (pudl.output.pudltable.PudlTabl) – a PUDL output object speci-
fying the time resolution and date range for which the calculations should be performed.

• min_heat_rate (float) – lowest plausible heat rate, in mmBTU/MWh. Any MCOE
records with lower heat rates are presumed to be invalid, and are discarded before returning.

• min_cap_fact (float) – minimum & maximum generator capacity factor. Generator
records with a lower capacity factor will be filtered out before returning. This allows the
user to exclude generators that aren’t being used enough to have valid.

• max_cap_fact (float) – minimum & maximum generator capacity factor. Generator
records with a lower capacity factor will be filtered out before returning. This allows the
user to exclude generators that aren’t being used enough to have valid.

• min_fuel_cost_per_mwh (float) – minimum fuel cost on a per MWh basis that is
required for a generator record to be considered valid. For some reason there are now a large
number of $0 fuel cost records, which previously would have been NaN.

• all_gens (bool) – if True, include attributes of all generators in the generators_eia860
table, rather than just the generators which have records in the derived MCOE values. True
by default.

Returns a dataframe organized by date and generator, with lots of juicy information about the gen-
erators – including fuel cost on a per MWh and MMBTU basis, heat rates, and net generation.

Return type pandas.DataFrame

pudl.analysis.service_territory module

Compile historical utility and balancing area territories.

Use the mapping of utilities to counties, and balancing areas to utilities, available within the EIA 861, in conjunction
with the US Census geometries for counties, to infer the historical spatial extent of utility and balancing area territories.
Output the resulting geometries for use in other applications.

pudl.analysis.service_territory.add_geometries(df, census_gdf, dissolve=False, dis-
solve_by=None)

Merge census geometries into dataframe on county_id_fips, optionally dissolving.

Merge the US Census county-level geospatial information into the DataFrame df based on the the column
county_id_fips (in df), which corresponds to the column GEOID10 in census_gdf. Also bring in the population
and area of the counties, summing as necessary in the case of dissolved geometries.

Parameters

100 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• df (pandas.DataFrame) – A DataFrame containing a county_id_fips column.

• census_gdf (geopandas.GeoDataFrame) – A GeoDataFrame based on the US
Census demographic profile (DP1) data at county resolution, with the original column names
as published by US Census.

• dissolve (bool) – If True, dissolve individual county geometries into larger service
territories.

• dissolve_by (list) – The columns to group by in the dissolve. For example, dis-
solve_by=[“report_date”, “utility_id_eia”] might provide annual utility service territories,
while [“report_date”, “balancing_authority_id_eia”] would provide annual balancing au-
thority territories.

Returns geopandas.GeoDataFrame

pudl.analysis.service_territory.compile_geoms(pudl_out, census_counties, entity_type,
dissolve=False, limit_by_state=True,
save=True)

Compile all available utility or balancing authority geometries.

Parameters

• pudl_out (pudl.output.pudltabl.PudlTabl) – A PUDL output object, which
will be used to extract and cache the EIA 861 tables.

• census_counties (geopandas.GeoDataFrame) – A GeoDataFrame containing
the county level US Census DP1 data and county geometries.

• entity_type (str) – The type of service territory geometry to compile. Must be either
“ba” (balancing authority) or “util” (utility).

• dissolve (bool) – Whether to dissolve the compiled geometries to the utility/balancing
authority level, or leave them as counties.

• limit_by_state (bool) – Whether to limit included counties to those with observed
EIA 861 data in association with the state and utility/balancing authority.

• save (bool) – If True, save the compiled GeoDataFrame as a GeoParquet file before
returning. Especially useful in the case of dissolved geometries, as they are computationally
expensive.

Returns geopandas.GeoDataFrame

pudl.analysis.service_territory.get_all_utils(pudl_out)
Compile IDs and Names of all known EIA Utilities.

Grab all EIA utility names and IDs from both the EIA 861 Service Territory table and the EIA 860 Utility entity
table. This is a temporary function that’s only needed because we haven’t integrated the EIA 861 information
into the entity harvesting process and PUDL database yet.

Parameters pudl_out (pudl.output.pudltabl.PudlTabl) – The PUDL output object
which should be used to obtain PUDL data.

Returns Having 2 columns utility_id_eia and utility_name_eia.

Return type pandas.DataFrame

pudl.analysis.service_territory.get_territory_fips(ids, assn, assn_col, st_eia861,
limit_by_state=True)

Compile county FIPS codes associated with an entity’s service territory.

8.10. pudl 101

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

For each entity identified by ids, look up the set of counties associated with that entity on an annual basis.
Optionally limit the set of counties to those within states where the selected entities reported activity elsewhere
within the EIA 861 data.

Parameters

• ids (iterable of ints) – A collection of EIA utility or balancing authority IDs.

• assn (pandas.DataFrame) – Association table, relating report_date,

• state – column indicated by assn_col – if it’s not utility_id_eia.

• utility_id_eia to each other (and) – column indicated by assn_col – if it’s
not utility_id_eia.

• well as the (as) – column indicated by assn_col – if it’s not utility_id_eia.

• assn_col (str) – Label of the dataframe column in assn that contains the ID of the
entities of interest. Should probably be either balancing_authority_id_eia or
utility_id_eia.

• st_eia861 (pandas.DataFrame) – The EIA 861 Service Territory table.

• limit_by_state (bool) – Whether to require that the counties associated with the
balancing authority are inside a state that has also been seen in association with the balancing
authority and the utility whose service territory contians the county.

Returns A table associating the entity IDs with a collection of counties annually, identifying coun-
ties both by name and county_id_fips (both state and state_id_fips are included for clarity).

Return type pandas.DataFrame

pudl.analysis.service_territory.get_territory_geometries(ids, assn, assn_col,
st_eia861, census_gdf,
limit_by_state=True,
dissolve=False)

Compile service territory geometries based on county_id_fips.

Calls get_territory_fips to generate the list of counties associated with each entity identified by
ids, and then merges in the corresponding county geometries from the US Census DP1 data passed in via
census_gdf.

Optionally dissolve all of the county level geometries into a single geometry for each combination of entity and
year.

Note: Dissolving geometires is a costly operation, and may take half an hour or more if you are processing all
entities for all years. Dissolving also means that all the per-county information will be lost, rendering the output
inappropriate for use in many analyses. Dissolving is mostly useful for generating visualizations.

Parameters

• ids (iterable of ints) – A collection of EIA balancing authority IDs.

• assn (pandas.DataFrame) – Association table, relating report_date,

• state – column indicated by assn_col – if it’s not utility_id_eia.

• utility_id_eia to each other (and) – column indicated by assn_col – if it’s
not utility_id_eia.

• well as the (as) – column indicated by assn_col – if it’s not utility_id_eia.

102 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• assn_col (str) – Label of the dataframe column in assn that contains the ID of the
entities of interest. Should probably be either balancing_authority_id_eia or
utility_id_eia.

• st_eia861 (pandas.DataFrame) – The EIA 861 Service Territory table.

• census_gdf (geopandas.GeoDataFrame) – The US Census DP1 county-level ge-
ometries as returned by pudl.output.censusdp1tract.get_layer(“county”).

• limit_by_state (bool) – Whether to require that the counties associated with the
balancing authority are inside a state that has also been seen in association with the balancing
authority and the utility whose service territory contians the county.

• dissolve (bool) – If False, each record in the compiled territory will correspond to a sin-
gle county, with a county-level geometry, and there will be many records enumerating all the
counties associated with a given balancing_authority_id_eia in each year. If dissolve=True,
all of the county-level geometries for each utility in each year will be merged together (“dis-
solved”) resulting in a single geometry and record for each balancing_authority-year.

Returns geopandas.GeoDataFrame

pudl.analysis.service_territory.main()
Compile historical utility and balancing area territories.

pudl.analysis.service_territory.parse_command_line(argv)
Parse script command line arguments. See the -h option.

Parameters argv (list) – command line arguments including caller file name.

Returns A dictionary mapping command line arguments to their values.

Return type dict

pudl.analysis.service_territory.plot_all_territories(gdf, report_date, respon-
dent_type=('balancing_authority',
'utility'), color='black', al-
pha=0.25, basemap=True)

Plot all of the planning areas of a given type for a given report date.

Todo: This function needs to be made more general purpose, and less entangled with the FERC 714 data.

Parameters

• gdf (geopandas.GeoDataFrame) – GeoDataFrame containing planning area geome-
tries, organized by respondent_id_ferc714 and report_date.

• report_date (datetime) – A Datetime indicating what year’s planning areas should
be displayed.

• respondent_type (str or iterable) – Type of respondent whose planning ar-
eas should be displayed. Either “utility” or “balancing_authority” or an iterable collection
containing both.

• color (str) – Color to use for the planning areas.

• alpha (float) – Transparency to use for the planning areas.

• basemap (bool) – If true, use the OpenStreetMap tiles for context.

Returns matplotlib.axes.Axes

8.10. pudl 103

https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

pudl.analysis.service_territory.plot_historical_territory(gdf, id_col, id_val)
Plot all the historical geometries defined for the specified entity.

This is useful for exploring how a particular entity’s service territory has evolved over time, or for identifying
individual missing or inaccurate territories.

Parameters

• gdf (geopandas.GeoDataFrame) – A geodataframe containing geometries pertaining
electricity planning areas. Can be broken down by county FIPS code, or have a single record
containing a geometry for each combination of report_date and the column being used to
select planning areas (see below).

• id_col (str) – The label of a column in gdf that identifies the planning area to be visual-
ized, like utility_id_eia, balancing_authority_id_eia, or balancing_authority_code_eia.

• id_val (str or int) – The value identifying the

Returns None

pudl.analysis.spatial module

Spatial operations for demand allocation.

pudl.analysis.spatial.check_gdf(gdf: geopandas.geodataframe.GeoDataFrame)→ None
Check that GeoDataFrame contains (Multi)Polygon geometries with non-zero area.

Parameters gdf – GeoDataFrame.

Raises

• TypeError – Object is not a GeoDataFrame.

• AttributeError – GeoDataFrame has no geometry.

• TypeError – Geometry is not a GeoSeries.

• ValueError – Geometry contains null geometries.

• ValueError – Geometry contains non-(Multi)Polygon geometries.

• ValueError – Geometry contains (Multi)Polygon geometries with zero area.

• ValueError – MultiPolygon contains Polygon geometries with zero area.

pudl.analysis.spatial.dissolve(gdf: geopandas.geodataframe.GeoDataFrame, by: Iterable[str],
func: Union[Callable, str, list, dict], how: Union[Literal[union,
first], Callable[[geopandas.geoseries.GeoSeries],
shapely.geometry.base.BaseGeometry]] = 'union') → geopan-
das.geodataframe.GeoDataFrame

Dissolve layer by aggregating features based on common attributes.

Parameters

• gdf – GeoDataFrame with non-empty (Multi)Polygon geometries.

• by – Names of columns to group features by.

• func – Aggregation function for data columns (see pd.DataFrame.groupby()).

• how – Aggregation function for geometry column. Either ‘union’ (gpd.GeoSeries.
unary_union()), ‘first’ (first geometry in group), or a function aggregating multiple
geometries into one.

104 Chapter 8. About Catalyst Cooperative

https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Returns GeoDataFrame with dissolved geometry and data columns, and grouping columns set as
the index.

pudl.analysis.spatial.explode(gdf: geopandas.geodataframe.GeoDataFrame, ra-
tios: Optional[Iterable[str]] = None) → geopan-
das.geodataframe.GeoDataFrame

Explode MultiPolygon to multiple Polygon geometries.

Parameters

• gdf – GeoDataFrame with non-zero-area (Multi)Polygon geometries.

• ratios – Names of columns to rescale by the area fraction of the Polygon relative to the
MultiPolygon. If provided, MultiPolygon cannot self-intersect. By default, the original
value is used unchanged.

Raises ValueError – Geometry contains self-intersecting MultiPolygon.

Returns GeoDataFrame with each Polygon as a separate row in the GeoDataFrame. The index is
the number of the source row in the input GeoDataFrame.

pudl.analysis.spatial.get_data_columns(df: pandas.core.frame.DataFrame)→ list
Return list of columns, ignoring geometry.

pudl.analysis.spatial.overlay(*gdfs: geopandas.geodataframe.GeoDataFrame, how: Lit-
eral[intersection, union, identity, symmetric_difference, differ-
ence] = 'intersection', ratios: Optional[Iterable[str]] = None)→
geopandas.geodataframe.GeoDataFrame

Overlay multiple layers incrementally.

When a feature from one layer overlaps the feature of another layer, the area of overlap is split into two
geometrically-identical features: one for each of the original overlapping features. Each split feature contains
the attributes of the original feature.

TODO: To identify the source of output features, the user can ensure that each layer contains a column to index
by. Alternatively, tuples of indices of the overlapping feature from each layer (null if none) could be returned as
the index.

Parameters

• gdfs – GeoDataFrames with non-empty (Multi)Polygon geometries assumed to contain no
self-overlaps (see self_union()). Names of (non-geometry) columns cannot be used
more than once. Any index colums are ignored.

• how – Spatial overlay method (see gpd.overlay()).

• ratios – Names of columns to rescale by the area fraction of the split feature relative to
the original. By default, the original value is used unchanged.

Raises ValueError – Duplicate column names in layers.

Returns GeoDataFrame with the geometries and attributes resulting from the overlay.

pudl.analysis.spatial.polygonize(geom: shapely.geometry.base.BaseGeometry)
→ Union[shapely.geometry.polygon.Polygon,
shapely.geometry.multipolygon.MultiPolygon]

Convert geometry to (Multi)Polygon.

Parameters geom – Geometry to convert to (Multi)Polygon.

Returns Geometry converted to (Multi)Polygon, with all zero-area components removed.

Raises ValueError – Geometry has zero area.

8.10. pudl 105

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PUDL, Release 0.4.0

pudl.analysis.spatial.self_union(gdf: geopandas.geodataframe.GeoDataFrame, ra-
tios: Optional[Iterable[str]] = None) → geopan-
das.geodataframe.GeoDataFrame

Calculate the geometric union of a feature layer with itself.

Areas of overlap are split into two or more geometrically-identical features: one for each of the original over-
lapping features. Each split feature contains the attributes of the original feature.

Parameters

• gdf – GeoDataFrame with non-zero-area MultiPolygon geometries.

• ratios – Names of columns to rescale by the area fraction of the split feature relative to
the original. By default, the original value is used unchanged.

Returns GeoDataFrame representing the union of the input features with themselves. Its index
contains tuples of the index of the original overlapping features.

Raises NotImplementedError – MultiPolygon geometries are not yet supported.

pudl.analysis.state_demand module

Predict state-level electricity demand.

pudl.analysis.state_demand.STANDARD_UTC_OFFSETS: Dict[str, str] = {'America/Anchorage': -9, 'America/Chicago': -6, 'America/Denver': -7, 'America/Halifax': -4, 'America/Los_Angeles': -8, 'America/New_York': -5, 'Pacific/Honolulu': -10}
Hour offset from Coordinated Universal Time (UTC) by time zone.

Time zones are canonical names (e.g. ‘America/Denver’) from tzdata (https://www.iana.org/time-zones)
mapped to their standard-time UTC offset.

pudl.analysis.state_demand.STATES: List[Dict[str, Union[int, str]]] = [{'name': 'Alabama', 'code': 'AL', 'fips': '01'}, {'name': 'Alaska', 'code': 'AK', 'fips': '02'}, {'name': 'Arizona', 'code': 'AZ', 'fips': '04'}, {'name': 'Arkansas', 'code': 'AR', 'fips': '05'}, {'name': 'California', 'code': 'CA', 'fips': '06'}, {'name': 'Colorado', 'code': 'CO', 'fips': '08'}, {'name': 'Connecticut', 'code': 'CT', 'fips': '09'}, {'name': 'Delaware', 'code': 'DE', 'fips': '10'}, {'name': 'District of Columbia', 'code': 'DC', 'fips': '11'}, {'name': 'Florida', 'code': 'FL', 'fips': '12'}, {'name': 'Georgia', 'code': 'GA', 'fips': '13'}, {'name': 'Hawaii', 'code': 'HI', 'fips': '15'}, {'name': 'Idaho', 'code': 'ID', 'fips': '16'}, {'name': 'Illinois', 'code': 'IL', 'fips': '17'}, {'name': 'Indiana', 'code': 'IN', 'fips': '18'}, {'name': 'Iowa', 'code': 'IA', 'fips': '19'}, {'name': 'Kansas', 'code': 'KS', 'fips': '20'}, {'name': 'Kentucky', 'code': 'KY', 'fips': '21'}, {'name': 'Louisiana', 'code': 'LA', 'fips': '22'}, {'name': 'Maine', 'code': 'ME', 'fips': '23'}, {'name': 'Maryland', 'code': 'MD', 'fips': '24'}, {'name': 'Massachusetts', 'code': 'MA', 'fips': '25'}, {'name': 'Michigan', 'code': 'MI', 'fips': '26'}, {'name': 'Minnesota', 'code': 'MN', 'fips': '27'}, {'name': 'Mississippi', 'code': 'MS', 'fips': '28'}, {'name': 'Missouri', 'code': 'MO', 'fips': '29'}, {'name': 'Montana', 'code': 'MT', 'fips': '30'}, {'name': 'Nebraska', 'code': 'NE', 'fips': '31'}, {'name': 'Nevada', 'code': 'NV', 'fips': '32'}, {'name': 'New Hampshire', 'code': 'NH', 'fips': '33'}, {'name': 'New Jersey', 'code': 'NJ', 'fips': '34'}, {'name': 'New Mexico', 'code': 'NM', 'fips': '35'}, {'name': 'New York', 'code': 'NY', 'fips': '36'}, {'name': 'North Carolina', 'code': 'NC', 'fips': '37'}, {'name': 'North Dakota', 'code': 'ND', 'fips': '38'}, {'name': 'Ohio', 'code': 'OH', 'fips': '39'}, {'name': 'Oklahoma', 'code': 'OK', 'fips': '40'}, {'name': 'Oregon', 'code': 'OR', 'fips': '41'}, {'name': 'Pennsylvania', 'code': 'PA', 'fips': '42'}, {'name': 'Rhode Island', 'code': 'RI', 'fips': '44'}, {'name': 'South Carolina', 'code': 'SC', 'fips': '45'}, {'name': 'South Dakota', 'code': 'SD', 'fips': '46'}, {'name': 'Tennessee', 'code': 'TN', 'fips': '47'}, {'name': 'Texas', 'code': 'TX', 'fips': '48'}, {'name': 'Utah', 'code': 'UT', 'fips': '49'}, {'name': 'Vermont', 'code': 'VT', 'fips': '50'}, {'name': 'Virginia', 'code': 'VA', 'fips': '51'}, {'name': 'Washington', 'code': 'WA', 'fips': '53'}, {'name': 'West Virginia', 'code': 'WV', 'fips': '54'}, {'name': 'Wisconsin', 'code': 'WI', 'fips': '55'}, {'name': 'Wyoming', 'code': 'WY', 'fips': '56'}, {'name': 'American Samoa', 'code': 'AS', 'fips': '60'}, {'name': 'Guam', 'code': 'GU', 'fips': '66'}, {'name': 'Northern Mariana Islands', 'code': 'MP', 'fips': '69'}, {'name': 'Puerto Rico', 'code': 'PR', 'fips': '72'}, {'name': 'Virgin Islands', 'code': 'VI', 'fips': '78'}]
Attributes of US states and territories.

• name (str): Full name.

• code (str): US Postal Service (USPS) two-letter alphabetic code.

• fips (int): Federal Information Processing Standard (FIPS) code.

pudl.analysis.state_demand.UTC_OFFSETS: Dict[str, int] = {'ADT': -3, 'AKDT': -8, 'AKST': -9, 'AST': -4, 'CDT': -5, 'CST': -6, 'EDT': -4, 'EST': -5, 'HST': -10, 'MDT': -6, 'MST': -7, 'PDT': -7, 'PST': -8}
Hour offset from Coordinated Universal Time (UTC) by time zone.

Time zones are either standard or daylight-savings time zone abbreviations (e.g. ‘MST’).

pudl.analysis.state_demand.clean_ferc714_hourly_demand_matrix(df: pan-
das.core.frame.DataFrame)
→ pan-
das.core.frame.DataFrame

Detect and null anomalous values in FERC 714 hourly demand matrix.

Note: Takes about 10 minutes.

Parameters df – FERC 714 hourly demand matrix, as described in
load_ferc714_hourly_demand_matrix().

Returns Copy of df with nulled anomalous values.

106 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.iana.org/time-zones
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PUDL, Release 0.4.0

pudl.analysis.state_demand.compare_state_demand(a: pandas.core.frame.DataFrame,
b: pandas.core.frame.DataFrame,
scaled: bool = True) → pan-
das.core.frame.DataFrame

Compute statistics comparing predicted and reference demand.

Statistics are computed for each year.

Parameters

• a – Predicted demand with columns utc_datetime and either demand_mwh (if scaled=False)
or `scaled_demand_mwh (if scaled=True).

• b – Reference demand with columns utc_datetime and demand_mwh. Every element in
utc_datetime must match the one in a.

Returns Dataframe with columns year, rmse (root mean square error), and mae (mean absolute
error).

Raises ValueError – Datetime columns do not match.

pudl.analysis.state_demand.filter_ferc714_hourly_demand_matrix(df: pan-
das.core.frame.DataFrame,
min_data:
int = 100,
min_data_fraction:
float = 0.9)
→ pan-
das.core.frame.DataFrame

Filter incomplete years from FERC 714 hourly demand matrix.

Nulls respondent-years with too few data and drops respondents with no data across all years.

Parameters

• df – FERC 714 hourly demand matrix, as described in
load_ferc714_hourly_demand_matrix().

• min_data – Minimum number of non-null hours in a year.

• min_data_fraction – Minimum fraction of non-null hours between the first and last
non-null hour in a year.

Returns Hourly demand matrix df modified in-place.

pudl.analysis.state_demand.impute_ferc714_hourly_demand_matrix(df: pan-
das.core.frame.DataFrame)
→ pan-
das.core.frame.DataFrame

Impute null values in FERC 714 hourly demand matrix.

Imputation is performed separately for each year, with only the respondents reporting data in that year.

Note: Takes about 15 minutes.

Parameters df – FERC 714 hourly demand matrix, as described in
load_ferc714_hourly_demand_matrix().

Returns Copy of df with imputed values.

8.10. pudl 107

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PUDL, Release 0.4.0

pudl.analysis.state_demand.load_counties(pudl_out: pudl.output.pudltabl.PudlTabl,
pudl_settings: dict) → pan-
das.core.frame.DataFrame

Load county attributes.

Parameters

• pudl_out – PUDL database extractor.

• pudl_settings – PUDL settings.

Returns Dataframe with columns county_id_fips and population.

pudl.analysis.state_demand.load_eia861_state_total_sales(pudl_out:
pudl.output.pudltabl.PudlTabl)
→ pan-
das.core.frame.DataFrame

Read and format EIA 861 sales by state and year.

Parameters pudl_out – Used to access pudl.output.pudltabl.PudlTabl.
sales_eia861().

Returns Dataframe with columns state_id_fips, year, demand_mwh.

pudl.analysis.state_demand.load_ferc714_county_assignments(pudl_out:
pudl.output.pudltabl.PudlTabl)
→ pan-
das.core.frame.DataFrame

Load FERC 714 county assignments.

Parameters pudl_out – PUDL database extractor.

Returns Dataframe with columns respondent_id_ferc714, report year (int), and county_id_fips.

pudl.analysis.state_demand.load_ferc714_hourly_demand_matrix(pudl_out:
pudl.output.pudltabl.PudlTabl)
→ Tu-
ple[pandas.core.frame.DataFrame,
pan-
das.core.frame.DataFrame]

Read and format FERC 714 hourly demand into matrix form.

Parameters pudl_out – Used to access pudl.output.pudltabl.PudlTabl.
demand_hourly_pa_ferc714().

Returns Hourly demand as a matrix with a datetime row index (e.g. ‘2006-01-01 00:00:00’, . . . ,
‘2019-12-31 23:00:00’) in local time ignoring daylight-savings, and a respondent_id_ferc714
column index (e.g. 101, . . . , 329). A second Dataframe lists the UTC offset in hours of each
respondent_id_ferc714 and reporting year (int).

pudl.analysis.state_demand.load_ventyx_hourly_state_demand(path: str) → pan-
das.core.frame.DataFrame

Read and format Ventyx hourly state-level demand.

After manual corrections of the listed time zone, ambiguous time zone issues remain. Below is a list of transmis-
sion zones (by Transmission Zone ID) with one or more missing timestamps at transitions to or from daylight-
savings:

• 615253 (Indiana)

• 615261 (Michigan)

• 615352 (Wisconsin)

• 615357 (Missouri)

108 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

• 615377 (Saskatchewan)

• 615401 (Minnesota, Wisconsin)

• 615516 (Missouri)

• 615529 (Oklahoma)

• 615603 (Idaho, Washington)

• 1836089 (California)

Parameters path – Path to the data file (published as ‘state_level_load_2007_2018.csv’).

Returns Dataframe with hourly state-level demand. * state_id_fips: FIPS code of US state. *
utc_datetime: UTC time of the start of each hour. * demand_mwh: Hourly demand in MWh.

pudl.analysis.state_demand.local_to_utc(local: pandas.core.series.Series, tz: Iterable,
**kwargs: Any)→ pandas.core.series.Series

Convert local times to UTC.

Parameters

• local – Local times (tz-naive datetime64[ns]).

• tz – For each time, a timezone (see DatetimeIndex.tz_localize()) or UTC offset
in hours (int or float).

• kwargs – Optional arguments to DatetimeIndex.tz_localize().

Returns UTC times (tz-naive datetime64[ns]).

Examples

>>> s = pd.Series([pd.Timestamp(2020, 1, 1), pd.Timestamp(2020, 1, 1)])
>>> local_to_utc(s, [-7, -6])
0 2020-01-01 07:00:00
1 2020-01-01 06:00:00
dtype: datetime64[ns]
>>> local_to_utc(s, ['America/Denver', 'America/Chicago'])
0 2020-01-01 07:00:00
1 2020-01-01 06:00:00
dtype: datetime64[ns]

pudl.analysis.state_demand.lookup_state(state: Union[str, int])→ dict
Lookup US state by state identifier.

Parameters state – State name, two-letter abbreviation, or FIPS code. String matching is case-
insensitive.

Returns State identifers.

8.10. pudl 109

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Examples

>>> lookup_state('alabama')
{'name': 'Alabama', 'code': 'AL', 'fips': '01'}
>>> lookup_state('AL')
{'name': 'Alabama', 'code': 'AL', 'fips': '01'}
>>> lookup_state(1)
{'name': 'Alabama', 'code': 'AL', 'fips': '01'}

pudl.analysis.state_demand.main()
Predict state demand.

pudl.analysis.state_demand.melt_ferc714_hourly_demand_matrix(df: pan-
das.core.frame.DataFrame,
tz: pan-
das.core.frame.DataFrame)
→ pan-
das.core.frame.DataFrame

Melt FERC 714 hourly demand matrix to long format.

Parameters

• df – FERC 714 hourly demand matrix, as described in
load_ferc714_hourly_demand_matrix().

• tz – FERC 714 respondent time zones, as described in
load_ferc714_hourly_demand_matrix().

Returns Long-format hourly demand with columns respondent_id_ferc714, report year (int),
utc_datetime, and demand_mwh.

pudl.analysis.state_demand.plot_demand_scatter(a: pandas.core.frame.DataFrame,
b: pandas.core.frame.DataFrame,
title: Optional[str] = None, path:
Optional[str] = None)→ None

Make a scatter plot comparing predicted and reference demand.

Parameters

• a – Predicted demand with columns utc_datetime and any of demand_mwh (in grey) and
scaled_demand_mwh (in orange).

• b – Reference demand with columns utc_datetime and demand_mwh. Every element in
utc_datetime must match the one in a.

• title – Plot title.

• path – Plot path. If provided, the figure is saved to file and closed.

Raises ValueError – Datetime columns do not match.

pudl.analysis.state_demand.plot_demand_timeseries(a: pan-
das.core.frame.DataFrame, b: Op-
tional[pandas.core.frame.DataFrame]
= None, window: int = 168, ti-
tle: Optional[str] = None, path:
Optional[str] = None)→ None

Make a timeseries plot of predicted and reference demand.

Parameters

110 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PUDL, Release 0.4.0

• a – Predicted demand with columns utc_datetime and any of demand_mwh (in grey) and
scaled_demand_mwh (in orange).

• b – Reference demand with columns utc_datetime and demand_mwh (in red).

• window – Width of window (in rows) to use to compute rolling means, or None to plot raw
values.

• title – Plot title.

• path – Plot path. If provided, the figure is saved to file and closed.

pudl.analysis.state_demand.predict_state_hourly_demand(demand: pan-
das.core.frame.DataFrame,
counties: pan-
das.core.frame.DataFrame,
assignments: pan-
das.core.frame.DataFrame,
state_totals: Op-
tional[pandas.core.frame.DataFrame]
= None, mean_overlaps:
bool = False) → pan-
das.core.frame.DataFrame

Predict state hourly demand.

Parameters

• demand – Hourly demand timeseries, with columns respondent_id_ferc714, report year,
utc_datetime, and demand_mwh.

• counties – Counties, with columns county_id_fips and population.

• assignments – County assignments for demand respondents, with columns respon-
dent_id_ferc714, year, and county_id_fips.

• state_totals – Total annual demand by state, with columns state_id_fips, year, and
demand_mwh. If provided, the predicted hourly demand is scaled to match these totals.

• mean_overlaps – Whether to mean the demands predicted for a county in cases when a
county is assigned to multiple respondents. By default, demands are summed.

Returns Dataframe with columns state_id_fips, utc_datetime, demand_mwh, and (if state_totals
was provided) scaled_demand_mwh.

pudl.analysis.state_demand.utc_to_local(utc: pandas.core.series.Series, tz: Iterable) →
pandas.core.series.Series

Convert UTC times to local.

Parameters

• utc – UTC times (tz-naive datetime64[ns] or datetime64[ns, UTC]).

• tz – For each time, a timezone (see DatetimeIndex.tz_localize()) or UTC offset
in hours (int or float).

Returns Local times (tz-naive datetime64[ns]).

8.10. pudl 111

https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

Examples

>>> s = pd.Series([pd.Timestamp(2020, 1, 1), pd.Timestamp(2020, 1, 1)])
>>> utc_to_local(s, [-7, -6])
0 2019-12-31 17:00:00
1 2019-12-31 18:00:00
dtype: datetime64[ns]
>>> utc_to_local(s, ['America/Denver', 'America/Chicago'])
0 2019-12-31 17:00:00
1 2019-12-31 18:00:00
dtype: datetime64[ns]

pudl.analysis.timeseries_cleaning module

Screen timeseries for anomalies and impute missing and anomalous values.

The screening methods were originally designed to identify unrealistic data in the electricity demand timeseries re-
ported to EIA on Form 930, and have also been applied to the FERC Form 714, and various historical demand time-
series published by regional grid operators like MISO, PJM, ERCOT, and SPP.

They are adapted from code published and modified by:

• Tyler Ruggles <truggles@carnegiescience.edu>

• Greg Schivley <greg@carbonimpact.co>

And described at:

• https://doi.org/10.1038/s41597-020-0483-x

• https://zenodo.org/record/3737085

• https://github.com/truggles/EIA_Cleaned_Hourly_Electricity_Demand_Code

The imputation methods were designed for multivariate time series forecasting.

They are adapted from code published by:

• Xinyu Chen <chenxy346@gmail.com>

And described at:

• https://arxiv.org/abs/2006.10436

• https://arxiv.org/abs/2008.03194

• https://github.com/xinychen/tensor-learning

class pudl.analysis.timeseries_cleaning.Timeseries(x: Union[numpy.ndarray, pan-
das.core.frame.DataFrame])

Bases: object

Multivariate timeseries for anomalies detection and imputation.

xi
Reference to the original values (can be null). Many methods assume that these represent chronological,
regular timeseries.

x
Copy of xi with any flagged values replaced with null.

flags
Flag label for each value, or null if not flagged.

112 Chapter 8. About Catalyst Cooperative

mailto:truggles@carnegiescience.edu
mailto:greg@carbonimpact.co
https://doi.org/10.1038/s41597-020-0483-x
https://zenodo.org/record/3737085
https://github.com/truggles/EIA_Cleaned_Hourly_Electricity_Demand_Code
mailto:chenxy346@gmail.com
https://arxiv.org/abs/2006.10436
https://arxiv.org/abs/2008.03194
https://github.com/xinychen/tensor-learning
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object

PUDL, Release 0.4.0

flagged
Running list of flags that have been checked so far.

index
Row index.

columns
Column names.

diff(shift: int = 1)→ numpy.ndarray
Values minus the value of their neighbor.

Parameters shift – Positions to shift for calculating the difference. Positive values select a
preceding (left) neighbor.

flag(mask: numpy.ndarray, flag: str)→ None
Flag values.

Flags values (if not already flagged) and nulls flagged values.

Parameters

• mask – Boolean mask of the values to flag.

• flag – Flag name.

flag_anomalous_region(window: int = 48, threshold: float = 0.15)→ None
Flag values surrounded by flagged values (ANOMALOUS_REGION).

Original null values are not considered flagged values.

Parameters

• width – Width of regions.

• threshold – Fraction of flagged values required for a region to be flagged.

flag_double_delta(iqr_window: int = 240, multiplier: float = 2)→ None
Flag values very different from their neighbors on either side (DOUBLE_DELTA).

Flags values whose differences to both neighbors on either side exceeds a multiplier times the rolling
interquartile range (IQR) of neighbor difference.

Parameters

• iqr_window – Number of values in the moving window for the rolling IQR of neighbor
difference.

• multiplier – Number of times the rolling IQR of neighbor difference the value’s dif-
ference to its neighbors must exceed for the value to be flagged.

flag_global_outlier(medians: float = 9)→ None
Flag values greater or less than n times the global median (GLOBAL_OUTLIER).

Parameters medians – Number of times the median the value must exceed the median.

flag_global_outlier_neighbor(neighbors: int = 1)→ None
Flag values neighboring global outliers (GLOBAL_OUTLIER_NEIGHBOR).

Parameters neighbors – Number of neighbors to flag on either side of each outlier.

Raises ValueError – Global outliers must be flagged first.

flag_identical_run(length: int = 3)→ None
Flag the last values in identical runs (IDENTICAL_RUN).

8.10. pudl 113

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

PUDL, Release 0.4.0

Parameters length – Run length to flag. If 3, the third (and subsequent) identical values are
flagged.

Raises ValueError – Run length must be 2 or greater.

flag_local_outlier(window: int = 48, shifts: Sequence[int] = range(- 240, 241, 24),
long_window: int = 480, iqr_window: int = 240, multiplier: Tuple[float,
float] = (3.5, 2.5))→ None

Flag local outliers (LOCAL_OUTLIER_HIGH, LOCAL_OUTLIER_LOW).

Flags values which are above or below the median_prediction() by more than a multiplier times
the rolling_iqr_of_rolling_median_offset().

Parameters

• window – Number of values in the moving window for the local rolling median.

• shifts – Positions to shift the local rolling median offset by, for computing its median.

• long_window – Number of values in the moving window for the regional (long) rolling
median.

• iqr_window – Number of values in the moving window for the rolling interquartile
range (IQR).

• multiplier – Number of times the rolling_iqr_of_rolling_median_offset()
the value must be above (HIGH) and below (LOW) the median_prediction() to be
flagged.

flag_negative_or_zero()→ None
Flag negative or zero values (NEGATIVE_OR_ZERO).

flag_ruggles()→ None
Flag values following the method of Ruggles and others (2020).

Assumes values are hourly electricity demand.

• description: https://doi.org/10.1038/s41597-020-0483-x

• code: https://github.com/truggles/EIA_Cleaned_Hourly_Electricity_Demand_Code

flag_single_delta(window: int = 48, shifts: Sequence[int] = range(- 240, 241, 24), long_window:
int = 480, iqr_window: int = 240, multiplier: float = 5, rel_multiplier: float =
15)→ None

Flag values very different from the nearest unflagged value (SINGLE_DELTA).

Flags values whose difference to the nearest unflagged value, with respect to value and rel-
ative median prediction, differ by less than a multiplier times the rolling interquartile range
(IQR) of the difference - multiplier times rolling_iqr_of_diff() and rel_multiplier times
iqr_of_diff_of_relative_mean_prediction(), respectively.

Parameters

• window – Number of values in the moving window for the rolling median (for the relative
median prediction).

• shifts – Positions to shift the local rolling median offset by, for computing its median
(for the relative median prediction).

• long_window – Number of values in the moving window for the long rolling median
(for the relative median prediction).

• iqr_window – Number of values in the moving window for the rolling IQR of neighbor
difference.

114 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://doi.org/10.1038/s41597-020-0483-x
https://github.com/truggles/EIA_Cleaned_Hourly_Electricity_Demand_Code
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

PUDL, Release 0.4.0

• multiplier – Number of times the rolling IQR of neighbor difference the value’s dif-
ference to its neighbor must exceed for the value to be flagged.

• rel_multiplier – Number of times the rolling IQR of relative median prediction the
value’s prediction difference to its neighbor must exceed for the value to be flagged.

fold_tensor(x: Optional[numpy.ndarray] = None, periods: int = 24)→ numpy.ndarray
Fold into a 3-dimensional tensor representation.

Folds the series x (number of observations, number of series) into a 3-d tensor (number of series, number
of groups, number of periods), splitting observations into groups of length periods. For example, each
group may represent a day and each period the hour of the day.

Parameters

• x – Series array to fold. Uses x by default.

• periods – Number of consecutive values in each series to fold into a group.

Returns

>>> x = np.column_stack([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50,
→˓60]])
>>> s = Timeseries(x)
>>> tensor = s.fold_tensor(periods=3)
>>> tensor[0]
array([[1, 2, 3],

[4, 5, 6]])
>>> np.all(x == s.unfold_tensor(tensor))
True

impute(mask: Optional[numpy.ndarray] = None, periods: int = 24, blocks: int = 1, method: str =
'tubal', **kwargs: Any)→ numpy.ndarray

Impute null values.

Note: The imputation method requires that nulls be replaced by zeros, so the series cannot already contain
zeros.

Parameters

• mask – Boolean mask of values to impute in addition to any null values in x.

• periods – Number of consecutive values in each series to fold into a group. See
fold_tensor().

• blocks – Number of blocks into which to split the series for imputation. This has been
found to reduce processing time for method=’tnn’.

• method – Imputation method to use (‘tubal’: impute_latc_tubal(), ‘tnn’:
impute_latc_tnn()).

• kwargs – Optional arguments to method.

Returns Array of same shape as x with all null values (and those selected by mask) replaced
with imputed values.

Raises ValueError – Zero values present. Replace with very small value.

iqr_of_diff_of_relative_median_prediction(shift: int = 1, **kwargs: Any) →
numpy.ndarray

Interquartile range of the running difference of the relative median prediction.

8.10. pudl 115

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PUDL, Release 0.4.0

Parameters

• shift – Positions to shift for calculating the difference. Positive values select a preceding
(left) neighbor.

• kwargs – Arguments to relative_median_prediction().

median_of_rolling_median_offset(window: int = 48, shifts: Sequence[int] = range(- 240,
241, 24))→ numpy.ndarray

Median of the offset from the rolling median.

Calculated by shifting the rolling median offset (rolling_median_offset()) by different numbers
of values, then taking the median at each position. Estimates the typical local cycle in cyclical data.

Parameters

• window – Number of values in the moving window for the rolling median.

• shifts – Number of values to shift the rolling median offset by.

median_prediction(window: int = 48, shifts: Sequence[int] = range(- 240, 241, 24), long_window:
int = 480)→ numpy.ndarray

Values predicted from local and regional rolling medians.

Calculated as { local median } + { median of local median offset } * { local median } / { regional median }.

Parameters

• window – Number of values in the moving window for the local rolling median.

• shifts – Positions to shift the local rolling median offset by, for computing its median.

• long_window – Number of values in the moving window for the regional (long) rolling
median.

plot_flags(name: Any = 0)→ None
Plot cleaned series and anomalous values colored by flag.

Parameters name – Series to plot, as either an integer index or name in columns.

relative_median_prediction(**kwargs: Any)→ numpy.ndarray
Values divided by their value predicted from medians.

Parameters kwargs – Arguments to median_prediction().

rolling_iqr_of_diff(shift: int = 1, window: int = 240)→ numpy.ndarray
Rolling interquartile range (IQR) of the difference between neighboring values.

Parameters

• shift – Positions to shift for calculating the difference.

• window – Number of values in the moving window for the rolling IQR.

rolling_iqr_of_rolling_median_offset(window: int = 48, iqr_window: int = 240) →
numpy.ndarray

Rolling interquartile range (IQR) of rolling median offset.

Estimates the spread of the local cycles in cyclical data.

Parameters

• window – Number of values in the moving window for the rolling median.

• iqr_window – Number of values in the moving window for the rolling IQR.

rolling_median(window: int = 48)→ numpy.ndarray
Rolling median of values.

116 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PUDL, Release 0.4.0

Parameters window – Number of values in the moving window.

rolling_median_offset(window: int = 48)→ numpy.ndarray
Values minus the rolling median.

Estimates the local cycle in cyclical data by removing longterm trends.

Parameters window – Number of values in the moving window.

simulate_nulls(lengths: Optional[Sequence[int]] = None, padding: int = 1, intersect: bool =
False, overlap: bool = False)→ numpy.ndarray

Find non-null values to null to match a run-length distribution.

Parameters

• length – Length of null runs to simulate for each series. By default, uses the run lengths
of null values in each series.

• padding – Minimum number of non-null values between simulated null runs and be-
tween simulated and existing null runs.

• intersect – Whether simulated null runs can intersect each other.

• overlap – Whether simulated null runs can overlap existing null runs. If True, padding
is ignored.

Returns Boolean mask of current non-null values to set to null.

Raises ValueError – Cound not find space for run of length {length}.

Examples

>>> x = np.column_stack([[1, 2, np.nan, 4, 5, 6, 7, np.nan, np.nan]])
>>> s = Timeseries(x)
>>> s.simulate_nulls().ravel()
array([True, False, False, False, True, True, False, False, False])
>>> s.simulate_nulls(lengths=[4], padding=0).ravel()
array([False, False, False, True, True, True, True, False, False])

summarize_flags()→ pandas.core.frame.DataFrame
Summarize flagged values by flag, count and median.

summarize_imputed(imputed: numpy.ndarray, mask: numpy.ndarray) → pan-
das.core.frame.DataFrame

Summarize the fit of imputed values to actual values.

Summarizes the agreement between actual and imputed values with the following statistics:

• mpe: Mean percent error, (actual - imputed) / actual.

• mape: Mean absolute percent error, abs(mpe).

Parameters

• imputed – Series of same shape as x with imputed values. See impute().

• mask – Boolean mask of imputed values that were not null in x. See
simulate_nulls().

Returns Table of imputed value statistics for each series.

8.10. pudl 117

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PUDL, Release 0.4.0

to_dataframe(array: Optional[numpy.ndarray] = None, copy: bool = True) → pan-
das.core.frame.DataFrame

Return multivariate timeseries as a pandas.DataFrame.

Parameters

• array – Two-dimensional array to use. If None, uses x.

• copy – Whether to use a copy of array.

unflag(flags: Optional[Iterable[str]] = None)→ None
Unflag values.

Unflags values by restoring their original values and removing their flag.

Parameters flags – Flag names. If None, all flags are removed.

unfold_tensor(tensor: numpy.ndarray)→ numpy.ndarray
Unfold a 3-dimensional tensor representation.

Performs the reverse of fold_tensor().

pudl.analysis.timeseries_cleaning.array_diff(x: numpy.ndarray, periods: int = 1, axis:
int = 0, fill: Any = nan)→ numpy.ndarray

First discrete difference of array elements.

This is a fast numpy implementation of pd.DataFrame.diff().

Parameters

• periods – Periods to shift for calculating difference, accepts negative values.

• axis – Array axis along which to calculate the difference.

• fill – Value to use at the margins where a difference cannot be calculated.

Returns Array of same shape and type as x with discrete element differences.

Examples

>>> x = np.random.random((4, 2))
>>> np.all(array_diff(x, 1)[1:] == pd.DataFrame(x).diff(1).values[1:])
True
>>> np.all(array_diff(x, 2)[2:] == pd.DataFrame(x).diff(2).values[2:])
True
>>> np.all(array_diff(x, -1)[:-1] == pd.DataFrame(x).diff(-1).values[:-1])
True

pudl.analysis.timeseries_cleaning.encode_run_length(x: Union[Sequence,
numpy.ndarray]) →
Tuple[numpy.ndarray,
numpy.ndarray]

Encode vector with run-length encoding.

Parameters x – Vector to encode.

Returns Values and their run lengths.

118 Chapter 8. About Catalyst Cooperative

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PUDL, Release 0.4.0

Examples

>>> x = np.array([0, 1, 1, 0, 1])
>>> encode_run_length(x)
(array([0, 1, 0, 1]), array([1, 2, 1, 1]))
>>> encode_run_length(x.astype('bool'))
(array([False, True, False, True]), array([1, 2, 1, 1]))
>>> encode_run_length(x.astype('<U1'))
(array(['0', '1', '0', '1'], dtype='<U1'), array([1, 2, 1, 1]))
>>> encode_run_length(np.where(x == 0, np.nan, x))
(array([nan, 1., nan, 1.]), array([1, 2, 1, 1]))

pudl.analysis.timeseries_cleaning.impute_latc_tnn(tensor: numpy.ndarray,
lags: Sequence[int] = [1],
alpha: Sequence[float]
= [0.3333333333333333,
0.3333333333333333,
0.3333333333333333], rho0:
float = 1e-07, lambda0: float =
2e-07, theta: int = 20, epsilon: float
= 1e-07, maxiter: int = 300) →
numpy.ndarray

Impute tensor values with LATC-TNN method by Chen and Sun (2020).

Uses low-rank autoregressive tensor completion (LATC) with truncated nuclear norm (TNN) minimization.

• description: https://arxiv.org/abs/2006.10436

• code: https://github.com/xinychen/tensor-learning/blob/master/mats

Parameters

• tensor – Observational series in the form (series, groups, periods). Null values are re-
placed with zeros, so any zeros will be treated as null.

• lags –

• alpha –

• rho0 –

• lambda0 –

• theta –

• epsilon – Convergence criterion. A smaller number will result in more iterations.

• maxiter – Maximum number of iterations.

Returns Tensor with missing values in tensor replaced by imputed values.

pudl.analysis.timeseries_cleaning.impute_latc_tubal(tensor: numpy.ndarray, lags: Se-
quence[int] = [1], rho0: float =
1e-07, lambda0: float = 2e-07,
epsilon: float = 1e-07, maxiter:
int = 300)→ numpy.ndarray

Impute tensor values with LATC-Tubal method by Chen, Chen and Sun (2020).

Uses low-tubal-rank autoregressive tensor completion (LATC-Tubal). It is much faster than
impute_latc_tnn() for very large datasets, with comparable accuracy.

• description: https://arxiv.org/abs/2008.03194

8.10. pudl 119

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arxiv.org/abs/2006.10436
https://github.com/xinychen/tensor-learning/blob/master/mats
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arxiv.org/abs/2008.03194

PUDL, Release 0.4.0

• code: https://github.com/xinychen/tensor-learning/blob/master/mats

Parameters

• tensor – Observational series in the form (series, groups, periods). Null values are re-
placed with zeros, so any zeros will be treated as null.

• lags –

• rho0 –

• lambda0 –

• epsilon – Convergence criterion. A smaller number will result in more iterations.

• maxiter – Maximum number of iterations.

Returns Tensor with missing values in tensor replaced by imputed values.

pudl.analysis.timeseries_cleaning.insert_run_length(x: Union[Sequence,
numpy.ndarray], val-
ues: Union[Sequence,
numpy.ndarray], lengths:
Sequence[int], mask: Op-
tional[Sequence[bool]] = None,
padding: int = 0, intersect: bool
= False)→ numpy.ndarray

Insert run-length encoded values into a vector.

Parameters

• x – Vector to insert values into.

• values – Values to insert.

• lengths – Length of run to insert for each value in values.

• mask – Boolean mask, of the same length as x, where values can be inserted. By default,
values can be inserted anywhere in x.

• padding – Minimum space between inserted runs and, if mask is provided, the edges of
masked-out areas.

• intersect – Whether to allow inserted runs to intersect each other.

Raises

• ValueError – Padding must zero or greater.

• ValueError – Run length must be greater than zero.

• ValueError – Cound not find space for run of length {length}.

Returns Copy of array x with values inserted.

120 Chapter 8. About Catalyst Cooperative

https://github.com/xinychen/tensor-learning/blob/master/mats
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PUDL, Release 0.4.0

Example

>>> x = [0, 0, 0, 0]
>>> mask = [True, False, True, True]
>>> insert_run_length(x, values=[1, 2], lengths=[1, 2], mask=mask)
array([1, 0, 2, 2])

If we use unique values for the background and each inserted run, the run length encoding of the result (ignoring
the background) is the same as the inserted run, albeit in a different order.

>>> x = np.zeros(10, dtype=int)
>>> values = [1, 2, 3]
>>> lengths = [1, 2, 3]
>>> x = insert_run_length(x, values=values, lengths=lengths)
>>> rvalues, rlengths = encode_run_length(x[x != 0])
>>> order = np.argsort(rvalues)
>>> all(rvalues[order] == values) and all(rlengths[order] == lengths)
True

Null values can be inserted into a vector such that the new null runs match the run length encoding of the existing
null runs.

>>> x = [1, 2, np.nan, np.nan, 5, 6, 7, 8, np.nan]
>>> is_nan = np.isnan(x)
>>> rvalues, rlengths = encode_run_length(is_nan)
>>> xi = insert_run_length(
... x,
... values=[np.nan] * rvalues.sum(),
... lengths=rlengths[rvalues],
... mask=~is_nan
...)
>>> np.isnan(xi).sum() == 2 * is_nan.sum()
True

The same as above, with non-zero padding, yields a unique solution:

>>> insert_run_length(
... x,
... values=[np.nan] * rvalues.sum(),
... lengths=rlengths[rvalues],
... mask=~is_nan,
... padding=1
...)
array([nan, 2., nan, nan, 5., nan, nan, 8., nan])

pudl.analysis.timeseries_cleaning.slice_axis(x: numpy.ndarray, start: Optional[int] =
None, end: Optional[int] = None, step: Op-
tional[int] = None, axis: int = 0)→ Tuple

Return an index that slices an array along an axis.

Parameters

• x – Array to slice.

• start – Start index of slice.

• end – End index of slice.

• step – Step size of slice.

8.10. pudl 121

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PUDL, Release 0.4.0

• axis – Axis along which to slice.

Returns Tuple of slice that slices array x along axis axis (x[. . . , start:stop:step]).

Examples

>>> x = np.random.random((3, 4, 5))
>>> np.all(x[1:] == x[slice_axis(x, start=1, axis=0)])
True
>>> np.all(x[:, 1:] == x[slice_axis(x, start=1, axis=1)])
True
>>> np.all(x[:, :, 1:] == x[slice_axis(x, start=1, axis=2)])
True

Module contents

Modules providing programmatic analyses that make use of PUDL data.

The pudl.analysis subpackage is a collection of modules which implement various systematic analyses using
the data compiled by PUDL. Over time this should grow into a rich library of tools that show how the data can be put
to use. We may also generate post-analysis datapackages for distribution at some point.

pudl.convert package

Submodules

pudl.convert.censusdp1tract_to_sqlite module

Convert the US Census DP1 ESRI GeoDatabase into an SQLite Database.

This is a thin wrapper around the GDAL ogr2ogr command line tool. We use it to convert the Census DP1 data which
is distributed as an ESRI GeoDB into an SQLite DB. The module provides ogr2ogr with the Census DP 1 data from
the PUDL datastore, and directs it to be output into the user’s SQLite directory alongside our other SQLite Databases
(ferc1.sqlite and pudl.sqlite)

Note that the ogr2ogr command line utility must be available on the user’s system for this to work. This tool is part
of the pudl-dev conda environment, but if you are using PUDL outside of the conda environment, you will need to
install ogr2ogr separately. On Debian Linux based systems such as Ubuntu it can be installed with sudo apt-get
install gdal-bin (which is what we do in our CI setup and Docker images.)

pudl.convert.censusdp1tract_to_sqlite.censusdp1tract_to_sqlite(pudl_settings=None,
year=2010)

Use GDAL’s ogr2ogr utility to convert the Census DP1 GeoDB to an SQLite DB.

The Census DP1 GeoDB is read from the datastore, where it is stored as a zipped archive. This archive is
unzipped into a temporary directory so that ogr2ogr can operate on the ESRI GeoDB, and convert it to SQLite.
The resulting SQLite DB file is put in the PUDL output directory alongside the ferc1 and pudl SQLite databases.

Parameters

• pudl_settings (dict) – A PUDL settings dictionary.

• year (int) – Year of Census data to extract (currently must be 2010)

Returns None

122 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PUDL, Release 0.4.0

pudl.convert.censusdp1tract_to_sqlite.main()
Convert the Census DP1 GeoDatabase into an SQLite Database.

pudl.convert.censusdp1tract_to_sqlite.parse_command_line(argv)
Parse command line arguments. See the -h option.

Parameters argv (str) – Command line arguments, including caller filename.

Returns Dictionary of command line arguments and their parsed values.

Return type dict

pudl.convert.datapkg_to_rst module

Module to convert json metadata into rst files.

All of the information about the transformed pudl tables, namely their fields types and descriptions, resides in the
datapackage metadata. This module makes that information available to users, without duplicating any data, by con-
verting json metadata files into documentation-compatible rst files. The functions serve to extract the field names,
field data types, and field descriptions of each pudl table and outputs them in a manner that automatically updates the
read-the-docs.

pudl.convert.datapkg_to_rst.RST_TEMPLATE = '\n===\nPUDL Data Dictionary\n===\n\nThe following data tables have been cleaned and transformed by our ETL process.\n\n{% for resource in resources %}\n.. _{{ resource.name }}:\n\n---\n{{ resource.name }}\n---\n\n{{ resource.description | wordwrap(78)}}\n`Browse or query this table in Datasette. <https://data.catalyst.coop/pudl/{{ resource.name }}>`__\n\n.. list-table::\n :widths: auto\n :header-rows: 1\n\n * - **Field Name**\n - **Type**\n - **Description**{% for field in resource.schema.fields %}\n * - {{ field.name }}\n - {{ field.type }}{% if field.description %}\n - {{ field.description }}{% else %}\n - N/A{% endif %}{% endfor %}\n{% endfor %}\n'
A template to map data from a json dictionary into one rst file. Contains multiple tables seperated by headers.

pudl.convert.datapkg_to_rst.datapkg2rst(meta_json, meta_rst, ignore=None)
Convert json metadata to a single rst file.

pudl.convert.datapkg_to_rst.logger = <Logger pudl.convert.datapkg_to_rst (WARNING)>
The following templates map json data into one long rst file seperated by table titles and document links
(RST_TEMPLATE)

It’s important for the templates that the json data do not contain excess white space either at the beginning or
the end of each value.

pudl.convert.datapkg_to_rst.main()
Run conversion from json to rst.

pudl.convert.datapkg_to_rst.parse_command_line(argv)
Parse command line arguments. See the -h option.

Parameters argv (str) – Command line arguments, including caller filename.

Returns Dictionary of command line arguments and their parsed values.

Return type dict

pudl.convert.datapkg_to_sqlite module

Merge compatible PUDL datapackages and load the result into an SQLite DB.

This script merges a set of compatible PUDL datapackages into a single tabular datapackage, and then loads that
package into the PUDL SQLite DB

The input datapackages must all have been produced in the same ETL run, and share the same
datapkg-bundle-uuid value. Any data sources (e.g. ferc1, eia923) that appear in more than one of the datapack-
ages to be merged must also share identical ETL parameters (years, tables, states, etc.), allowing easy deduplication
of resources.

8.10. pudl 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Having the ability to load only a subset of the datapackages resulting from an ETL run into the SQLite database is
helpful because larger datasets are much easier to work with via columnar datastores like Apache Parquet – loading all
of EPA CEMS into SQLite can take more than 24 hours. PUDL also provides a separate epacems_to_parquet script
that can be used to generate a Parquet dataset that is partitioned by state and year, which can be read directly into
pandas or dask dataframes, for use in conjunction with the other PUDL data that is stored in the SQLite DB.

pudl.convert.datapkg_to_sqlite.datapkg_to_sqlite(sqlite_url, out_path, clobber=False,
fkeys=False)

Load a PUDL datapackage into a sqlite database.

Parameters

• sqlite_url (str) – An SQLite database connection URL.

• out_path (path-like) – Path to the base directory of the datapackage to be loaded into
SQLite. Must contain the datapackage.json file.

• clobber (bool) – If True, replace an existing PUDL DB if it exists. If False (the default),
fail if an existing PUDL DB is found.

• fkeys (bool) – If true, tell SQLite to check foreign key constraints for the records that
are being loaded. Left off by default.

Returns None

pudl.convert.datapkg_to_sqlite.main()
Merge PUDL datapackages and save them into an SQLite database.

pudl.convert.datapkg_to_sqlite.parse_command_line(argv)
Parse command line arguments. See the -h option.

Parameters argv (str) – Command line arguments, including caller filename.

Returns Dictionary of command line arguments and their parsed values.

Return type dict

pudl.convert.epacems_to_parquet module

A script for converting the EPA CEMS dataset from gzip to Apache Parquet.

The original EPA CEMS data is available as ~12,000 gzipped CSV files, one for each month for each state, from 1995
to the present. On disk they take up about 7.3 GB of space, compressed. Uncompressed it is closer to 100 GB. That’s
too much data to work with in memory.

Apache Parquet is a compressed, columnar datastore format, widely used in Big Data applications. It’s an open
standard, and is very fast to read from disk. It works especially well with both Dask dataframes (a parallel / distributed
computing extension of pandas) and Apache Spark (a cloud based Big Data processing pipeline system.)

Since pulling 100 GB of data into SQLite takes a long time, and working with that data en masse isn’t particularly
pleasant on a laptop, this script can be used to convert the original EPA CEMS data to the more widely usable Apache
Parquet format for use with Dask, either on a multi-core workstation or in an interactive cloud computing environment
like Pangeo.

pudl.convert.epacems_to_parquet.create_cems_schema()
Make an explicit Arrow schema for the EPA CEMS data.

Make changes in the types of the generated parquet files by editing this function.

Note that parquet’s internal representation doesn’t use unsigned numbers or 16-bit ints, so just keep things
simple here and always use int32 and float32.

Returns An Arrow schema for the EPA CEMS data.

124 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://dask.org/
https://pangeo.io

PUDL, Release 0.4.0

Return type pyarrow.schema

pudl.convert.epacems_to_parquet.create_in_dtypes()
Create a dictionary of input data types.

This specifies the dtypes of the input columns, which is necessary for some cases where, e.g., a column is always
NaN.

Returns mapping columns names to pandas data types.

Return type dict

pudl.convert.epacems_to_parquet.epacems_to_parquet(datapkg_path, epacems_years,
epacems_states, out_dir,
compression='snappy', par-
tition_cols=('year', 'state'),
clobber=False)

Take transformed EPA CEMS dataframes and output them as Parquet files.

We need to do a few additional manipulations of the dataframes after they have been transformed by PUDL to
get them ready for output to the Apache Parquet format. Mostly this has to do with ensuring homogeneous data
types across all of the dataframes, and downcasting to the most efficient data type possible for each of them.
We also add a ‘year’ column so that we can partition the datset on disk by year as well as state. (Year partitions
follow the CEMS input data, based on local plant time. The operating_datetime_utc identifies time in UTC, so
there’s a mismatch of a few hours on December 31 / January 1.)

Parameters

• datapkg_path (path-like) – Path to the datapackage.json file describing the data-
package contaning the EPA CEMS data to be converted.

• epacems_years (list) – list of years from which we are trying to read CEMS data

• epacems_states (list) – list of years from which we are trying to read CEMS data

• out_dir (path-like) – The directory in which to output the Parquet files

• compression (string) –

• partition_cols (tuple) –

• clobber (bool) – If True and there is already a directory with out_dirs name, the existing
parquet files will be deleted and new ones will be generated in their place.

Raises AssertionError – Raised if an output directory is not specified.

Todo: Return to

pudl.convert.epacems_to_parquet.main()
Convert zipped EPA CEMS Hourly data to Apache Parquet format.

pudl.convert.epacems_to_parquet.parse_command_line(argv)
Parse command line arguments. See the -h option.

Parameters argv (str) – Command line arguments, including caller filename.

Returns Dictionary of command line arguments and their parsed values.

Return type dict

8.10. pudl 125

https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.convert.ferc1_to_sqlite module

A script for cloning the FERC Form 1 database into SQLite.

This script generates a SQLite database that is a clone/mirror of the original FERC Form1 database. We use this cloned
database as the starting point for the main PUDL ETL process. The underlying work in the script is being done in
pudl.extract.ferc1.

pudl.convert.ferc1_to_sqlite.main()
Clone the FERC Form 1 FoxPro database into SQLite.

pudl.convert.ferc1_to_sqlite.parse_command_line(argv)
Parse command line arguments. See the -h option.

Parameters argv (str) – Command line arguments, including caller filename.

Returns Dictionary of command line arguments and their parsed values.

Return type dict

pudl.convert.merge_datapkgs module

Functions for merging compatible PUDL datapackges together.

pudl.convert.merge_datapkgs.check_etl_params(dps)
Verify that datapackages to be merged have compatible ETL params.

Given that all of the input data packages come from the same ETL run, which means they will have used
the same input data, the only way they should potentially differ is in the ETL parameters which were used to
generate them. This function pulls the data source specific ETL params which we store in each datapackage
descriptor and checks that within a given data source (e.g. eia923, ferc1) all of the ETL parameters are identical
(e.g. the years, states, and tables loaded).

Parameters dps (iterable) – A list of datapackage.Package objects, representing the datapack-
ages to be merged.

Returns None

Raises ValueError – If the PUDL ETL parameters associated with any given data source are not
identical across all instances of that data source within the datapackages to be merged. Also if
the ETL UUIDs for all of the datapackages to be merged are not identical.

pudl.convert.merge_datapkgs.check_identical_vals(dps, required_vals, op-
tional_vals=())

Verify that datapackages to be merged have required identical values.

This only works for elements with simple (hashable) datatypes, which can be added to a set.

Parameters

• dps (iterable) – a list of tabular datapackage objects, output by PUDL.

• required_vals (iterable) – A list of strings indicating which top level metadata
elements should be compared between the datapackages. All must be present in every data-
package.

• optional_vals (iterable) – A list of strings indicating top level metadata elements
to be compared between the datapackages. They do not need to appear in all datapackages,
but if they do appear, they must be identical.

Returns None

126 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

PUDL, Release 0.4.0

Raises

• ValueError – if any of the required or optional metadata elements have different values
in the different data packages.

• KeyError – if a required metadata element is not found in any of the datapackages.

pudl.convert.merge_datapkgs.merge_data(dps, out_path)
Copy the CSV files into the merged datapackage’s data directory.

Iterates through all of the resources in the input datapackages and copies the files they refer to into the data
directory associated with the merged datapackage (a directory named “data” inside the out_path directory).

Function assumes that a fresh (empty) data directory has been created. If a file with the same name already
exists, it is not overwritten, in order to prevent unnecessary copying of resources which appear in multiple input
packages.

Parameters

• dps (iterable) – A list of datapackage.Package objects, representing the datapackages
to be merged.

• out_path (path like) – Base directory for the newly created datapackage. The final
path element will also be used as the name of the merged data package.

Returns None

pudl.convert.merge_datapkgs.merge_datapkgs(dps, out_path, clobber=False)
Merge several compatible datapackages into one larger datapackage.

Parameters

• dps (iterable) – A collection of tabular data package objects that were output by PUDL,
to be merged into a single deduplicated datapackage for loading into a database or other
storage medium.

• out_path (path-like) – Base directory for the newly created datapackage. The final
path element will also be used as the name of the merged data package.

• clobber (bool) – If the location of the output datapackage already exists, should it be
overwritten? If True, yes. If False, no.

Returns A report containing information about the validity of the merged datapackage.

Return type dict

Raises

• FileNotFoundError – If any of the input datapackage paths do not exist.

• FileExistsError – If the output directory exists and clobber is False.

pudl.convert.merge_datapkgs.merge_meta(dps, datapkg_name)
Merge the JSON descriptors of datapackages into one big descriptor.

This function builds up a new tabular datapackage JSON descriptor as a python dictionary, containing the merged
metadata from all of the input datapackages.

The process is complex for two reasons. First, there are several different datatypes in the descriptor that need
to be merged, and the processes for each of them are different. Second, what constitutes a “merge” may
vary depending on the semantic content of the metadata. E.g. the created timestamp is a simple string,
but we need to choose one of the several values (the earliest one) for inclusion in the merged datapackage,
while many other simple string fields are required to be identical across all of the input data packages (e.g.
datapkg-bundle-uuid):

8.10. pudl 127

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#FileExistsError

PUDL, Release 0.4.0

Parameters

• dps (iterable) – A collection of datapackage objects, whose metadata will be merged
to create a single datapackage descriptor representing the union of all the data in the input
datapackages.

• datapkg_name (str) – The name associated with the newly merged datapackage. This
should be the same as the name of the directory in which the datapackage is found.

Returns a Python dictionary representing a tabular datapackage JSON descriptor, encoded as a
python dictionary, containing the merged metadata of the input datapackages.

Return type dict

Module contents

Tools for converting datasets between various formats in bulk.

It’s often useful to be able to convert entire datasets in bulk from one format to another, both independent of and within
the context of the ETL pipeline. This subpackage collects those tools together in one place.

Currently the tools use a mix of idioms, referring either to a particular dataset and a particular format, or two for-
mats. Some of them read from the original raw data as organized by the pudl.workspace package (e.g. pudl.
convert.ferc1_to_sqlite or pudl.convert.epacems_to_parquet), and others convert the entire
collection of data from an output datapackage into another format (e.g. pudl.convert.datapkg_to_sqlite).

pudl.extract package

Submodules

pudl.extract.eia860 module

Retrieve data from EIA Form 860 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 860 data.

class pudl.extract.eia860.Extractor(*args, **kwargs)
Bases: pudl.extract.excel.GenericExtractor

Extractor for the excel dataset EIA860.

static get_dtypes(page, **partition)
Returns dtypes for plant id columns.

process_raw(df, page, **partition)
Apply necessary pre-processing to the dataframe.

• Rename columns based on our compiled spreadsheet metadata

• Add report_year if it is missing

• Add a flag indicating if record came from EIA 860, or EIA 860M

• Fix any generator_id values with leading zeroes.

128 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.extract.eia860m module

Retrieve data from EIA Form 860M spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 860M data. EIA 860M is only used in conjunction with EIA 860. This module
boths extracts EIA 860M and appends the extracted EIA 860M dataframes to the extracted EIA 860 dataframes.
Example setup with pre-genrated eia860_raw_dfs and datastore as ds:

eia860m_raw_dfs = pudl.extract.eia860m.Extractor(ds).extract(pc.working_partitions[‘eia860m’][‘year_month’])

eia860_raw_dfs = pudl.extract.eia860m.append_eia860m(eia860_raw_dfs=eia860_raw_dfs,
eia860m_raw_dfs=eia860m_raw_dfs)

class pudl.extract.eia860m.Extractor(*args, **kwargs)
Bases: pudl.extract.excel.GenericExtractor

Extractor for the excel dataset EIA860M.

static get_dtypes(page, **partition)
Returns dtypes for plant id columns.

process_raw(df, page, **partition)
Adds source column and report_year column if missing.

pudl.extract.eia860m.append_eia860m(eia860_raw_dfs, eia860m_raw_dfs)
Append EIA 860M to the pages to.

Parameters

• eia860_raw_dfs (dictionary) – dictionary of pandas.Dataframe’s from EIA 860
raw tables. Restult of pudl.extract.eia860.Extractor().extract()

• eia860m_raw_dfs (dictionary) – dictionary of pandas.Dataframe’s from EIA
860M raw tables. Restult of pudl.extract.eia860m.Extractor().extract()

Returns augumented eia860_raw_dfs dictionary of pandas.DataFrame’s. Each raw page stored in
eia860m_raw_dfs appened to its eia860_raw_dfs counterpart.

Return type dictionary

pudl.extract.eia861 module

Retrieve data from EIA Form 861 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 861 data.

class pudl.extract.eia861.Extractor(*args, **kwargs)
Bases: pudl.extract.excel.GenericExtractor

Extractor for the excel dataset EIA861.

static get_dtypes(page, **partition)
Returns dtypes for plant id columns.

process_raw(df, page, **partition)
Rename columns with location.

static process_renamed(df, page, **partition)
Adds report_year column if missing.

8.10. pudl 129

PUDL, Release 0.4.0

pudl.extract.eia923 module

Retrieves data from EIA Form 923 spreadsheets for analysis.

This modules pulls data from EIA’s published Excel spreadsheets.

This code is for use analyzing EIA Form 923 data. Currenly only years 2009-2016 work, as they share nearly identical
file formatting.

class pudl.extract.eia923.Extractor(*args, **kwargs)
Bases: pudl.extract.excel.GenericExtractor

Extractor for EIA form 923.

static get_dtypes(page, **partition)
Returns dtypes for plant id columns.

static process_final_page(df, page)
Removes reserved columns from the final dataframe.

process_raw(df, page, **partition)
Drops reserved columns.

static process_renamed(df, page, **partition)
Cleans up unnamed_0 column in stocks page, drops invalid plan_id_eia rows.

pudl.extract.epacems module

Retrieve data from EPA CEMS hourly zipped CSVs.

This modules pulls data from EPA’s published CSV files.

pudl.extract.epacems.CSV_DTYPES = {'CO2_MASS': <class 'float'>, 'CO2_MASS (tons)': <class 'float'>, 'CO2_MASS_MEASURE_FLG': StringDtype, 'FAC_ID': Int64Dtype(), 'GLOAD': <class 'float'>, 'GLOAD (MW)': <class 'float'>, 'HEAT_INPUT': <class 'float'>, 'HEAT_INPUT (mmBtu)': <class 'float'>, 'NOX_MASS': <class 'float'>, 'NOX_MASS (lbs)': <class 'float'>, 'NOX_MASS_MEASURE_FLG': StringDtype, 'NOX_RATE': <class 'float'>, 'NOX_RATE (lbs/mmBtu)': <class 'float'>, 'NOX_RATE_MEASURE_FLG': StringDtype, 'OP_DATE': StringDtype, 'OP_HOUR': Int64Dtype(), 'OP_TIME': <class 'float'>, 'ORISPL_CODE': Int64Dtype(), 'SLOAD': <class 'float'>, 'SLOAD (1000 lbs)': <class 'float'>, 'SLOAD (1000lb/hr)': <class 'float'>, 'SO2_MASS': <class 'float'>, 'SO2_MASS (lbs)': <class 'float'>, 'SO2_MASS_MEASURE_FLG': StringDtype, 'STATE': StringDtype, 'UNITID': StringDtype, 'UNIT_ID': Int64Dtype()}
A dictionary containing column names (keys) and data types (values) for EPA CEMS.

Type dict

class pudl.extract.epacems.EpaCemsDatastore(datastore: pudl.workspace.datastore.Datastore)
Bases: object

Helper class to extract EpaCems resources from datastore.

EpaCems resources are identified by a year and a state. Each of these zip files contain monthly zip files that
in turn contain csv files. This class implements get_data_frame method that will concatenate tables for a given
state and month across all months.

get_data_frame(partition: pudl.extract.epacems.EpaCemsPartition) → pan-
das.core.frame.DataFrame

Constructs dataframe holding data for a given (year, state) partition.

class pudl.extract.epacems.EpaCemsPartition(year: str, state: str)
Bases: tuple

Represents EpaCems partition identifying unique resource file.

get_filters()
Returns filters for retrieving given partition resource from Datastore.

get_key()
Returns hashable key for use with EpaCemsDatastore.

get_monthly_file(month: int)→ pathlib.Path
Returns the filename (without suffix) that contains the monthly data.

130 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path

PUDL, Release 0.4.0

state: str
Alias for field number 1

year: str
Alias for field number 0

pudl.extract.epacems.IGNORE_COLS = {'CO2_RATE', 'CO2_RATE (tons/mmBtu)', 'CO2_RATE_MEASURE_FLG', 'FACILITY_NAME', 'SO2_RATE', 'SO2_RATE (lbs/mmBtu)', 'SO2_RATE_MEASURE_FLG'}
The set of EPA CEMS columns to ignore when reading data.

Type set

pudl.extract.epacems.RENAME_DICT = {'CO2_MASS': 'co2_mass_tons', 'CO2_MASS (tons)': 'co2_mass_tons', 'CO2_MASS_MEASURE_FLG': 'co2_mass_measurement_code', 'FAC_ID': 'facility_id', 'GLOAD': 'gross_load_mw', 'GLOAD (MW)': 'gross_load_mw', 'HEAT_INPUT': 'heat_content_mmbtu', 'HEAT_INPUT (mmBtu)': 'heat_content_mmbtu', 'NOX_MASS': 'nox_mass_lbs', 'NOX_MASS (lbs)': 'nox_mass_lbs', 'NOX_MASS_MEASURE_FLG': 'nox_mass_measurement_code', 'NOX_RATE': 'nox_rate_lbs_mmbtu', 'NOX_RATE (lbs/mmBtu)': 'nox_rate_lbs_mmbtu', 'NOX_RATE_MEASURE_FLG': 'nox_rate_measurement_code', 'OP_DATE': 'op_date', 'OP_HOUR': 'op_hour', 'OP_TIME': 'operating_time_hours', 'ORISPL_CODE': 'plant_id_eia', 'SLOAD': 'steam_load_1000_lbs', 'SLOAD (1000 lbs)': 'steam_load_1000_lbs', 'SLOAD (1000lb/hr)': 'steam_load_1000_lbs', 'SO2_MASS': 'so2_mass_lbs', 'SO2_MASS (lbs)': 'so2_mass_lbs', 'SO2_MASS_MEASURE_FLG': 'so2_mass_measurement_code', 'STATE': 'state', 'UNITID': 'unitid', 'UNIT_ID': 'unit_id_epa'}
A dictionary containing EPA CEMS column names (keys) and replacement names to use when reading those
columns into PUDL (values).

Type dict

pudl.extract.epacems.extract(epacems_years, states, ds: pudl.workspace.datastore.Datastore)
Coordinate the extraction of EPA CEMS hourly DataFrames.

Parameters

• epacems_years (list) – The years of CEMS data to extract, as 4-digit integers.

• states (list) – The states whose CEMS data we want to extract, indicated by 2-letter
US state codes.

• ds (Datastore) – Initialized datastore

Yields dict – a dictionary with a single EPA CEMS tabular data resource name as the key, having
the form “hourly_emissions_epacems_YEAR_STATE” where YEAR is a 4 digit number and
STATE is a lower case 2-letter code for a US state. The value is a pandas.DataFrame
containing all the raw EPA CEMS hourly emissions data for the indicated state and year.

pudl.extract.epaipm module

Retrieve data from EPA’s Integrated Planning Model (IPM) v6.

Unlike most of the PUDL data sources, IPM is not an annual timeseries. This file assumes that only v6 will be used as
an input, so there are a limited number of files.

This module was written by @gschivley

class pudl.extract.epaipm.EpaIpmDatastore(datastore: pudl.workspace.datastore.Datastore)
Bases: object

Helper for extracting EpaIpm dataframes from Datastore.

SETTINGS = (TableSettings(table_name='transmission_single_epaipm', file='table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx', excel_settings={'skiprows': 3, 'usecols': 'B:F', 'index_col': [0, 1]}), TableSettings(table_name='transmission_joint_epaipm', file='table_3-5_transmission_joint_ipm.csv', excel_settings={}), TableSettings(table_name='load_curves_epaipm', file='table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', excel_settings={'skiprows': 3, 'usecols': 'B:AB'}), TableSettings(table_name='plant_region_map_epaipm_active', file='needs_v6_november_2018_reference_case_0.xlsx', excel_settings={'sheet_name': 'NEEDS v6_Active', 'usecols': 'C,I'}), TableSettings(table_name='plant_region_map_epaipm_retired', file='needs_v6_november_2018_reference_case_0.xlsx', excel_settings={'sheet_name': 'NEEDS v6_Retired_Through2021', 'usecols': 'C,I'}))

get_dataframe(table_name: str)→ pandas.core.frame.DataFrame
Retrieve the specified file from the epaipm archive.

Parameters

• table_name – table name, from self.table_filename

• pandas_args – pandas arguments for parsing the file

Returns Pandas dataframe of EPA IPM data.

get_table_settings(table_name: str)→ pudl.extract.epaipm.TableSettings
Returns TableSettings for a given table_name.

8.10. pudl 131

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://github.com/gschivley
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

class pudl.extract.epaipm.TableSettings(table_name: str, file: str, excel_settings: Dict[str,
Any] = {})

Bases: tuple

Contains information for how to access and load EpaIpm dataframes.

excel_settings: Dict[str, Any]
Alias for field number 2

file: str
Alias for field number 1

table_name: str
Alias for field number 0

pudl.extract.epaipm.extract(epaipm_tables: List[str], ds: pudl.workspace.datastore.Datastore)
→ Dict[str, pandas.core.frame.DataFrame]

Extracts data from IPM files.

Parameters

• epaipm_tables (iterable) – A tuple or list of table names to extract

• ds (EpaIpmDatastore) – Initialized datastore

Returns dictionary of DataFrames with extracted (but not yet transformed) data from each file.

Return type dict

pudl.extract.excel module

Load excel metadata CSV files form a python data package.

class pudl.extract.excel.GenericExtractor(ds)
Bases: object

Contains logic for extracting panda.DataFrames from excel spreadsheets.

This class implements the generic dataset agnostic logic to load data from excel spreadsheet simply by using
excel Metadata for given dataset.

It is expected that individual datasets wil subclass this code and add custom business logic by overriding neces-
sary methods.

When implementing custom business logic, the following should be modified:

1. DATASET class attribute controls which excel metadata should be loaded.

2. BLACKLISTED_PAGES class attribute specifies which pages should not be loaded from the underlying
excel files even if the metadata is available. This can be used for experimental/new code that should not be run
yet.

3. dtypes() should return dict with {column_name: pandas_datatype} if you need to specify which datatypes
should be uded upon loading.

4. If data cleanup is necessary, you can apply custom logic by overriding one of the following functions (they
all return the modified dataframe):

• process_raw() is applied right after loading the excel DataFrame from the disk.

• process_renamed() is applied after input columns were renamed to standardized pudl columns.

• process_final_page() is applied when data from all available years is merged into single DataFrame for a
given page.

132 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

PUDL, Release 0.4.0

5. get_datapackage_resources() if partition is anything other than a year, this method should be overwritten in
the dataset-specific extractor.

BLACKLISTED_PAGES = []
List of supported pages that should not be extracted.

METADATA = None
Instance of metadata object to use with this extractor.

excel_filename(page, **partition)
Produce the xlsx document file name as it will appear in the archive.

Parameters

• page – pudl name for the dataset contents, eg “boiler_generator_assn” or “coal_stocks”

• partition – partition to load. (ex: 2009 for year partition or “2020-08” for year_month
partition)

Returns string name of the xlsx file

extract(**partitions)
Extracts dataframes.

Returns dict where keys are page names and values are DataFrames containing data across given years.

Parameters partitions (list, tuple or string) – list of partitions to extract. (Ex:
[2009, 2010] if dataset is partitioned by years or ‘2020-08’ if dataset is partitioned by
year_month)

static get_dtypes(page, **partition)
Provide custom dtypes for given page and partition.

load_excel_file(page, **partition)
Produce the ExcelFile object for the given (partition, page).

Parameters

• page (str) – pudl name for the dataset contents, eg “boiler_generator_assn” or
“coal_stocks”

• partition – partition to load. (ex: 2009 for year partition or “2020-08” for year_month
partition)

Returns pd.ExcelFile instance with the parsed excel spreadsheet frame

static process_final_page(df, page)
Final processing stage applied to a page DataFrame.

process_raw(df, page, **partition)
Transforms raw dataframe and rename columns.

static process_renamed(df, page, **partition)
Transforms dataframe after columns are renamed.

class pudl.extract.excel.Metadata(dataset_name)
Bases: object

Load Excel metadata from Python package data.

Excel sheet files may contain many different tables. When we load those into dataframes, metadata tells us how
to do this. Metadata generally informs us about the position of a given page in the file (which sheet and which
row) and it informs us how to translate excel column names into standardized column names.

8.10. pudl 133

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

PUDL, Release 0.4.0

When metadata object is instantiated, it is given ${dataset} name and it will attempt to load csv files from
pudl.package_data.meta.xlsx_maps.${dataset} package.

It expects the following kinds of files:

• skiprows.csv tells us how many initial rows should be skipped when loading data for given (partition,
page).

• skipfooter.csv tells us how many bottom rows should be skipped when loading data for given partition
(partition, page).

• tab_map.csv tells us what is the excel sheet name that should be read when loading data for given (partition,
page)

• column_map/${page}.csv currently informs us how to translate input column names to standardized pudl
names for given (partition, input_col_name). Relevant page is encoded in the filename.

get_all_columns(page)
Returns list of all pudl (standardized) columns for a given page (across all partition).

get_all_pages()
Returns list of all known pages.

get_column_map(page, **partition)
Returns the dictionary mapping input columns to pudl columns for given partition and page.

get_dataset_name()
Returns the name of the dataset described by this metadata.

get_file_name(page, **partition)
Returns file name of given partition and page.

get_sheet_name(page, **partition)
Returns name of the excel sheet that contains the data for given partition and page.

get_skipfooter(page, **partition)
Returns number of bottom rows to skip when loading given partition and page.

get_skiprows(page, **partition)
Returns number of initial rows to skip when loading given partition and page.

pudl.extract.ferc1 module

Tools for extracting data from the FERC Form 1 FoxPro database for use in PUDL.

FERC distributes the annual responses to Form 1 as binary FoxPro database files. This format is no longer widely
supported, and so our first challenge in accessing the Form 1 data is to convert it into a modern format. In addition,
FERC distributes one database for each year, and these databases are not explicitly linked together. Over time the
structure has changed as new tables and fields have been added. In order to be able to use the data to do analyses
across many years, we need to bring all of it into a unified structure. However it appears that these changes are only
entirely additive – the most recent versions of the DB contain all the tables and fields that existed in earlier versions.

PUDL uses the most recently released year of data as a template, and infers the structure of the FERC Form 1 database
based on the strings embedded within the binary files, pulling out the names of tables and their constituent columns.
The structure of the database is also informed by information we found on the FERC website, including a mapping
between the table names, DBF file names, and the pages of the Form 1 (add link to file, which should distributed with
the docs) that the data was gathered from, as well as a diagram of the structure of the database as it existed in 2015
(add link/embed image).

Using this inferred structure PUDL creates an SQLite database mirroring the FERC database using sqlalchemy.
Then we use a python package called dbfread to extract the data from the DBF tables, and insert it virtually unchanged

134 Chapter 8. About Catalyst Cooperative

https://dbfread.readthedocs.io/en/latest/

PUDL, Release 0.4.0

into the SQLite database. However, we do compile a master table of the all the respondent IDs and respondent names,
which all the other tables refer to. Unlike the other tables, this table has no report_year and so it represents a
merge of all the years of data. In the event that the name associated with a given respondent ID has changed over time,
we retain the most recently reported name.

Ths SQLite based compilation of the original FERC Form 1 databases can accommodate all 116 tables from all the
published years of data (beginning in 1994). Including all the data through 2018, the database takes up more than 7GB
of disk space. However, almost 90% of that “data” is embeded binary files in two tables. If those tables are excluded,
the database is less than 800MB in size.

The process of cloning the FERC Form 1 database(s) is coordinated by a script called ferc1_to_sqlite im-
plemented in pudl.convert.ferc1_to_sqlite which is controlled by a YAML file. See the example file
distributed with the package.

Once the cloned SQLite database has been created, we use it as an input into the PUDL ETL pipeline, and we extract
a small subset of the available tables for further processing and integration with other data sources like the EIA 860
and EIA 923.

class pudl.extract.ferc1.FERC1FieldParser(table, memofile=None)
Bases: dbfread.field_parser.FieldParser

A custom DBF parser to deal with bad FERC Form 1 data types.

parseN(field, data)
Augments the Numeric DBF parser to account for bad FERC data.

There are a small number of bad entries in the backlog of FERC Form 1 data. They take the form of
leading/trailing zeroes or null characters in supposedly numeric fields, and occasionally a naked ‘.’

Accordingly, this custom parser strips leading and trailing zeros and null characters, and replaces a bare ‘.’
character with zero, allowing all these fields to be cast to numeric values.

Parameters

• () (data) –

• () –

• () –

class pudl.extract.ferc1.Ferc1Datastore(datastore: pudl.workspace.datastore.Datastore)
Bases: object

Simple datastore wrapper for accessing ferc1 resources.

PACKAGE_PATH = 'pudl.package_data.meta.ferc1_row_maps'

get_dir(year: int)→ pathlib.Path
Returns the path where individual ferc1 files are stored inside the yearly archive.

get_file(year: int, filename: str)
Opens given ferc1 file from the corresponding archive.

pudl.extract.ferc1.PUDL_RIDS = {514: 'AEP Texas', 519: 'Upper Michigan Energy Resources Company', 522: 'Luning Energy Holdings LLC, Invenergy Investments', 529: 'Tri-State Generation and Transmission Association', 531: 'Basin Electric Power Cooperative'}
Missing FERC 1 Respondent IDs for which we have identified the respondent.

pudl.extract.ferc1.accumulated_depreciation(ferc1_meta, ferc1_table, ferc1_years)
Creates a DataFrame of the fields of accumulated_depreciation_ferc1.

Parameters

• ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC Form 1
database

8.10. pudl 135

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
accumulated_depreciation_ferc1.

• ferc1_years (list) – The range of years from which to read data.

Returns A DataFrame containing all accumulated_depreciation_ferc1 records.

Return type pandas.DataFrame

pudl.extract.ferc1.add_sqlite_table(table_name, sqlite_meta, dbc_map, ds, refyear=2019,
testing=False, bad_cols=())

Adds a new Table to the FERC Form 1 database schema.

Creates a new sa.Table object named table_name and add it to the database schema contained in
sqlite_meta. Use the information in the dictionary dbc_map to translate between the DBF filenames
in the datastore (e.g. F1_31.DBF), and the full name of the table in the FoxPro database (e.g. f1_fuel) and
also between truncated column names extracted from that DBF file, and the full column names extracted from
the DBC file. Read the column datatypes out of each DBF file and use them to define the columns in the new
Table object.

Parameters

• table_name (str) – The name of the new table to be added to the database schema.

• sqlite_meta (sqlalchemy.schema.MetaData) – The database schema to which
the newly defined sqlalchemy.Table will be added.

• dbc_map (dict) – A dictionary of dictionaries

• ds (Ferc1Datastore) – Initialized datastore

• testing (bool) – Assume this is a test run, use sandboxes

• bad_cols (iterable of 2-tuples) – A list or other iterable containing pairs of
strings of the form (table_name, column_name), indicating columns (and their parent tables)
which should not be cloned into the SQLite database for some reason.

Returns None

pudl.extract.ferc1.check_ferc1_tables(refyear)
Test each FERC 1 data year for compatibility with reference year schema.

Parameters refyear (int) – The reference year for testing compatibility of the database schema
with a FERC Form 1 table and year.

Returns A dictionary having database table names as keys, and lists of which years that table was
compatible with the reference year as values.

Return type dict

pudl.extract.ferc1.dbf2sqlite(tables, years, refyear, pudl_settings, bad_cols=(), clobber=False,
datastore=None)

Clone the FERC Form 1 Databsae to SQLite.

Parameters

• tables (iterable) – What tables should be cloned?

• years (iterable) – Which years of data should be cloned?

• refyear (int) – Which database year to use as a template.

• pudl_settings (dict) – Dictionary containing paths and database URLs used by
PUDL.

136 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.sqlalchemy.org/en/14/core/metadata.html#sqlalchemy.schema.MetaData
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

• bad_cols (iterable of tuples) – A list of (table, column) pairs indicating
columns that should be skipped during the cloning process. Both table and column are
strings in this case, the names of their respective entities within the database metadata.

• datastore (Datastore) – instance of a datastore to access the resources.

Returns None

8.10. pudl 137

PUDL, Release 0.4.0

pudl.extract.ferc1.define_sqlite_db(sqlite_meta, dbc_map, ds, tables={'f1_106_2009':
'F1_106_2009', 'f1_106a_2009': 'F1_106A_2009',
'f1_106b_2009': 'F1_106B_2009', 'f1_208_elc_dep':
'F1_208_ELC_DEP', 'f1_231_trn_stdycst':
'F1_231_TRN_STDYCST', 'f1_324_elc_expns':
'F1_324_ELC_EXPNS', 'f1_325_elc_cust':
'F1_325_ELC_CUST', 'f1_331_transiso':
'F1_331_TRANSISO', 'f1_338_dep_depl':
'F1_338_DEP_DEPL', 'f1_397_isorto_stl':
'F1_397_ISORTO_STL', 'f1_398_ancl_ps':
'F1_398_ANCL_PS', 'f1_399_mth_peak':
'F1_399_MTH_PEAK', 'f1_400_sys_peak':
'F1_400_SYS_PEAK', 'f1_400a_iso_peak':
'F1_400A_ISO_PEAK', 'f1_429_trans_aff':
'F1_429_TRANS_AFF', 'f1_acb_epda': 'F1_2',
'f1_accumdepr_prvsn': 'F1_3', 'f1_accumdfrrdtaxcr':
'F1_4', 'f1_adit_190_detail': 'F1_5', 'f1_adit_190_notes':
'F1_6', 'f1_adit_amrt_prop': 'F1_7', 'f1_adit_other':
'F1_8', 'f1_adit_other_prop': 'F1_9',
'f1_allowances': 'F1_10', 'f1_allowances_nox':
'F1_ALLOWANCES_NOX', 'f1_audit_log': 'F1_78',
'f1_bal_sheet_cr': 'F1_11', 'f1_capital_stock':
'F1_12', 'f1_cash_flow': 'F1_13', 'f1_cmmn_utlty_p_e':
'F1_14', 'f1_cmpinc_hedge': 'F1_CMPINC_HEDGE',
'f1_cmpinc_hedge_a': 'F1_CMPINC_HEDGE_A',
'f1_co_directors': 'F1_18', 'f1_codes_val': 'F1_76',
'f1_col_lit_tbl': 'F1_79', 'f1_comp_balance_db':
'F1_15', 'f1_construction': 'F1_16', 'f1_control_respdnt':
'F1_17', 'f1_cptl_stk_expns': 'F1_19',
'f1_csscslc_pcsircs': 'F1_20', 'f1_dacs_epda':
'F1_21', 'f1_dscnt_cptl_stk': 'F1_22', 'f1_edcfu_epda':
'F1_23', 'f1_elc_op_mnt_expn': 'F1_27',
'f1_elc_oper_rev_nb': 'F1_26', 'f1_elctrc_erg_acct':
'F1_24', 'f1_elctrc_oper_rev': 'F1_25',
'f1_electric': 'F1_28', 'f1_email': 'F1_EMAIL',
'f1_envrnmntl_expns': 'F1_29', 'f1_envrnmntl_fclty':
'F1_30', 'f1_footnote_data': 'F1_85', 'f1_footnote_tbl':
'F1_87', 'f1_fuel': 'F1_31', 'f1_general_info': 'F1_32',
'f1_gnrt_plant': 'F1_33', 'f1_hydro': 'F1_86',
'f1_ident_attsttn': 'F1_88', 'f1_important_chg': 'F1_34',
'f1_incm_stmnt_2': 'F1_35', 'f1_income_stmnt': 'F1_36',
'f1_leased': 'F1_90', 'f1_load_file_names': 'F1_80',
'f1_long_term_debt': 'F1_93', 'f1_misc_dfrrd_dr':
'F1_38', 'f1_miscgen_expnelc': 'F1_37',
'f1_mthly_peak_otpt': 'F1_39', 'f1_mtrl_spply': 'F1_40',
'f1_nbr_elc_deptemp': 'F1_41', 'f1_nonutility_prop':
'F1_42', 'f1_note_fin_stmnt': 'F1_43', 'f1_nuclear_fuel':
'F1_44', 'f1_officers_co': 'F1_45', 'f1_othr_dfrrd_cr':
'F1_46', 'f1_othr_pd_in_cptl': 'F1_47',
'f1_othr_reg_assets': 'F1_48', 'f1_othr_reg_liab':
'F1_49', 'f1_overhead': 'F1_50', 'f1_pccidica':
'F1_51', 'f1_plant': 'F1_92', 'f1_plant_in_srvce':
'F1_52', 'f1_privilege': 'F1_81', 'f1_pumped_storage':
'F1_53', 'f1_purchased_pwr': 'F1_54',
'f1_r_d_demo_actvty': 'F1_59', 'f1_reconrpt_netinc':
'F1_55', 'f1_reg_comm_expn': 'F1_56',
'f1_respdnt_control': 'F1_57', 'f1_respondent_id':
'F1_1', 'f1_retained_erng': 'F1_58', 'f1_rg_trn_srv_rev':
'F1_RG_TRN_SRV_REV', 'f1_row_lit_tbl': 'F1_84',
'f1_s0_checks': 'F1_S0_CHECKS', 'f1_s0_filing_log':
'F1_S0_FILING_LOG', 'f1_sale_for_resale': 'F1_61',
'f1_sales_by_sched': 'F1_60', 'f1_sbsdry_detail':
'F1_91', 'f1_sbsdry_totals': 'F1_62', 'f1_sched_lit_tbl':
'F1_77', 'f1_schedules_list': 'F1_63', 'f1_security':
'F1_SECURITY', 'f1_security_holder': 'F1_64',
'f1_slry_wg_dstrbtn': 'F1_65', 'f1_steam': 'F1_89',
'f1_substations': 'F1_66', 'f1_sys_error_log':
'F1_82', 'f1_taxacc_ppchrgyr': 'F1_67',
'f1_unique_num_val': 'F1_83', 'f1_unrcvrd_cost':
'F1_68', 'f1_utltyplnt_smmry': 'F1_69',
'f1_work': 'F1_70', 'f1_xmssn_adds': 'F1_71',
'f1_xmssn_elc_bothr': 'F1_72', 'f1_xmssn_elc_fothr':
'F1_73', 'f1_xmssn_line': 'F1_74', 'f1_xtraordnry_loss':
'F1_75'}, refyear=2019, bad_cols=())

138 Chapter 8. About Catalyst Cooperative

PUDL, Release 0.4.0

Defines a FERC Form 1 DB structure in a given SQLAlchemy MetaData object.

Given a template from an existing year of FERC data, and a list of target tables to be cloned, convert that
information into table and column names, and data types, stored within a SQLAlchemy MetaData object. Use
that MetaData object (which is bound to the SQLite database) to create all the tables to be populated later.

Parameters

• sqlite_meta (sa.MetaData) – A SQLAlchemy MetaData object which is bound to
the FERC Form 1 SQLite database.

• dbc_map (dict of dicts) – A dictionary of dictionaries, of the kind returned by
get_dbc_map(), describing the table and column names stored within the FERC Form 1
FoxPro database files.

• ds (Ferc1Datastore) – Initialized Ferc1Datastore

• tables (iterable of strings) – List or other iterable of FERC database table
names that should be included in the database being defined. e.g. ‘f1_fuel’ and ‘f1_steam’

• refyear (integer) – The year of the FERC Form 1 DB to use as a template for creating
the overall multi-year database schema.

• bad_cols (iterable of 2-tuples) – A list or other iterable containing pairs of
strings of the form (table_name, column_name), indicating columns (and their parent tables)
which should not be cloned into the SQLite database for some reason.

Returns the effects of the function are stored inside sqlite_meta

Return type None

pudl.extract.ferc1.drop_tables(engine)
Drop all FERC Form 1 tables from the SQLite database.

Creates an sa.schema.MetaData object reflecting the structure of the database that the passed in engine refers
to, and uses that schema to drop all existing tables.

Todo: Treat DB connection as a context manager (with/as).

Parameters engine (sqlalchemy.engine.Engine) – A DB Engine pointing at an exising
SQLite database to be deleted.

Returns None

pudl.extract.ferc1.extract(ferc1_tables=('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1',
'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'pur-
chased_power_ferc1', 'plant_in_service_ferc1'), ferc1_years=(1994,
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,
2017, 2018, 2019), pudl_settings=None)

Coordinates the extraction of all FERC Form 1 tables into PUDL.

Parameters

• ferc1_tables (iterable of strings) – List of the FERC 1 database tables to be
loaded into PUDL. These are the names of the tables in the PUDL database, not the FERC
Form 1 database.

• ferc1_years (iterable of ints) – List of years for which FERC Form 1 data
should be loaded into PUDL. Note that not all years for which FERC data is available may
have been integrated into PUDL yet.

8.10. pudl 139

https://docs.python.org/3/library/constants.html#None
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine

PUDL, Release 0.4.0

Returns A dictionary of pandas DataFrames, with the names of PUDL database tables as the keys.
These are the raw unprocessed dataframes, reflecting the data as it is in the FERC Form 1 DB, for
passing off to the data tidying and cleaning fuctions found in the pudl.transform.ferc1
module.

Return type dict

Raises

• ValueError – If the year is not in the list of years for which FERC data is available

• ValueError – If the year is not in the list of working FERC years

• ValueError – If the FERC table requested is not integrated into PUDL

pudl.extract.ferc1.fuel(ferc1_meta, ferc1_table, ferc1_years)
Creates a DataFrame of f1_fuel table records with plant names, >0 fuel.

Parameters

• ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC Form 1
database

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
f1_fuel table.

• ferc1_years (list) – The range of years from which to read data.

Returns A DataFrame containing f1_fuel records that have plant_names and non-zero fuel amounts.

Return type pandas.DataFrame

pudl.extract.ferc1.get_dbc_map(ds, year, min_length=4)
Extract names of all tables and fields from a FERC Form 1 DBC file.

Read the DBC file associated with the FERC Form 1 database for the given year, and extract all printable
strings longer than min_lengh. Select those strings that appear to be database table names, and their associated
field for use in re-naming the truncated column names extracted from the corresponding DBF files (those names
are limited to having only 10 characters in their names.)

Parameters

• ds (Ferc1Datastore) – Initialized datastore

• year – The year of data from which the database table and column names are to be ex-
tracted. Typically this is expected to be the most recently available year of FERC Form 1
data.

Returns a dictionary whose keys are the long table names extracted from the DBC file, and whose
values are lists of pairs of values, the first of which is the full name of each field in the table with
the same name as the key, and the second of which is the truncated (<=10 character) long name
of that field as found in the DBF file.

Return type dict

pudl.extract.ferc1.get_ferc1_meta(ferc1_engine)
Grab the FERC Form 1 DB metadata and check that tables exist.

Connects to the FERC Form 1 SQLite database and reads in its metadata (table schemas, types, etc.) by reflecting
the database. Checks to make sure the DB is not empty, and returns the metadata object.

Parameters ferc1_engine (sqlalchemy.engine.Engine) – SQL Alchemy database
connection engine for the PUDL FERC 1 DB.

140 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine

PUDL, Release 0.4.0

Returns sqlalchemy.Metadata A SQL Alchemy metadata object, containing the definition of the DB
structure.

Raises ValueError – If there are no tables in the SQLite Database.

pudl.extract.ferc1.get_fields(filedata)
Produce the expected table names and fields from a DBC file.

Parameters filedata – Contents of the DBC file from which to extract.

Returns [fields]

Return type dict of table_name

pudl.extract.ferc1.get_raw_df(ds, table, dbc_map, years=(1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019))

Combine several years of a given FERC Form 1 DBF table into a dataframe.

Parameters

• ds (Ferc1Datastore) – Initialized datastore

• table (string) – The name of the FERC Form 1 table from which data is read.

• dbc_map (dict of dicts) – A dictionary of dictionaries, of the kind returned by
get_dbc_map(), describing the table and column names stored within the FERC Form 1
FoxPro database files.

• min_length (int) – The minimum number of consecutive printable

• years (list) – Range of years to be combined into a single DataFrame.

Returns A DataFrame containing several years of FERC Form 1 data for the given table.

Return type pandas.DataFrame

pudl.extract.ferc1.missing_respondents(reported, observed, identified)
Fill in missing respondents for the f1_respondent_id table.

Parameters

• reported (iterable) – Respondent IDs appearing in f1_respondent_id.

• observed (iterable) – Respondent IDs appearing anywhere in the ferc1 DB.

• identified (dict) – A {respondent_id: respondent_name} mapping for those observed
but not reported respondent IDs which we have been able to identify based on circumstantial
evidence. See also: pudl.extract.ferc1.PUDL_RIDS

Returns A list of dictionaries representing minimal f1_respondent_id table records, of the form
{“respondent_id”: ID, “respondent_name”: NAME}. These records are generated only for
unreported respondents. Identified respondents get the values passed in through identified
and the other observed but unidentified respondents are named “Missing Respondent ID”

Return type list

pudl.extract.ferc1.observed_respondents(ferc1_engine)
Compile the set of all observed respondent IDs found in the FERC 1 database.

A significant number of FERC 1 respondent IDs appear in the data tables, but not in the f1_respondent_id table.
In order to construct a self-consisten database with we need to find all of those missing respondent IDs and
inject them into the table when we clone the database.

Parameters ferc1_engine (sqlalchemy.engine.Engine) – An engine for connecting to
the FERC 1 database.

8.10. pudl 141

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine

PUDL, Release 0.4.0

Returns Every respondent ID reported in any of the FERC 1 DB tables.

Return type set

pudl.extract.ferc1.plant_in_service(ferc1_meta, ferc1_table, ferc1_years)
Creates a DataFrame of the fields of plant_in_service_ferc1.

Parameters

• ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC Form 1
database

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
plant_in_service_ferc1 table.

• ferc1_years (list) – The range of years from which to read data.

Returns A DataFrame containing all plant_in_service_ferc1 records.

Return type pandas.DataFrame

pudl.extract.ferc1.plants_hydro(ferc1_meta, ferc1_table, ferc1_years)
Creates a DataFrame of f1_hydro for records that have plant names.

Parameters

• ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC Form 1
database

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
f1_hydro table.

• ferc1_years (list) – The range of years from which to read data.

Returns A DataFrame containing f1_hydro records that have plant names.

Return type pandas.DataFrame

pudl.extract.ferc1.plants_pumped_storage(ferc1_meta, ferc1_table, ferc1_years)
Creates a DataFrame of f1_plants_pumped_storage records with plant names.

Parameters

• ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC Form 1
database

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
f1_plants_pumped_storage table.

• ferc1_years (list) – The range of years from which to read data.

Returns A DataFrame containing f1_plants_pumped_storage records that have plant names.

Return type pandas.DataFrame

pudl.extract.ferc1.plants_small(ferc1_meta, ferc1_table, ferc1_years)
Creates a DataFrame of f1_small for records with minimum data criteria.

Parameters

• ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC Form 1
database

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
f1_small table.

• ferc1_years (list) – The range of years from which to read data.

142 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

Returns A DataFrame containing f1_small records that have plant names and non zero demand,
generation, operations, maintenance, and fuel costs.

Return type pandas.DataFrame

pudl.extract.ferc1.plants_steam(ferc1_meta, ferc1_table, ferc1_years)
Create a pandas.DataFrame containing valid raw f1_steam records.

Selected records must indicate a plant capacity greater than 0, and include a non-null plant name.

Parameters

• ferc1_meta (sqlalchemy.MetaData) – a MetaData object describing the cloned
FERC Form 1 database

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
f1_steam table.

• ferc1_years (list) – The range of years from which to read data.

Returns A DataFrame containing f1_steam records that have plant names and non-zero capacities.

Return type pandas.DataFrame

pudl.extract.ferc1.purchased_power(ferc1_meta, ferc1_table, ferc1_years)
Creates a DataFrame the fields of purchased_power_ferc1.

Parameters

• ferc1_meta (sa.MetaData) – a MetaData object describing the cloned FERC Form 1
database

• ferc1_table (str) – The name of the FERC 1 database table to read, in this case, the
purchased_power_ferc1 table.

• ferc1_years (list) – The range of years from which to read data.

Returns A DataFrame containing all purchased_power_ferc1 records.

Return type pandas.DataFrame

pudl.extract.ferc1.show_dupes(table, dbc_map, data_dir, years=(1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017,
2018, 2019), pk=('respondent_id', 'report_year', 'report_prd',
'row_number', 'spplmnt_num'))

Identify duplicate primary keys by year within a given FERC Form 1 table.

Parameters

• table (str) – Name of the original FERC Form 1 table to identify duplicate records in.

• years (iterable) – a list or other iterable containing the years that should be searched
for duplicate records. By default it is all available years of FERC Form 1 data.

• pk (list) – A list of strings identifying the columns in the FERC Form 1 table that should
be treated as a composite primary key. By default this includes: respondent_id, report_year,
report_prd, row_number, and spplmnt_num.

Returns None

8.10. pudl 143

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

pudl.extract.ferc714 module

Routines used for extracting the raw FERC 714 data.

pudl.extract.ferc714.TABLE_ENCODING = {'adjacency_ba_ferc714': 'iso-8859-1', 'demand_forecast_pa_ferc714': None, 'demand_hourly_pa_ferc714': None, 'demand_monthly_ba_ferc714': None, 'description_pa_ferc714': 'iso-8859-1', 'gen_plants_ba_ferc714': 'iso-8859-1', 'id_certification_ferc714': 'iso-8859-1', 'interchange_ba_ferc714': 'iso-8859-1', 'lambda_description_ferc714': 'iso-8859-1', 'lambda_hourly_ba_ferc714': None, 'net_energy_load_ba_ferc714': None, 'respondent_id_ferc714': None}
Dictionary describing the character encodings of the FERC 714 CSV files.

pudl.extract.ferc714.TABLE_FNAME = {'adjacency_ba_ferc714': 'Part 2 Schedule 4 - Adjacent Balancing Authorities.csv', 'demand_forecast_pa_ferc714': 'Part 3 Schedule 3 - Planning Area Forecast Demand.csv', 'demand_hourly_pa_ferc714': 'Part 3 Schedule 2 - Planning Area Hourly Demand.csv', 'demand_monthly_ba_ferc714': 'Part 2 Schedule 2 - Balancing Authority Monthly Demand.csv', 'description_pa_ferc714': 'Part 3 Schedule 1 - Planning Area Description.csv', 'gen_plants_ba_ferc714': 'Part 2 Schedule 1 - Balancing Authority Generating Plants.csv', 'id_certification_ferc714': 'Part 1 Schedule 1 - Identification Certification.csv', 'interchange_ba_ferc714': 'Part 2 Schedule 5 - Balancing Authority Interchange.csv', 'lambda_description_ferc714': 'Part 2 Schedule 6 - System Lambda Description.csv', 'lambda_hourly_ba_ferc714': 'Part 2 Schedule 6 - Balancing Authority Hourly System Lambda.csv', 'net_energy_load_ba_ferc714': 'Part 2 Schedule 3 - Balancing Authority Net Energy For Load.csv', 'respondent_id_ferc714': 'Respondent IDs.csv'}
Dictionary mapping PUDL tables to filenames within the FERC 714 zipfile.

pudl.extract.ferc714.extract(tables=('respondent_id_ferc714', 'id_certification_ferc714',
'gen_plants_ba_ferc714', 'demand_monthly_ba_ferc714',
'net_energy_load_ba_ferc714', 'adjacency_ba_ferc714',
'interchange_ba_ferc714', 'lambda_hourly_ba_ferc714',
'lambda_description_ferc714', 'description_pa_ferc714', 'de-
mand_forecast_pa_ferc714', 'demand_hourly_pa_ferc714'),
pudl_settings=None, ds=None)

Extract the raw FERC Form 714 dataframes from their original CSV files.

Parameters

• ferc714_tables (iterable) – The set of tables to be extracted.

• pudl_settings (dict) – A PUDL settings dictionary.

• ds (Datastore) – instance of the datastore

Returns A dictionary of dataframes, with raw FERC 714 table names as the keys, and minimally
processed pandas.DataFrame instances as the values.

Return type dict

Module contents

Modules implementing the “Extract” step of the PUDL ETL pipeline.

Each module in this subpackage implements data extraction for a single data source from the PUDL Data Sources.
This process begins with the original data as retrieved by the pudl.workspace subpackage, and ends with
a dictionary of “raw” pandas.DataFrame`s, that have been minimally altered from the
original data, and are ready for normalization and data cleaning by the data
source specific modules in the :mod:`pudl.transform subpackage.

pudl.glue package

Submodules

pudl.glue.eia_epacems module

Extract, clean, and normalize the EPA-EIA crosswalk.

This module defines functions that read the raw EPA-EIA crosswalk file, clean up the column names, and separate
it into three distinctive normalize tables for integration in the database. There are many gaps in the mapping of EIA
plant and generator ids to EPA plant and unit ids, so, for the time being these tables are sparse.

The EPA, in conjunction with the EIA, plans to relase an crosswalk with fewer gaps at the beginning of 2021. Until
then, this module reads and cleans the currently available crosswalk.

144 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

The raw crosswalk file was obtained from Greg Schivley. His methods for filling in some of the gaps are not included
in this version of the module. https://github.com/grgmiller/EPA-EIA-Unit-Crosswalk

pudl.glue.eia_epacems.grab_clean_split()
Clean raw crosswalk data, drop nans, and return split tables.

Returns a dictionary of three normalized DataFrames comprised of the data in the original crosswalk
file. EPA plant id to EPA unit id; EPA plant id to EIA plant id; and EIA plant id to EIA generator
id to EPA unit id.

Return type dict

pudl.glue.eia_epacems.grab_n_clean_epa_orignal()
Retrieve and clean column names for the original EPA-EIA crosswalk file.

Returns

a version of the EPA-EIA crosswalk containing only relevant columns. Columns names are
clear and programatically accessible.

Return type pandas.DataFrame

pudl.glue.eia_epacems.split_tables(df)
Split the cleaned EIA-EPA crosswalk table into three normalized tables.

Parameters pandas.DataFrame – a DataFrame of relevant, readible columns from the EIA-
EPA crosswalk. Output of grab_n_clean_epa_original().

Returns a dictionary of three normalized DataFrames comprised of the data in the original crosswalk
file. EPA plant id to EPA unit id; EPA plant id to EIA plant id; and EIA plant id to EIA generator
id to EPA unit id. Includes no nan values.

Return type dict

pudl.glue.ferc1_eia module

Extract and transform glue tables between FERC Form 1 and EIA 860/923.

FERC1 and EIA report on many of the same plants and utilities, but have no embedded connection. We have combed
through the FERC and EIA plants and utilities to generate id’s which can connect these datasets. The resulting fields in
the PUDL tables are plant_id_pudl and utility_id_pudl, respectively. This was done by hand in a spreadsheet which is
in the package_data/glue directory. When mapping plants, we considered a plant a co-located collection of electricity
generation equipment. If a coal plant was converted to a natural gas unit, our aim was to consider this the same plant.
This module simply reads in the mapping spreadsheet and converts it to a dictionary of dataframes.

Because these mappings were done by hand and for every one of FERC Form 1’s thousands of reported plants, we
know there are probably some incorrect or incomplete mappings. If you see a plant_id_pudl or utility_id_pudl mapping
that you think is incorrect, please open an issue on our Github!

Note that the PUDL IDs may change over time. They are not guaranteed to be stable. If you need to find a particular
plant or utility reliably, you should use its plant_id_eia, utility_id_eia, or utility_id_ferc1.

Another note about these id’s: these id’s map our definition of plants, which is not the most granular level of plant
unit. The generators are typically the smaller, more interesting unit. FERC does not typically report in units (although
it sometimes does), but it does often break up gas units from coal units. EIA reports on the generator and boiler level.
When trying to use these PUDL id’s, consider the granularity that you desire and the potential implications of using a
co-located set of plant infrastructure as an id.

pudl.glue.ferc1_eia.get_db_plants_eia(pudl_engine)
Get a list of all EIA plants appearing in the PUDL DB.

8.10. pudl 145

https://github.com/grgmiller/EPA-EIA-Unit-Crosswalk
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

This list of plants is used to determine which plants need to be added to the FERC 1 / EIA plant mappings,
where we assign PUDL Plant IDs. Unless a new year’s worth of data has been added to the PUDL DB, but the
plants have not yet been mapped, all plants in the PUDL DB should also appear in the plant mappings. It only
makes sense to run this with a connection to a PUDL DB that has all the EIA data in it.

Parameters pudl_engine (sqlalchemy.engine.Engine) – A database connection engine
for connecting to a PUDL SQLite database.

Returns A DataFrame with plant_id_eia, plant_name_eia, and state columns, for addition to the
FERC 1 / EIA plant mappings.

Return type pandas.DataFrame

pudl.glue.ferc1_eia.get_db_plants_ferc1(pudl_settings, years)
Pull a dataframe of all plants in the FERC Form 1 DB for the given years.

This function looks in the f1_steam, f1_gnrt_plant, f1_hydro and f1_pumped_storage tables, and generates a
dataframe containing every unique combination of respondent_id (utility_id_ferc1) and plant_name is finds.
Also included is the capacity of the plant in MW (as reported in the raw FERC Form 1 DB), the respon-
dent_name (utility_name_ferc1) and a column indicating which of the plant tables the record came from. Plant
and utility names are translated to lowercase, with leading and trailing whitespace stripped and repeating internal
whitespace compacted to a single space.

This function is primarily meant for use generating inputs into the manual mapping of FERC to EIA plants with
PUDL IDs.

Parameters

• pudl_settings (dict) – Dictionary containing various paths and database URLs used
by PUDL.

• years (iterable) – Years for which plants should be compiled.

Returns A dataframe containing columns utility_id_ferc1, utility_name_ferc1, plant_name, capac-
ity_mw, and plant_table. Each row is a unique combination of utility_id_ferc1 and plant_name.

Return type pandas.DataFrame

pudl.glue.ferc1_eia.get_db_utils_eia(pudl_engine)
Get a list of all EIA Utilities appearing in the PUDL DB.

pudl.glue.ferc1_eia.get_lost_plants_eia(pudl_engine)
Identify any EIA plants which were mapped, but then lost from the DB.

pudl.glue.ferc1_eia.get_lost_utils_eia(pudl_engine)
Get a list of all mapped EIA Utilites not found in the PUDL DB.

pudl.glue.ferc1_eia.get_mapped_plants_eia()
Get a list of all EIA plants that have been assigned PUDL Plant IDs.

Read in the list of already mapped EIA plants from the FERC 1 / EIA plant and utility mapping spreadsheet
kept in the package_data.

Parameters None –

Returns A DataFrame listing the plant_id_eia and plant_name_eia values for every EIA plant which
has already been assigned a PUDL Plant ID.

Return type pandas.DataFrame

pudl.glue.ferc1_eia.get_mapped_plants_ferc1()
Generate a dataframe containing all previously mapped FERC 1 plants.

146 Chapter 8. About Catalyst Cooperative

https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

Many plants are reported in FERC Form 1 with different versions of the same name in different years. Because
FERC provides no unique ID for plants, these names must be used as part of their identifier. We manually curate
a list of all the versions of plant names which map to the same actual plant. In order to identify new plants each
year, we have to compare the new plant names and respondent IDs against this raw mapping, not the contents
of the PUDL data, since within PUDL we use one canonical name for the plant. This function pulls that list
of various plant names and their corresponding utilities (both name and ID) for use in identifying which plants
have yet to be mapped when we are integrating new data.

Parameters None –

Returns plant_name, utility_id_ferc1, and utility_name_ferc1. Each row represents a unique com-
bination of utility_id_ferc1 and plant_name.

Return type pandas.DataFrame A DataFrame with three columns

pudl.glue.ferc1_eia.get_mapped_utils_eia()
Get a list of all the EIA Utilities that have PUDL IDs.

pudl.glue.ferc1_eia.get_mapped_utils_ferc1()
Read in the list of manually mapped utilities for FERC Form 1.

Unless a new utility has appeared in the database, this should be identical to the full list of utilities available in
the FERC Form 1 database.

Parameters None –

Returns pandas.DataFrame

pudl.glue.ferc1_eia.get_plant_map()
Read in the manual FERC to EIA plant mapping data.

pudl.glue.ferc1_eia.get_unmapped_plants_eia(pudl_engine)
Identify any as-of-yet unmapped EIA Plants.

pudl.glue.ferc1_eia.get_unmapped_plants_ferc1(pudl_settings, years)
Generate a DataFrame of all unmapped FERC plants in the given years.

Pulls all plants from the FERC Form 1 DB for the given years, and compares that list against the already mapped
plants. Any plants found in the database but not in the list of mapped plants are returned.

Parameters

• pudl_settings (dict) – Dictionary containing various paths and database URLs used
by PUDL.

• years (iterable) – Years for which plants should be compiled from the raw FERC
Form 1 DB.

Returns A dataframe containing five columns: utility_id_ferc1, utility_name_ferc1, plant_name,
capacity_mw, and plant_table. Each row is a unique combination of utility_id_ferc1 and
plant_name, which appears in the FERC Form 1 DB, but not in the list of manually mapped
plants.

Return type pandas.DataFrame

pudl.glue.ferc1_eia.get_unmapped_utils_eia(pudl_engine)
Get a list of all the EIA Utilities in the PUDL DB without PUDL IDs.

pudl.glue.ferc1_eia.get_unmapped_utils_ferc1(ferc1_engine)
Generate a list of as-of-yet unmapped utilities from the FERC Form 1 DB.

Find any utilities which do exist in the cloned FERC Form 1 DB, but which do not show up in the already
mapped FERC respondents.

8.10. pudl 147

https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

Parameters ferc1_engine (sqlalchemy.engine.Engine) – A database connection en-
gine for the cloned FERC Form 1 DB.

Returns with columns “utility_id_ferc1” and “utility_name_ferc1”

Return type pandas.DataFrame

pudl.glue.ferc1_eia.get_unmapped_utils_with_plants_eia(pudl_engine)
Get all EIA Utilities that lack PUDL IDs but have plants/ownership.

pudl.glue.ferc1_eia.get_utility_map()
Read in the manual FERC to EIA utility mapping data.

pudl.glue.ferc1_eia.glue(ferc1=False, eia=False)
Generates a dictionary of dataframes for glue tables between FERC1, EIA.

That data is primarily stored in the plant_output and utility_output tabs of pack-
age_data/glue/mapping_eia923_ferc1.xlsx in the repository. There are a total of seven relations described in
this data:

• utilities: Unique id and name for each utility for use across the PUDL DB.

• plants: Unique id and name for each plant for use across the PUDL DB.

• utilities_eia: EIA operator ids and names attached to a PUDL utility id.

• plants_eia: EIA plant ids and names attached to a PUDL plant id.

• utilities_ferc: FERC respondent ids & names attached to a PUDL utility id.

• plants_ferc: A combination of FERC plant names and respondent ids, associated with a PUDL plant ID.
This is necessary because FERC does not provide plant ids, so the unique plant identifier is a combination
of the respondent id and plant name.

• utility_plant_assn: An association table which describes which plants have relationships with what utili-
ties. If a record exists in this table then combination of PUDL utility id & PUDL plant id does have an
association of some kind. The nature of that association is somewhat fluid, and more scrutiny will likely
be required for use in analysis.

Presently, the ‘glue’ tables are a very basic piece of infrastructure for the PUDL DB, because they contain the
primary key fields for utilities and plants in FERC1.

Parameters

• ferc1 (bool) – Are we ingesting FERC Form 1 data?

• eia (bool) – Are we ingesting EIA data?

Returns a dictionary of glue table DataFrames

Return type dict

Module contents

Tools for integrating & reconciling different PUDL datasets with each other.

Many of the datasets integrated by PUDL report related information, but it’s often not easy to programmatically relate
the datasets to each other. The glue subpackage provides tools for doing so, making all of the individual datasets more
useful, and enabling richer analyses.

In this subpackage there are two basic types of modules:

• those that implement general tools for connecting datasets together (like the pudl.glue.zipper module
which two tabular datasets based on a set of mutually reported variables with no common IDs), and

148 Chapter 8. About Catalyst Cooperative

https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

• those that implement a connection between two specific datasets (like the pudl.glue.ferc1_eia module).

In general we try to enable each dataset to be processed independently, and optionally apply the glue to connect them
to each other when both datasets for which glue exists are being processed together.

pudl.load package

Submodules

pudl.load.csv module

Functions for loading processed PUDL data tables into CSV files.

Once each set of tables pertaining to a data source have been transformed, we need to output them into CSV files
which will become the data underlying tabular data resources. Most of these resources contain an entire table. In the
case of larger tables (like EPA CEMS) the data may be partitioned into a collection of gzipped CSV files which are all
part of a single resource group.

These functions are designed to pick up where the transform step leaves off, taking a dictionary of dataframes and
applying a few last alterations that are necessary only in the context of outputting the data as text based files. These
include converting floatified integer columns into strings with null values, and appropriately indexing the dataframes
as needed.

pudl.load.csv.clean_columns_dump(df, resource_name, datapkg_dir)
Output cleaned data columns to a CSV file.

Ensures that the id column is set appropriately depending on whether the table has a natural primary key or an
autoincremnted pseudo-key. Ensures that the set of columns in the dataframe to be output are identical to those
in the corresponding metadata definition. Transforms integer columns with NA values into strings for dumping,
as appropriate.

Parameters

• resource_name (str) – The exact name of the tabular resource which the DataFrame
df is going to be used to populate. This will be used to name the output CSV file, and must
match the corresponding stored metadata template.

• datapkg_dir (path-like) – Path to the datapackage directory that the CSV will be
part of. Assumes CSV files get put in a “data” directory within this directory.

• df (pandas.DataFrame) – The dataframe containing the data to be written out into
CSV for inclusion in a tabular datapackage.

Returns None

pudl.load.csv.csv_dump(df, resource_name, keep_index, datapkg_dir)
Write a dataframe to CSV.

Set pandas.DataFrame.to_csv() arguments appropriately depending on what data source we’re writing
out, and then write it out. In practice this means adding a .csv to the end of the resource name, and then, if it’s
part of epacems, adding a .gz after that.

Parameters

• df (pandas.DataFrame) – The DataFrame to be dumped to CSV.

• resource_name (str) – The exact name of the tabular resource which the DataFrame
df is going to be used to populate. This will be used to name the output CSV file, and must
match the corresponding stored metadata template.

8.10. pudl 149

https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

• keep_index (bool) – if True, use the “id” column of df as the index and output it.

• datapkg_dir (path-like) – Path to the top level datapackage directory.

Returns None

pudl.load.csv.dict_dump(transformed_dfs, data_source, datapkg_dir)
Wrapper for clean_columns_dump that takes a dictionary of DataFrames.

Parameters

• transformed_dfs (dict) – A dictionary of DataFrame objects in which tables from
datasets (keys) correspond to normalized DataFrames of values from that table (values)

• data_source (str) – The name of the data source we are working with (eia923, ferc1,
etc.)

• datapkg_dir (path-like) – Path to the top level directory for the datapackage these
CSV files are part of. Will contain a “data” directory and a datapackage.json file.

Returns None

pudl.load.metadata module

Routines for generating PUDL tabular data package and resource metadata.

This module enables the generation and use of the metadata for tabular data packages. It also saves and validates
the datapackage once the metadata is compiled. In general the routines in this module can only be used after the
referenced CSV’s have been generated by the top level PUDL ETL module, and written out to the datapackage data
directory by the pudl.load.csv module.

The metadata comes from three basic sources: the datapkg_settings that are read in from the YAML file specifying
the datapackage or bundle of datapackages to be generated, the CSV files themselves (their names, sizes, and hash
values) and the stored metadata template which ultimately determines the structure of the relational database that these
output tabular data packages represent, and encodes field specific table schemas. See the “megadata” which is stored
in src/pudl/package_data/meta/datapkg/datapackage.json.

For unpartitioned tables which are contained in a single tabular data resource this is a relatively straightforward process.
However, larger tables that have been partitioned into smaller tabular data resources that are part of a resource group
(e.g. EPA CEMS) have additional complexities. We have tried to say “resource” when referring to an individual output
CSV that has its own metadata entry, and “table” when referring to whole tables which typically contain only a single
resource, but may be composed of hundreds or even thousands of individual resources.

See https://frictionlessdata.io for more details on the tabular data package standards.

In addition, we have included PUDL specific metadata fields that document the ETL parameters which were used to
process the data, temporal and spatial coverage for each resource, Zenodo DOIs if appropriate, UUIDs to identify the
individual data packages as well as co-generated bundles of data packages that can be used together to instantiate a
single database, etc.

pudl.load.metadata.compile_keywords(data_sources)
Compile the set of all keywords associated with given data sources.

The list of keywords we associate with each data source is stored in the pudl.constants.
keywords_by_data_source dictionary.

Parameters data_sources (iterable) – List of data source codes (eia923, ferc1, etc.) from
which to gather keywords.

Returns the set of all unique keywords associated with any of the input data sources.

Return type list

150 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://frictionlessdata.io
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

pudl.load.metadata.compile_partitions(datapkg_settings)
Given a datapackage settings dictionary, extract dataset partitions.

Iterates through all the datasets enumerated in the datapackage settings, and compiles a dictionary indicating
which datasets should be partitioned and on what basis when they are output as tabular data resources. Currently
this only applies to the epacems dataset. Datapackage settings must be validated because currently we inject
EPA CEMS partitioning variables (epacems_years, epacems_states) during the validation process.

Parameters datapkg_settings (dict) – a dictionary containing validated datapackage set-
tings, mostly read in from a PUDL ETL settings file.

Returns Uses table name (e.g. hourly_emissions_epacems) as keys, and lists of partition variables
(e.g. [“epacems_years”, “epacems_states”]) as the values. If no datasets within the datapackage
are being partitioned, this is an empty dictionary.

Return type dict

pudl.load.metadata.data_sources_from_tables(table_names)
Look up data sources used by the given list of PUDL database tables.

Parameters tables_names (iterable) – a list of names of ‘seed’ tables, whose dependencies
we are seeking to find.

Returns The set of data sources for the list of PUDL table names.

Return type set

pudl.load.metadata.generate_metadata(datapkg_settings, datapkg_resources, datapkg_dir, dat-
apkg_bundle_uuid=None, datapkg_bundle_doi=None)

Generate metadata for package tables and validate package.

The metadata for this package is compiled from the pkg_settings and from the “megadata”, which is a json
file containing the schema for all of the possible pudl tables. Given a set of tables, this function compiles
metadata and validates the metadata and the package. This function assumes datapackage CSVs have already
been generated.

See Frictionless Data for the tabular data package specification: http://frictionlessdata.io/specs/
tabular-data-package/

Parameters

• datapkg_settings (dict) – a dictionary containing package settings containing top
level elements of the data package JSON descriptor specific to the data package including:
* name: short, unique package name e.g. pudl-eia923, ferc1-test * title: One line human
readable description. * description: A paragraph long description. * version: the version of
the data package being published. * keywords: For search purposes.

• datapkg_resources (list) – The names of tabular data resources that are included
in this data package.

• datapkg_dir (path-like) – The location of the directory for this package. The data
package directory will be a subdirectory in the datapkg_dir directory, with the name of the
package as the name of the subdirectory.

• datapkg_bundle_uuid – A type 4 UUID identifying the ETL run which which gen-
erated the data package – this indicates that the data packages are compatible with each
other

• datapkg_bundle_doi – A digital object identifier (DOI) that will be used to archive the
bundle of mutually compatible data packages. Needs to be provided by an archiving service
like Zenodo. This field may also be added after the data package has been generated.

Returns a Python dictionary representing a valid tabular data package descriptor.

8.10. pudl 151

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
http://frictionlessdata.io/specs/tabular-data-package/
http://frictionlessdata.io/specs/tabular-data-package/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

Return type dict

pudl.load.metadata.get_autoincrement_columns(unpartitioned_tables)
Grab the autoincrement columns for pkg tables.

pudl.load.metadata.get_datapkg_fks(datapkg_json)
Get a dictionary of foreign key relationships from datapackage metadata.

Parameters datapkg_json (path-like) – Path to the datapackage.json containing the schema
from which the foreign key relationships will be read.

Returns

table names (keys) with lists of table names (values) which the key table has forgien key re-
lationships with.

Return type dict

pudl.load.metadata.get_dependent_tables(table_name, fk_relash)
For a given table, get the list of all the other tables it depends on.

Parameters

• table_name (str) – The table whose dependencies we are looking for.

• fk_relash (dict) – table names (keys) with lists of table names (values) which the key
table has forgien key relationships with.

Returns the set of all the tables the specified table depends upon.

Return type set

pudl.load.metadata.get_dependent_tables_from_list(table_names)
Given a list of tables, find all the other tables they depend on.

Iterate over a list of input tables, adding them and all of their dependent tables to a set, and return that set.
Useful for determining which tables need to be exported together to yield a self-contained subset of the PUDL
database.

Parameters table_names (iterable) – a list of names of ‘seed’ tables, whose dependencies
we are seeking to find.

Returns All tables with which any of the input tables have ForeignKey relations.

Return type set

pudl.load.metadata.get_tabular_data_resource(resource_name, datapkg_dir, dat-
apkg_settings, partitions=False)

Create a Tabular Data Resource descriptor for a PUDL table.

Based on the information in the database, and some additional metadata this function will generate a valid
Tabular Data Resource descriptor, according to the Frictionless Data specification, which can be found here:
https://frictionlessdata.io/specs/tabular-data-resource/

Parameters

• resource_name (string) – name of the tabular data resource for which you want to
generate a Tabular Data Resource descriptor. This is the resource name, rather than the
database table name, because we partition large tables into resource groups consisting of
many files.

• datapkg_dir (path-like) – The location of the directory for this package. The data
package directory will be a subdirectory in the datapkg_dir directory, with the name of the
package as the name of the subdirectory.

152 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://frictionlessdata.io/specs/tabular-data-resource/

PUDL, Release 0.4.0

• datapkg_settings (dict) – Python dictionary represeting the ETL parameters read
in from the settings file, pertaining to the tabular datapackage this resource is part of.

• partitions (dict) – A dictionary with PUDL database table names as the keys
(e.g. hourly_emissions_epacems), and lists of partition variables (e.g. [“epacems_years”,
“epacems_states”]) as the keys.

Returns A Python dictionary representing a tabular data resource descriptor that complies with the
Frictionless Data specification.

Return type dict

pudl.load.metadata.get_unpartitioned_tables(resources, datapkg_settings)
Generate a list of database table names from a list of data resources.

In the case of EPA CEMS and potentially other large datasets, we are partitioning a single table into many
tabular data resources that are part of a resource group. However in some contexts we want to refer to the list of
corresponding databse tables, rather than the list of resources.

The partition key in the datapackage settings is the name of the table without the partition elements, and so in
the case of partitioned tables we use that key as the name of the table. Otherwise we just use the name of the
resource.

Parameters

• resources (iterable) – A list of tabular data resource names. They must be expected
to appear in the datapackage specified by datapkg_settings.

• datapkg_settings (dict) – a dictionary containing validated datapackage settings,
mostly read in from a PUDL ETL settings file.

Returns

The names of the database tables corresponding to the tabular datapackage resource
names that were passed in.

Return type list

pudl.load.metadata.hash_csv(csv_path)
Calculates a SHA-256 hash of the CSV file for data integrity checking.

Parameters csv_path (path-like) – Path the CSV file to hash.

Returns the hexdigest of the hash, with a ‘sha256:’ prefix.

Return type str

pudl.load.metadata.pull_resource_from_megadata(resource_name)
Read metadata for a given data resource from the stored PUDL megadata.

Parameters resource_name (str) – the name of the tabular data resource whose JSON de-
scriptor we are reading.

Returns A Python dictionary containing the resource descriptor portion of a data package descriptor,
not expected to be valid or complete.

Return type dict

Raises ValueError – If table_name is not found exactly one time in the PUDL metadata library.

pudl.load.metadata.spatial_coverage(resource_name)
Extract spatial coverage (country and state) for a given source.

8.10. pudl 153

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

PUDL, Release 0.4.0

Parameters resource_name (str) – The name of the (potentially partitioned) resource for
which we are enumerating the spatial coverage. Currently this is the only place we are able
to access the partitioned spatial coverage after the ETL process has completed.

Returns A dictionary containing country and potentially state level spatial coverage elements.
Country keys are “country” for the full name of country, “iso_3166-1_alpha-2” for the 2-letter
ISO code, and “iso_3166-1_alpha-3” for the 3-letter ISO code. State level elements are “state”
(a two letter ISO code for sub-national jurisdiction) and “iso_3166-2” for the combined country-
state code conforming to that standard.

Return type dict

pudl.load.metadata.temporal_coverage(resource_name, datapkg_settings)
Extract start and end dates from ETL parameters for a given source.

Parameters

• resource_name (str) – The name of the (potentially partitioned) resource for which we
are enumerating the spatial coverage. Currently this is the only place we are able to access
the partitioned spatial coverage after the ETL process has completed.

• datapkg_settings (dict) – Python dictionary represeting the ETL parameters read
in from the settings file, pertaining to the tabular datapackage this resource is part of.

Returns A dictionary of two items, keys “start_date” and “end_date” with values in ISO 8601
YYYY-MM-DD format, indicating the extent of the time series data contained within the re-
source. If the resource does not contain time series data, the dates are null.

Return type dict

pudl.load.metadata.validate_save_datapkg(datapkg_descriptor, datapkg_dir)
Validate datapackage descriptor, save it, and validate some sample data.

Parameters

• datapkg_descriptor (dict) – A Python dictionary representation of a (hopefully
valid) tabular datapackage descriptor.

• datapkg_dir (path-like) – Directory into which the datapackage.json file containing
the tabular datapackage descriptor should be written.

Returns A dictionary containing the goodtables datapackage validation report. Note that this will
only be returned if there are no errors, otherwise it is output as an error message.

Return type dict

Raises ValueError – if the datapackage descriptor passed in is invalid, or if any of the tables has
a data validation error.

Module contents

Tools for handling the load set in pudl ETL.

154 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

PUDL, Release 0.4.0

pudl.output package

Submodules

pudl.output.censusdp1tract module

Functions for reading data out of the Census DP1 SQLite Database.

pudl.output.censusdp1tract.get_layer(layer: Literal[state, county, tract],
pudl_settings=None) → geopan-
das.geodataframe.GeoDataFrame

Select one layer from the Census DP1 database.

Uses information within the Census DP1 database to set the coordinate reference system and to identify the
column containing the geometry. The geometry column is renamed to “geom” as that’s the default withing
Geopandas. No other column names or types are altered.

Parameters

• layer (str) – Which set of geometries to read, must be one of “state”, “county”, or
“tract”.

• pudl_settings (dict or None) – A dictionary of PUDL settings, including paths
to various resources like the Census DP1 SQLite database. If None, the user defaults are
used.

Returns geopandas.GeoDataFrame

pudl.output.eia860 module

Functions for pulling data primarily from the EIA’s Form 860.

pudl.output.eia860.assign_cc_unit_ids(gens_df)
Assign PUDL Unit IDs for combined cycle generation units.

This applies only to combined cycle units reported as a combination of CT and CA prime movers. All CT and
CA generators within a plant that do not already have a unit_id_pudl assigned will be given the same unit ID.
The bga_source column is set to one of several flags indicating what type of arrangement was found:

• orphan_ct (zero CA gens, 1+ CT gens)

• orphan_ca (zero CT gens, 1+ CA gens)

• one_ct_one_ca_inferred (1 CT, 1 CA)

• one_ct_many_ca_inferred (1 CT, 1+ CA)

• many_ct_one_ca_inferred (1+ CT, 1 CA)

• many_ct_many_ca_inferred (1+ CT, 1+ CA)

Orphaned generators are still assigned a unit_id_pudl so that they can potentially be associated with other
generators in the same unit across years. It’s likely that these orphans are a result of mislabled or missing
generators. Note that as generators are added or removed over time, the flags associated with each generator
may change, even though it remains part of the same inferred unit.

Returns pandas.DataFrame

pudl.output.eia860.assign_prime_fuel_unit_ids(gens_df, prime_mover_code,
fuel_type_code_pudl)

Assign a PUDL Unit ID to all generators with a given prime mover and fuel.

8.10. pudl 155

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

PUDL, Release 0.4.0

Within each plant, assign a Unit ID to all generators that don’t have one, and that share the same
fuel_type_code_pudl and prime_mover_code. This is especially useful for differentiating between different
types of steam turbine generators, as there are so many different kinds of steam turbines, and the only charac-
teristic we have to differentiate between them in this context is the fuel they consume. E.g. nuclear, geothermal,
solar thermal, natural gas, diesel, and coal can all run steam turbines, but it doesn’t make sense to lump those
turbines together into a single unit just because they are located at the same plant.

This routine only assigns a PUDL Unit ID to generators that have a consistently reported value of
fuel_type_code_pudl across all of the years of data in gens_df. This consistency is important because other-
wise the prime-fuel based unit assignment could put the same generator into different units in different years,
which is currently not compatible with our concept of “units.”

Parameters

• gens_df (pandas.DataFrame) – A collection of EIA generator records. Must
include the plant_id_eia, generator_id and prime_mover_code and
unit_id_pudl columns.

• prime_mover_code (str) – List of prime mover codes for which we are attempting to
assign simple Unit IDs.

• fuel_type_code_pudl (str) – If not None, then limit the records assigned a unit_id
to those that have the specified fuel_type_code_pudl (e.g. “coal”, “gas”, “oil”, “nuclear”)

Returns

Return type pandas.DataFrame

pudl.output.eia860.assign_single_gen_unit_ids(gens_df, prime_mover_codes,
fuel_type_code_pudl=None, la-
bel_prefix='single')

Assign a unique PUDL Unit ID to each generator of a given prime mover type.

Calculate the maximum pre-existing PUDL Unit ID within each plant, and assign each as of yet unidentified
distinct generator within each plant with an incrementing integer unit_id_pudl, beginning with 1 + the previous
maximum unit_id_pudl found in that plant. Mark that generator with a label in the bga_source column consisting
of label_prefix + the prime mover code.

If fuel_type_code_pudl is not None, then only assign new Unit IDs to those generators having the specified fuel
type code, and use that fuel type code as the label prefix, e.g. “coal_st” for a coal-fired steam turbine.

Only generators having NA unit_id_pudl will be assigned a new ID.

Parameters

• gens_df (pandas.DataFrame) – A collection of EIA generator records. Must
include the plant_id_eia, generator_id and prime_mover_code and
unit_id_pudl columns.

• prime_mover_codes (list) – List of prime mover codes for which we are attempting
to assign simple Unit IDs.

• fuel_type_code_pudl (str, None) – If not None, then limit the records assigned
a unit_id to those that have the specified fuel_type_code_pudl (e.g. “coal”, “gas”, “oil”,
“nuclear”)

• label_prefix (str) – String to use in labeling records as to how their unit_id_pudl was
set. Will be concatenated with the prime mover code.

Returns A new dataframe with the same rows and columns as were passed in, but with the
unit_id_pudl and bga_source columns updated to reflect the newly assigned Unit IDs.

Return type pandas.DataFrame

156 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

pudl.output.eia860.assign_unit_ids(gens_df)
Group generators into operational units using various heuristics.

Splits a few columns off from the big generator dataframe and uses several heuristic functions to fill in missing
unit_id_pudl values beyond those that are generated in the boiler generator association process. Then merges
the new unit ID values back in to the generators dataframe.

Parameters gens_df (pandas.DataFrame) – An EIA generator table. Must contain
at least the columns: report_date, plant_id_eia, generator_id, unit_id_pudl, bga_source,
fuel_type_code_pudl, prime_mover_code,

Returns Returned dataframe should only vary from the input in that some NA values in the
unit_id_pudl and bga_source columns have been filled in with real values.

Return type pandas.DataFrame

Raises

• ValueError – If the input dataframe is missing required columns.

• ValueError – If any generator is associated with more than one unit_id_pudl.

• AssertionError – If row or column indices are changed.

• AssertionError – If pre-existing unit_id_pudl or bga_source values are altered.

• AssertionError – If contents of any other columns are altered at all.

pudl.output.eia860.boiler_generator_assn_eia860(pudl_engine, start_date=None,
end_date=None)

Pull all fields from the EIA 860 boiler generator association table.

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing all the fields from the EIA 860 boiler generator association table.

Return type pandas.DataFrame

pudl.output.eia860.fill_unit_ids(gens_df)
Back and forward fill Unit IDs for each plant / gen combination.

This routine assumes that the mapping of generators to units is constant over time, and extends those mappings
into years where no boilers have been reported – since in the BGA we can only connect generators to each other
if they are both connected to a boiler.

Prior to 2014, combined cycle units didn’t report any “boilers” but in latter years, they have been given “boilers”
that correspond to their generators, so that all of their fuel consumption is recorded alongside that of other types
of generators.

The bga_source field is set to “bfill_units” for those that were backfilled, and “ffill_units” for those that were
forward filled.

Note: We could back/forward fill the boiler IDs prior to the BGA process and we ought to get consistent units
across all the years that are the same as what we fill in here. We could also back/forward fill boiler IDs and Unit
IDs after the fact, and we should get the same result. this will address many currently “boilerless” CCNG units

8.10. pudl 157

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

that use generator ID as boiler ID in the latter years. We could try and apply this more generally, but in cases
of generator IDs that haven’t been used as boiler IDs, it would break the foreign key relationship with the boiler
table, unless we added them there too, which seems like too much deep muddling.

Parameters gens_df (pandas.DataFrame) – An generators_eia860 dataframe, which must
contain columns: report_date, plant_id_eia, generator_id, unit_id_pudl, bga_source.

Returns with the same columns as the input dataframe, but having some NA values filled in for both
the unit_id_pudl and bga_source columns.

Return type pandas.DataFrame

pudl.output.eia860.generators_eia860(pudl_engine, start_date=None, end_date=None,
unit_ids=False)

Pull all fields reported in the generators_eia860 table.

Merge in other useful fields including the latitude & longitude of the plant that the generators are part of,
canonical plant & operator names and the PUDL IDs of the plant and operator, for merging with other PUDL
data sources.

Fill in data for adjacent years if requested, but never fill in earlier than the earliest working year of data for
EIA923, and never add more than one year on after the reported data (since there should at most be a one year
lag between EIA923 and EIA860 reporting)

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

• pudl_unit_ids (bool) – If True, use several heuristics to assign individual generators
to functional units. EXPERIMENTAL.

Returns A DataFrame containing all the fields of the EIA 860 Generators table.

Return type pandas.DataFrame

pudl.output.eia860.max_unit_id_by_plant(gens_df)
Identify the largest unit ID associated with each plant so we don’t overlap.

The PUDL Unit IDs are sequentially assigned integers. To assign a new ID, we need to know the largest existing
Unit ID within a plant. This function calculates that largest existing ID, or uses zero, if no Unit IDs are set within
the plant.

Note that this calculation depends on having all of the pre-existing generators and units still available in the
dataframe!

Parameters gens_df (pandas.DataFrame) – A generators_eia860 dataframe containing at
least the columns plant_id_eia and unit_id_pudl.

Returns Having two columns: plant_id_eia and max_unit_id_pudl in which each row should be
unique.

Return type pandas.DataFrame

pudl.output.eia860.ownership_eia860(pudl_engine, start_date=None, end_date=None)
Pull a useful set of fields related to ownership_eia860 table.

Parameters

158 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing a useful set of fields related to the EIA 860 Ownership table.

Return type pandas.DataFrame

pudl.output.eia860.plants_eia860(pudl_engine, start_date=None, end_date=None)
Pull all fields from the EIA Plants tables.

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing all the fields of the EIA 860 Plants table.

Return type pandas.DataFrame

pudl.output.eia860.plants_utils_eia860(pudl_engine, start_date=None, end_date=None)
Create a dataframe of plant and utility IDs and names from EIA 860.

Returns a pandas dataframe with the following columns: - report_date (in which data was reported) -
plant_name_eia (from EIA entity) - plant_id_eia (from EIA entity) - plant_id_pudl - utility_id_eia (from
EIA860) - utility_name_eia (from EIA860) - utility_id_pudl

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing plant and utility IDs and names from EIA 860.

Return type pandas.DataFrame

pudl.output.eia860.utilities_eia860(pudl_engine, start_date=None, end_date=None)
Pull all fields from the EIA860 Utilities table.

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

8.10. pudl 159

https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine

PUDL, Release 0.4.0

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing all the fields of the EIA 860 Utilities table.

Return type pandas.DataFrame

pudl.output.eia923 module

Functions for pulling EIA 923 data out of the PUDl DB.

pudl.output.eia923.FUEL_COST_CATEGORIES_EIAAPI = [41696, 41762, 41740]
The category ids for fuel costs by fuel for electricity for coal, gas and oil.

Each category id is a peice of a query to EIA’s API. Each query here contains a set of state-level child series
which contain fuel cost data.

See EIA’s query browse here:

• Coal: https://www.eia.gov/opendata/qb.php?category=41696

• Gas: https://www.eia.gov/opendata/qb.php?category=41762

• Oil: https://www.eia.gov/opendata/qb.php?category=41740

pudl.output.eia923.boiler_fuel_eia923(pudl_engine, freq=None, start_date=None,
end_date=None)

Pull records from the boiler_fuel_eia923 table in a given data range.

Optionally, aggregate the records over some timescale – monthly, yearly, quarterly, etc. as well as by fuel type
within a plant.

If the records are not being aggregated, all of the database fields are available. If they’re being aggregated, then
we preserve the following fields. Per-unit values are re-calculated based on the aggregated totals. Totals are
summed across whatever time range is being used, within a given plant and fuel type.

• fuel_consumed_units (sum)

• fuel_mmbtu_per_unit (weighted average)

• fuel_consumed_mmbtu (sum)

• sulfur_content_pct (weighted average)

• ash_content_pct (weighted average)

In addition, plant and utility names and IDs are pulled in from the EIA 860 tables.

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• freq (str) – a pandas timeseries offset alias. The original data is reported monthly, so
the best time frequencies to use here are probably month start (freq=’MS’) and year start
(freq=’YS’).

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

160 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://www.eia.gov/opendata/qb.php?category=41696
https://www.eia.gov/opendata/qb.php?category=41762
https://www.eia.gov/opendata/qb.php?category=41740
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing all records from the EIA 923 Boiler Fuel table.

Return type pandas.DataFrame

pudl.output.eia923.convert_cost_json_to_df(response_fuel_state_annual)
Convert a fuel-type/state response into a clean dataframe.

Parameters response_fuel_state_annual (api response) – an EIA API response
which contains state-level series including monthly fuel cost data.

Returns a dataframe containing state-level montly fuel cost. The table contains the following
columns, some of which are refernce columns: ‘report_date’, ‘fuel_cost_per_unit’, ‘state’,
‘fuel_type_code_pudl’, ‘units’ (ref), ‘series_id’ (ref), ‘name’ (ref).

Return type pandas.DataFrame

pudl.output.eia923.fuel_receipts_costs_eia923(pudl_engine, freq=None,
start_date=None, end_date=None,
fill=False, roll=False)

Pull records from fuel_receipts_costs_eia923 table in given date range.

Optionally, aggregate the records at a monthly or longer timescale, as well as by fuel type within a plant, by
setting freq to something other than the default None value.

If the records are not being aggregated, then all of the fields found in the PUDL database are available. If they
are being aggregated, then the following fields are preserved, and appropriately summed or re-calculated based
on the specified aggregation. In both cases, new total values are calculated, for total fuel heat content and total
fuel cost.

• plant_id_eia

• report_date

• fuel_type_code_pudl (formerly energy_source_simple)

• fuel_qty_units (sum)

• fuel_cost_per_mmbtu (weighted average)

• total_fuel_cost (sum)

• fuel_consumed_mmbtu (sum)

• heat_content_mmbtu_per_unit (weighted average)

• sulfur_content_pct (weighted average)

• ash_content_pct (weighted average)

• moisture_content_pct (weighted average)

• mercury_content_ppm (weighted average)

• chlorine_content_ppm (weighted average)

In addition, plant and utility names and IDs are pulled in from the EIA 860 tables.

Optionally fill in missing fuel costs based on monthly state averages which are pulled from the EIA’s open data
API, and/or use a rolling average to fill in gaps in the fuel costs. These behaviors are controlled by the fill
and roll parameters. If you set fill=True you need to ensure that you have stored your API key in an
environment variable named API_KEY_EIA. You can register for a free EIA API key here:

https://www.eia.gov/opendata/register.php

8.10. pudl 161

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://www.eia.gov/opendata/register.php

PUDL, Release 0.4.0

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• freq (str) – a pandas timeseries offset alias. The original data is reported monthly, so
the best time frequencies to use here are probably month start (freq=’MS’) and year start
(freq=’YS’).

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

• fill (boolean) – if set to True, fill in missing coal, gas and oil fuel cost per mmbtu from
EIA’s API. This fills with montly state-level averages.

• roll (boolean) – if set to True, apply a rolling average to a subset of output table’s
columns (currently only ‘fuel_cost_per_mmbtu’ for the frc table).

Returns A DataFrame containing all records from the EIA 923 Fuel Receipts and Costs table.

Return type pandas.DataFrame

pudl.output.eia923.generation_eia923(pudl_engine, freq=None, start_date=None,
end_date=None)

Pull records from the boiler_fuel_eia923 table in a given data range.

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• freq (str) – a pandas timeseries offset alias. The original data is reported monthly, so
the best time frequencies to use here are probably month start (freq=’MS’) and year start
(freq=’YS’).

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing all records from the EIA 923 Generation table.

Return type pandas.DataFrame

pudl.output.eia923.generation_fuel_eia923(pudl_engine, freq=None, start_date=None,
end_date=None)

Pull records from the generation_fuel_eia923 table in given date range.

Optionally, aggregate the records over some timescale – monthly, yearly, quarterly, etc. as well as by fuel type
within a plant.

If the records are not being aggregated, all of the database fields are available. If they’re being aggregated, then
we preserve the following fields. Per-unit values are re-calculated based on the aggregated totals. Totals are
summed across whatever time range is being used, within a given plant and fuel type.

• plant_id_eia

• report_date

162 Chapter 8. About Catalyst Cooperative

https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• fuel_type_code_pudl

• fuel_consumed_units

• fuel_consumed_for_electricity_units

• fuel_mmbtu_per_unit

• fuel_consumed_mmbtu

• fuel_consumed_for_electricity_mmbtu

• net_generation_mwh

In addition, plant and utility names and IDs are pulled in from the EIA 860 tables.

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – SQLAlchemy connection engine
for the PUDL DB.

• freq (str) – a pandas timeseries offset alias. The original data is reported monthly, so
the best time frequencies to use here are probably month start (freq=’MS’) and year start
(freq=’YS’).

• start_date (date-like) – date-like object, including a string of the form ‘YYYY-
MM-DD’ which will be used to specify the date range of records to be pulled. Dates are
inclusive.

• end_date (date-like) – date-like object, including a string of the form ‘YYYY-MM-
DD’ which will be used to specify the date range of records to be pulled. Dates are inclusive.

Returns A DataFrame containing all records from the EIA 923 Generation Fuel table.

Return type pandas.DataFrame

pudl.output.eia923.get_fuel_cost_avg_eiaapi(fuel_cost_cat_ids)
Get a dataframe of state-level average fuel costs for EIA’s API.

Parameters fuel_cost_cat_ids (list) – list of category ids. Known/testing working ids are
stored in FUEL_COST_CATEGORIES_EIAAPI.

Returns a dataframe containing state-level montly fuel cost. The table contains the following
columns, some of which are refernce columns: ‘report_date’, ‘fuel_cost_per_unit’, ‘state’,
‘fuel_type_code_pudl’, ‘units’ (ref), ‘series_id’ (ref), ‘name’ (ref).

Return type pandas.DataFrame

pudl.output.eia923.get_response(url)
Get a response from the API’s url.

pudl.output.eia923.grab_fuel_state_monthly(cat_id)
Grab an API response for monthly fuel costs for one fuel category.

The data we want from EIA is in monthly, state-level series for each fuel type. For each fuel category, there
are at least 51 embeded child series. This function compiles one fuel type’s child categories into one request.
The resulting api response should contain a list of series responses from each state which we can convert into a
pandas.DataFrame using convert_cost_json_to_df.

Parameters cat_id (int) – category id for one fuel type. Known to be

pudl.output.eia923.make_url_cat_eiaapi(category_id)
Generate a url for a category from EIA’s API.

Requires an environment variable named API_KEY_EIA be set, containing a valid EIA API key, which you
can obtain from:

8.10. pudl 163

https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int

PUDL, Release 0.4.0

https://www.eia.gov/opendata/register.php

pudl.output.eia923.make_url_series_eiaapi(series_id)
Generate a url for a series EIA’s API.

Requires an environment variable named API_KEY_EIA be set, containing a valid EIA API key, which you
can obtain from:

https://www.eia.gov/opendata/register.php

pudl.output.epacems module

Routines that provide user-friendly access to the partitioned EPA CEMS dataset.

pudl.output.epacems.get_plant_states(plant_ids, pudl_out)
Determine what set of states a given set of EIA plant IDs are within.

If you only want to select data about a particular set of power plants from the EPA CEMS data, this is useful for
identifying which patitions of the Parquet dataset you will need to search.

Parameters

• plant_ids (iterable) – A collection of integers representing valid plant_id_eia values
within the PUDL DB.

• pudl_out (pudl.output.pudltabl.PudlTabl) – A PudlTabl output object to use
to access the PUDL DB.

Returns A list containing the 2-letter state abbreviations for any state that was found in association
with one or more of the plant_ids.

Return type list

pudl.output.epacems.get_plant_years(plant_ids, pudl_out)
Determine which years a given set of EIA plant IDs appear in.

If you only want to select data about a particular set of power plants from the EPA CEMS data, this is useful for
identifying which patitions of the Parquet dataset you will need to search.

NOTE: the EIA-860 and EIA-923 data which are used here don’t cover as many years as the EPA CEMS, so
this is probably of limited utility – you may want to simply include all years, or manually specify the years of
interest instead.

Parameters

• plant_ids (iterable) – A collection of integers representing valid plant_id_eia values
within the PUDL DB.

• pudl_out (pudl.output.pudltabl.PudlTabl) – A PudlTabl output object to use
to access the PUDL DB.

Returns A list containing the 4-digit integer years found in association with one or more of the
plant_ids.

Return type list

pudl.output.epacems.year_state_filter(years=(), states=())
Create filters to read given years and states from partitioned parquet dataset.

A subset of an Apache Parquet dataset can be read in more efficiently if files which don’t need to be queried are
avoideed. Some datasets are partitioned based on the values of columns to make this easier. The EPA CEMS
dataset which we publish is partitioned by state and report year.

164 Chapter 8. About Catalyst Cooperative

https://www.eia.gov/opendata/register.php
https://www.eia.gov/opendata/register.php
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

However, the way the filters are specified can be unintuitive. They use DNF (disjunctive normal form) See this
blog post for more details:

https://blog.datasyndrome.com/python-and-parquet-performance-e71da65269ce

This function takes a set of years, and a set of states, and returns a list of lists of tuples, appropriate for use
with the read_parquet() methods of pandas and dask dataframes. The filter will include all combinations of the
specified years and states. E.g. if years=(2018, 2019) and states=(“CA”, “CO”) then the filter would result in
getting 2018 and 2019 data for CO, as well as 2018 and 2019 data for CA.

Parameters

• years (iterable) – 4-digit integers indicating the years of data you would like to read.
By default it includes all years.

• states (iterable) – 2-letter state abbreviations indicating what states you would like
to include. By default it includes all states.

Returns A list of lists of tuples, suitable for use as a filter in the read_parquet method of pandas and
dask dataframes.

Return type list

pudl.output.ferc1 module

Functions for pulling FERC Form 1 data out of the PUDL DB.

pudl.output.ferc1.fuel_by_plant_ferc1(pudl_engine, thresh=0.5)
Summarize FERC fuel data by plant for output.

This is mostly a wrapper around pudl.transform.ferc1.fuel_by_plant_ferc1() which
calculates some summary values on a per-plant basis (as indicated by utility_id_ferc1 and
plant_name_ferc1) related to fuel consumption.

Parameters

• pudl_engine (sqlalchemy.engine.Engine) – Engine for connecting to the
PUDL database.

• thresh (float) – Minimum fraction of fuel (cost and mmbtu) required in order for a
plant to be assigned a primary fuel. Must be between 0.5 and 1.0. default value is 0.5.

Returns A DataFrame with fuel use summarized by plant.

Return type pandas.DataFrame

pudl.output.ferc1.fuel_ferc1(pudl_engine)
Pull a useful dataframe related to FERC Form 1 fuel information.

This function pulls the FERC Form 1 fuel data, and joins in the name of the reporting utility, as well as the
PUDL IDs for that utility and the plant, allowing integration with other PUDL tables.

Useful derived values include:

• fuel_consumed_mmbtu (total fuel heat content consumed)

• fuel_consumed_total_cost (total cost of that fuel)

Parameters pudl_engine (sqlalchemy.engine.Engine) – Engine for connecting to the
PUDL database.

Returns A DataFrame containing useful FERC Form 1 fuel information.

8.10. pudl 165

https://blog.datasyndrome.com/python-and-parquet-performance-e71da65269ce
https://docs.python.org/3/library/stdtypes.html#list
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine

PUDL, Release 0.4.0

Return type pandas.DataFrame

pudl.output.ferc1.plant_in_service_ferc1(pudl_engine)
Pull a dataframe of FERC Form 1 Electric Plant in Service data.

pudl.output.ferc1.plants_hydro_ferc1(pudl_engine)
Pull a useful dataframe related to the FERC Form 1 hydro plants.

pudl.output.ferc1.plants_pumped_storage_ferc1(pudl_engine)
Pull a dataframe of FERC Form 1 Pumped Storage plant data.

pudl.output.ferc1.plants_small_ferc1(pudl_engine)
Pull a useful dataframe related to the FERC Form 1 small plants.

pudl.output.ferc1.plants_steam_ferc1(pudl_engine)
Select and joins some useful fields from the FERC Form 1 steam table.

Select the FERC Form 1 steam plant table entries, add in the reporting utility’s name, and the PUDL ID for the
plant and utility for readability and integration with other tables that have PUDL IDs.

Also calculates capacity_factor (based on net_generation_mwh & capacity_mw)

Parameters pudl_engine (sqlalchemy.engine.Engine) – Engine for connecting to the
PUDL database.

Returns A DataFrame containing useful fields from the FERC Form 1 steam table.

Return type pandas.DataFrame

pudl.output.ferc1.plants_utils_ferc1(pudl_engine)
Build a dataframe of useful FERC Plant & Utility information.

Parameters pudl_engine (sqlalchemy.engine.Engine) – Engine for connecting to the
PUDL database.

Returns A DataFrame containing useful FERC Form 1 Plant and Utility information.

Return type pandas.DataFrame

pudl.output.ferc1.purchased_power_ferc1(pudl_engine)
Pull a useful dataframe of FERC Form 1 Purchased Power data.

pudl.output.ferc714 module

Functions & classes for compiling derived aspects of the FERC Form 714 data.

pudl.output.ferc714.ASSOCIATIONS: List[Dict[str, Any]] = [{'id': 56669, 'from': 2011, 'to': [2009, 2010]}, {'id': 59504, 'from': 2014, 'to': [2006, 2009], 'exclude': ['NE']}, {'id': 59504, 'from': 2014, 'to': [2010, 2013]}, {'id': 11249, 'from': 2014, 'to': [2006, 2013]}, {'id': 12506, 'from': 2012, 'to': [2013, 2013]}, {'id': 829, 'from': 2008, 'to': [2009, 2013]}, {'id': 14725, 'from': 2011, 'to': [2006, 2010]}, {'id': 16534, 'from': 2013, 'to': [2012, 2012]}, {'id': 17718, 'from': 2010, 'to': [2006, 2009]}, {'id': 13407, 'from': 2009, 'to': [2006, 2008]}, {'id': 13407, 'from': 2013, 'to': [2014, 2019]}]
Adjustments to balancing authority-utility associations from EIA 861.

The changes are applied locally to EIA 861 tables.

• id (int): EIA balancing authority identifier (balancing_authority_id_eia).

• from (int): Reference year, to use as a template for target years.

• to (List[int]): Target years, in the closed interval format [minimum, maximum]. Rows in balanc-
ing_authority_eia861 are added (if missing) for every target year with the attributes from the reference
year. Rows in balancing_authority_assn_eia861 are added (or replaced, if existing) for every target year
with the utility associations from the reference year. Rows in service_territory_eia861 are added (if miss-
ing) for every target year with the nearest year’s associated utilities’ counties.

• exclude (Optional[List[str]]): Utilities to exclude, by state (two-letter code). Rows are excluded from
balancing_authority_assn_eia861 with target year and state.

166 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

class pudl.output.ferc714.Respondents(pudl_out, pudl_settings=None, ba_ids=None,
util_ids=None, priority='balancing_authority',
limit_by_state=True)

Bases: object

A class coordinating compilation of data related to FERC 714 Respondents.

The FERC 714 Respondents themselves are not complex as they are reported, but various ambiguities and the
need to associate service territories with them mean there are a lot of different derived aspects related to them
which we repeatedly need to compile in a self consistent way. This class allows you to choose several parameters
for that compilation, and then easily access the resulting derived tabular outputs.

Some of these derived attributes are computationally expensive, and so they are cached internally. You can force
a new computation in most cases by using update=True in the access methods. However, this functionality
isn’t totally implemented because we’re still depending on the interim ETL processes for the FERC 714 and
EIA 861 data, and we don’t want to trigger whole new ETL runs every time a derived value is updated.

pudl_out
The PUDL output object which should be used to obtain PUDL data.

Type pudl.output.pudltabl.PudlTabl

pudl_settings
A dictionary of settings indicating where data related to PUDL can be found. Needed to obtain US Census
DP1 data which has the county geometries.

Type dict or None

ba_ids
EIA IDs that should be treated as referring to balancing authorities in respondent categorization process.
If None, all known values of balancing_authority_id_eia will be used.

Type ordered collection or None

util_ids
EIA IDs that should be treated as referring to utilities in respondent categorization process. If None, all
known values of utility_id_eia will be used.

Type ordered collection or None

priority
Which type of entity should take priority in the categorization of FERC 714 respondents. Must be either
utility or balancing_authority. The default is balancing_authority.

Type str

limit_by_state
Whether to limit respondent service territories to the states where they have documented activity in the
EIA 861. Currently this is only implemented for Balancing Authorities.

Type bool

annualize(update=False)
Broadcast respondent data across all years with reported demand.

The FERC 714 Respondent IDs and names are reported in their own table, without any refence to individual
years, but much of the information we are associating with them varies annually. This method creates an
annualized version of the respondent table, with each respondent having an entry corresponding to every
year in which hourly demand was reported in the FERC 714 dataset as a whole – this necessarily means
that many of the respondents will end up having entries for years in which they reported no demand, and
that’s fine. They can be filtered later.

8.10. pudl 167

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

property balancing_authority_assn_eia861
Modified balancing_authority_assn_eia861 table.

property balancing_authority_eia861
Modified balancing_authority_eia861 table.

categorize(update=False)
Annualized respondents with respondent_type assigned if possible.

Categorize each respondent as either a utility or a balancing_authority using the parameters
stored in the instance of the class. While categorization can also be done without annualizing, this function
annualizes as well, since we are adding the respondent_type in order to be able to compile service
territories for the respondent, which vary annually.

fipsify(update=False)
Annual respondents with the county FIPS IDs for their service territories.

Given the respondent_type associated with each respondent (either utility or
balancing_authority) compile a list of counties that are part of their service territory on an
annual basis, and merge those into the annualized respondent table. This results in a very long dataframe,
since there are thousands of counties and many of them are served by more than one entity.

Currently respondents categorized as utility will include any county that appears in the
service_territory_eia861 table in association with that utility ID in each year, while for
balancing_authority respondents, some counties can be excluded based on state (if self.
limit_by_state==True).

georef_counties(update=False)
Annual respondents with all associated county-level geometries.

Given the county FIPS codes associated with each respondent in each year, pull in associated geometries
from the US Census DP1 dataset, so we can do spatial analyses. This keeps each county record independent
– so there will be many records for each respondent in each year. This is fast, and still good for mapping,
and retains all of the FIPS IDs so you can also still do ID based analyses.

georef_respondents(update=False)
Annual respondents with a single all-encompassing geometry for each year.

Given the county FIPS codes associated with each responent in each year, compile a geometry for the
respondent’s entire service territory annually. This results in just a single record per respondent per year,
but is computationally expensive and you lose the information about what all counties are associated with
the respondent in that year. But it’s useful for merging in other annual data like total demand, so you can
see which respondent-years have both reported demand and decent geometries, calculate their areas to see
if something changed from year to year, etc.

property service_territory_eia861
Modified service_territory_eia861 table.

summarize_demand(update=False)
Compile annualized, categorized respondents and summarize values.

Calculated summary values include: * Total reported electricity demand per re-
spondent (demand_annual_mwh) * Reported per-capita electrcity demand
(demand_annual_per_capita_mwh) * Population density (population_density_km2)
* Demand density (demand_density_mwh_km2)

These metrics are helpful identifying suspicious changes in the compiled annual geometries for the plan-
ning areas.

pudl.output.ferc714.UTILITIES: List[Dict[str, Any]] = [{'id': 14328, 'reassign': True}, {'id': 16609, 'reassign': True}, {'id': 4922, 'reassign': True}, {'id': 4254}]
Balancing authorities to treat as utilities in associations from EIA 861.

168 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

The changes are applied locally to EIA 861 tables.

• id (int): EIA balancing authority (BA) identifier (balancing_authority_id_eia). Rows for id are removed
from balancing_authority_eia861.

• reassign (Optional[bool]): Whether to reassign utilities to parent BAs. Rows for id as BA in balanc-
ing_authority_assn_eia861 are removed. Utilities assigned to id for a given year are reassigned to the BAs
for which id is an associated utility.

• replace (Optional[bool]): Whether to remove rows where id is a utility in balanc-
ing_authority_assn_eia861. Applies only if reassign=True.

pudl.output.ferc714.add_dates(rids_ferc714, report_dates)
Broadcast respondent data across dates.

Parameters

• rids_ferc714 (pandas.DataFrame) – A simple FERC 714 Respondent ID
dataframe, without any date information.

• report_dates (ordered collection of datetime) – Dates for which each
respondent should be given a record.

Raises ValueError – if a report_date column exists in rids_ferc714.

Returns Dataframe having all the same columns as the input rids_ferc714 with the
addition of a report_date column, but with all records associated with each
respondent_id_ferc714 duplicated on a per-date basis.

Return type pandas.DataFrame

pudl.output.ferc714.categorize_eia_code(eia_codes, ba_ids, util_ids, prior-
ity='balancing_authority')

Categorize FERC 714 eia_codes as either balancing authority or utility IDs.

Most FERC 714 respondent IDs are associated with an eia_code which refers to either a
balancing_authority_id_eia or a utility_id_eia but no indication as to which type of ID each
one is. This is further complicated by the fact that EIA uses the same numerical ID to refer to the same entity in
most but not all cases, when that entity acts as both a utility and as a balancing authority.

This function associates a respondent_type of utility, balancing_authority or pandas.
NA with each input eia_code using the following rules: * If a eia_code appears only in
util_ids the respondent_type will be utility. * If eia_code appears only in ba_ids the
respondent_type will be assigned balancing_authority. * If eia_code appears in neither set
of IDs, respondent_type will be assigned pandas.NA. * If eia_code appears in both sets of IDs, then
whichever respondent_type has been selected with the priority flag will be assigned.

Note that the vast majority of balancing_authority_id_eia values also show up as
utility_id_eia values, but only a small subset of the utility_id_eia values are associated
with balancing authorities. If you use priority="utility" you should probably also be specifically
compiling the list of Utility IDs because you know they should take precedence. If you use utility priority with
all utility IDs

Parameters

• eia_codes (ordered collection of ints) – A collection of IDs which may be
either associated with EIA balancing authorities or utilities, to be categorized.

• ba_ids_eia (ordered collection of ints) – A collection of IDs which should
be interpreted as belonging to EIA Balancing Authorities.

• util_ids_eia (ordered collection of ints) – A collection of IDs which
should be interpreted as belonging to EIA Utilities.

8.10. pudl 169

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• priorty (str) – Which respondent_type to give priority to if the eia_code shows up in
both util_ids_eia and ba_ids_eia. Must be one of “utility” or “balancing_authority”. The
default is “balanacing_authority”.

Returns A dataframe containing 2 columns: eia_code and respondent_type.

Return type pandas.DataFrame

pudl.output.pudltabl module

This module provides a class enabling tabular compilations from the PUDL DB.

Many of our potential users are comfortable using spreadsheets, not databases, so we are creating a collection of
tabular outputs that contain the most useful core information from the PUDL data packages, including additional keys
and human readable names for the objects (utilities, plants, generators) being described in the table.

These tabular outputs can be joined with each other using those keys, and used as a data source within Microsoft Excel,
Access, R Studio, or other data analysis packages that folks may be familiar with. They aren’t meant to completely
replicate all the data and relationships contained within the full PUDL database, but should serve as a generally usable
set of PUDL data products.

The PudlTabl class can also provide access to complex derived values, like the generator and plant level marginal cost
of electricity (MCOE), which are defined in the analysis module.

In the long run, this is a probably a kind of prototype for pre-packaged API outputs or data products that we might
want to be able to provide to users a la carte.

Todo: Return to for update arg and returns values in functions below

class pudl.output.pudltabl.PudlTabl(pudl_engine, ds=None, freq=None, start_date=None,
end_date=None, fill_fuel_cost=False,
roll_fuel_cost=False, fill_net_gen=False)

Bases: object

A class for compiling common useful tabular outputs from the PUDL DB.

adjacency_ba_ferc714(update=False)
An interim FERC 714 output function.

advanced_metering_infrastructure_eia861(update=False)
An interim EIA 861 output function.

balancing_authority_assn_eia861(update=False)
An interim EIA 861 output function.

balancing_authority_eia861(update=False)
An interim EIA 861 output function.

bf_eia923(update=False)
Pull EIA 923 boiler fuel consumption data.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

bga_eia860(update=False)
Pull a dataframe of boiler-generator associations from EIA 860.

170 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

capacity_factor(update=False, min_cap_fact=None, max_cap_fact=None)
Calculate and return generator level capacity factors.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

demand_forecast_pa_ferc714(update=False)
An interim FERC 714 output function.

demand_hourly_pa_ferc714(update=False)
An interim FERC 714 output function.

demand_monthly_ba_ferc714(update=False)
An interim FERC 714 output function.

demand_response_eia861(update=False)
An interim EIA 861 output function.

demand_side_management_eia861(update=False)
An interim EIA 861 output function.

description_pa_ferc714(update=False)
An interim FERC 714 output function.

distributed_generation_eia861(update=False)
An interim EIA 861 output function.

distribution_systems_eia861(update=False)
An interim EIA 861 output function.

dynamic_pricing_eia861(update=False)
An interim EIA 861 output function.

energy_efficiency_eia861(update=False)
An interim EIA 861 output function.

etl_eia861(update=False)
A single function that runs the temporary EIA 861 ETL and sets all DFs.

This is an interim solution that provides a (somewhat) standard way of accessing the EIA 861 data prior to
its being fully integrated into the PUDL database. If any of the dataframes is attempted to be accessed, all
of them are set. Only the tables that have actual transform functions are included, and as new transform
functions are completed, they would need to be added to the list below. Surely there is a way to do this
automatically / magically but that’s beyond my knowledge right now.

Parameters update (bool) – Whether to overwrite the existing dataframes if they exist.

etl_ferc714(update=False)
A single function that runs the temporary FERC 714 ETL and sets all DFs.

This is an interim solution, so that we can have a (relatively) standard way of accessing the FERC 714
data prior to getting it integrated into the PUDL DB. Some of these are not yet cleaned up, but there are

8.10. pudl 171

https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

dummy transform functions which pass through the raw DFs with some minor alterations, so all the data
is available as it exists right now.

An attempt to access any of the dataframes results in all of them being populated, since generating all of
them is almost the same amount of work as generating one of them.

Parameters update (bool) – Whether to overwrite the existing dataframes if they exist.

fbp_ferc1(update=False)
Summarize FERC Form 1 fuel usage by plant.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

frc_eia923(update=False)
Pull EIA 923 fuel receipts and costs data.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

fuel_cost(update=False)
Calculate and return generator level fuel costs per MWh.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

fuel_ferc1(update=False)
Pull the FERC Form 1 steam plants fuel consumption data.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

gen_allocated_eia923(update=False)
Net generation from gen fuel table allocated to generators.

gen_eia923(update=False)
Pull EIA 923 net generation data by generator.

Net generation is reported in two seperate tables in EIA 923: in the generation_eia923 and genera-
tion_fuel_eia923 tables. While the generation_fuel_eia923 table is more complete (the generation_eia923
table includes only ~55% of the reported MWhs), the generation_eia923 table is more granular (it is re-
ported at the generator level).

This method either grabs the generation_eia923 table that is reported by generator, or allocates net gener-
ation from the generation_fuel_eia923 table to the generator level.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

172 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

Return type pandas.DataFrame

gen_original_eia923(update=False)
Pull the original EIA 923 net generation data by generator.

gen_plants_ba_ferc714(update=False)
An interim FERC 714 output function.

gens_eia860(update=False, unit_ids=False)
Pull a dataframe describing generators, as reported in EIA 860.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

gf_eia923(update=False)
Pull EIA 923 generation and fuel consumption data.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

green_pricing_eia861(update=False)
An interim EIA 861 output function.

hr_by_gen(update=False)
Calculate and return generator level heat rates (mmBTU/MWh).

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

hr_by_unit(update=False)
Calculate and return generation unit level heat rates.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

id_certification_ferc714(update=False)
An interim FERC 714 output function.

interchange_ba_ferc714(update=False)
An interim FERC 714 output function.

lambda_description_ferc714(update=False)
An interim FERC 714 output function.

lambda_hourly_ba_ferc714(update=False)
An interim FERC 714 output function.

mcoe(update=False, min_heat_rate=5.5, min_fuel_cost_per_mwh=0.0, min_cap_fact=0.0,
max_cap_fact=1.5, all_gens=True)

Calculate and return generator level MCOE based on EIA data.

8.10. pudl 173

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

Eventually this calculation will include non-fuel operating expenses as reported in FERC Form 1, but for
now only the fuel costs reported to EIA are included. They are attibuted based on the unit-level heat rates
and fuel costs.

Parameters

• update (bool) – If true, re-calculate the output dataframe, even if a cached version
exists.

• min_heat_rate – lowest plausible heat rate, in mmBTU/MWh. Any MCOE records
with lower heat rates are presumed to be invalid, and are discarded before returning.

• min_cap_fact – minimum generator capacity factor. Generator records with a lower
capacity factor will be filtered out before returning. This allows the user to exclude gener-
ators that aren’t being used enough to have valid.

• min_fuel_cost_per_mwh – minimum fuel cost on a per MWh basis that is required
for a generator record to be considered valid. For some reason there are now a large
number of $0 fuel cost records, which previously would have been NaN.

• max_cap_fact – maximum generator capacity factor. Generator records with a lower
capacity factor will be filtered out before returning. This allows the user to exclude gener-
ators that aren’t being used enough to have valid.

• all_gens (bool) – Controls whether the output contains records for all generators in
the generators_eia860 table, or only those generators with associated MCOE data. True
by default.

Returns a compilation of generator attributes, including fuel costs per MWh.

Return type pandas.DataFrame

mergers_eia861(update=False)
An interim EIA 861 output function.

net_energy_load_ba_ferc714(update=False)
An interim FERC 714 output function.

net_metering_eia861(update=False)
An interim EIA 861 output function.

non_net_metering_eia861(update=False)
An interim EIA 861 output function.

operational_data_eia861(update=False)
An interim EIA 861 output function.

own_eia860(update=False)
Pull a dataframe of generator level ownership data from EIA 860.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

plant_in_service_ferc1(update=False)
Pull the FERC Form 1 Plant in Service Table.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

174 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

Return type pandas.DataFrame

plants_eia860(update=False)
Pull a dataframe of plant level info reported in EIA 860.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

plants_hydro_ferc1(update=False)
Pull the FERC Form 1 Hydro Plants Table.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

plants_pumped_storage_ferc1(update=False)
Pull the FERC Form 1 Pumped Storage Table.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

plants_small_ferc1(update=False)
Pull the FERC Form 1 Small Plants Table.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

plants_steam_ferc1(update=False)
Pull the FERC Form 1 steam plants data.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

pu_eia860(update=False)
Pull a dataframe of EIA plant-utility associations.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

pu_ferc1(update=False)
Pull a dataframe of FERC plant-utility associations.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

8.10. pudl 175

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

purchased_power_ferc1(update=False)
Pull the FERC Form 1 Purchased Power Table.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

reliability_eia861(update=False)
An interim EIA 861 output function.

respondent_id_ferc714(update=False)
An interim FERC 714 output function.

sales_eia861(update=False)
An interim EIA 861 output function.

service_territory_eia861(update=False)
An interim EIA 861 output function.

utility_assn_eia861(update=False)
An interim EIA 861 output function.

utility_data_eia861(update=False)
An interim EIA 861 output function.

utils_eia860(update=False)
Pull a dataframe describing utilities reported in EIA 860.

Parameters update (bool) – If true, re-calculate the output dataframe, even if a cached ver-
sion exists.

Returns a denormalized table for interactive use.

Return type pandas.DataFrame

pudl.output.pudltabl.get_table_meta(pudl_engine)
Grab the pudl sqlitie database table metadata.

Module contents

Useful post-processing and denormalized outputs based on PUDL.

The datapackages which are output by the PUDL ETL pipeline are well normalized and suitable for use as relational
database tables. This minimizes data duplication and helps avoid many kinds of data corruption and the potential for
internal inconsistency. However, that’s not always the easiest kind of data to work with. Sometimes we want all the
names and IDs in a single dataframe or table, for human readability. Sometimes you want the useful derived values.

This subpackage compiles a bunch of outputs we found we were commonly generating, so that they can be done
automatically and uniformly. They are encapsulated within the pudl.output.pudltabl.PudlTabl class.

176 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

pudl.transform package

Submodules

pudl.transform.eia module

Code for transforming EIA data that pertains to more than one EIA Form.

This module helps normalize EIA datasets and infers additonal connections between EIA entities (i.e. utilities, plants,
units, generators. . .). This includes:

• compiling a master list of plant, utility, boiler, and generator IDs that appear in any of the EIA 860 or 923 tables.

• inferring more complete boiler-generator associations.

• differentiating between static and time varying attributes associated with the EIA entities, storing the static fields
with the entity table, and the variable fields in an annual table.

The boiler generator association inferrence (bga) takes the associations provided by the EIA 860, and expands on it
using several methods which can be found in pudl.transform.eia._boiler_generator_assn().

pudl.transform.eia.harvesting(entity, eia_transformed_dfs, entities_dfs, eia860_ytd=False, de-
bug=False)

Compiles consistent records for various entities.

For each entity(plants, generators, boilers, utilties), this function finds all the harvestable columns from any
table that they show up in. It then determines how consistent the records are and keeps the values that are mostly
consistent. It compiles those consistent records into one normalized table.

There are a few things to note here. First being that we are not expecting the outcome here to be perfect! We
choose to pull the most consistent record as reported across all the EIA tables and years, but we also required
a “strictness” level of 70% (this is currently a hard coded argument for _occurrence_consistency). That means
at least 70% of the records must be the same for us to use that value. So if values for an entity haven’t been
reported 70% consistently, then it will show up as a null value. We built in the ability to add special cases
for columns where we want to apply a different method to, but the only ones we added was for latitude and
longitude because they are by far the dirtiest.

We have determined which columns should be considered “static” or “annual”. These can be found in constants
in the entities dictionary. Static means That is should not change over time. Annual means there is annual
variablity. This distinction was made in part by testing the consistency and in part by an understanding of how
the entities and columns relate in the real world.

Parameters

• entity (str) – plants, generators, boilers, utilties

• eia_transformed_dfs (dict) – A dictionary of tbl names (keys) and transformed dfs
(values)

• entities_dfs (dict) – A dictionary of entity table names (keys) and entity dfs (values)

• eia860_ytd (boolean) – if True, the etl run is attempting to include year-to-date up-
dated from EIA 860M.

• debug (bool) – If True, this function will also return an additional dictionary of
dataframes that includes the pre-deduplicated compiled records with the number of occu-
rances of the entity and the record to see consistency of reported values.

Returns

8.10. pudl 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

A tuple containing: eia_transformed_dfs (dict): dictionary of tbl names (keys) and trans-
formed dfs (values) entity_dfs (dict): dictionary of entity table names (keys) and entity
dfs (values)

Return type tuple

Raises AssertionError – If the consistency of any record value is <90%.

Todo:

• Return to role of debug.

• Determine what to do with null records

• Determine how to treat mostly static records

pudl.transform.eia.transform(eia_transformed_dfs, eia860_years=(2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,
2019), eia923_years=(2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,
2019), eia860_ytd=False, debug=False)

Creates DataFrames for EIA Entity tables and modifies EIA tables.

This function coordinates two main actions: generating the entity tables via harvesting() and generating
the boiler generator associations via _boiler_generator_assn().

There is also some removal of tables that are no longer needed after the entity harvesting is finished.

Parameters

• eia_transformed_dfs (dict) – a dictionary of table names (kays) and transformed
dataframes (values).

• eia860_years (list) – a list of years for EIA 860, must be continuous, and only in-
clude working years.

• eia923_years (list) – a list of years for EIA 923, must be continuous, and include
only working years.

• eia860_ytd (boolean) – if True, the etl run is attempting to include year-to-date up-
dated from EIA 860M.

• debug (bool) – if true, informational columns will be added into boiler_generator_assn

Returns two dictionaries having table names as keys and dataframes as values for the entity tables
transformed EIA dataframes

Return type tuple

pudl.transform.eia860 module

Module to perform data cleaning functions on EIA860 data tables.

pudl.transform.eia860.OWNERSHIP_PLANT_GEN_ID_DUPES = [(56032, '1')]
EIA Plant IDs which have duplicate generators within the ownership table due to the removal of leading zeroes
from the generator IDs.

Type tuple

178 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

PUDL, Release 0.4.0

pudl.transform.eia860.boiler_generator_assn(eia860_dfs, eia860_transformed_dfs)
Pull and transform the boilder generator association table.

Transformations include:

• Drop non-data rows with EIA notes.

• Drop duplicate rows.

Parameters

• eia860_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA860 form, as reported in the Excel spreadsheets they distribute.

• eia860_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia860_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA860
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia860.generators(eia860_dfs, eia860_transformed_dfs)
Pull and transform the generators table.

There are three tabs that the generator records come from (proposed, existing, retired). Pre 2009, the exist-
ing and retired data are lumped together under a single generator file with one tab. We pull each tab into
one dataframe and include an operational_status to indicate which tab the record came from. We use
operational_status to parse the pre 2009 files as well.

Transformations include:

• Replace . values with NA.

• Update operational_status_code to reflect plant status as either proposed, existing or retired.

• Drop values with NA for plant and generator id.

• Replace 0 values with NA where appropriate.

• Convert Y/N/X values to boolean True/False.

• Convert U/Unknown values to NA.

• Map full spelling onto code values.

• Create a fuel_type_code_pudl field that organizes fuel types into clean, distinguishable categories.

Parameters

• eia860_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA860 form, as reported in the Excel spreadsheets they distribute.

• eia860_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA860 form (keys) correspond to a normalized DataFrame of values from that
page (values).

Returns eia860_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA860
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

8.10. pudl 179

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.transform.eia860.ownership(eia860_dfs, eia860_transformed_dfs)
Pull and transform the ownership table.

Transformations include:

• Replace . values with NA.

• Convert pre-2012 ownership percentages to proportions to match post-2012 reporting.

Parameters

• eia860_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA860 form, as reported in the Excel spreadsheets they distribute.

• eia860_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia860_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA860
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia860.plants(eia860_dfs, eia860_transformed_dfs)
Pull and transform the plants table.

Much of the static plant information is reported repeatedly, and scattered across several different pages of EIA
923. The data frame which this function uses is assembled from those many different pages, and passed in via
the same dictionary of dataframes that all the other ingest functions use for uniformity.

Transformations include:

• Replace . values with NA.

• Homogenize spelling of county names.

• Convert Y/N/X values to boolean True/False.

Parameters

• eia860_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA860 form, as reported in the Excel spreadsheets they distribute.

• eia860_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia860_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA860
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia860.transform(eia860_raw_dfs, eia860_tables=('boiler_generator_assn_eia860',
'utilities_eia860', 'plants_eia860', 'generators_eia860', 'owner-
ship_eia860'))

Transform EIA 860 DataFrames.

Parameters

• eia860_raw_dfs (dict) – a dictionary of tab names (keys) and DataFrames (values).
This can be generated by pudl.

• eia860_tables (tuple) – A tuple containing the names of the EIA 860 tables that can
be pulled into PUDL.

180 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

PUDL, Release 0.4.0

Returns A dictionary of DataFrame objects in which pages from EIA860 form (keys) corresponds
to a normalized DataFrame of values from that page (values).

Return type dict

pudl.transform.eia860.utilities(eia860_dfs, eia860_transformed_dfs)
Pull and transform the utilities table.

Transformations include:

• Replace . values with NA.

• Fix typos in state abbreviations, convert to uppercase.

• Drop address_3 field (all NA).

• Combine phone number columns into one field and set values that don’t mimic real US phone numbers to
NA.

• Convert Y/N/X values to boolean True/False.

• Map full spelling onto code values.

Parameters

• eia860_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA860 form, as reported in the Excel spreadsheets they distribute.

• eia860_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA860 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia860_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA860
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia861 module

Module to perform data cleaning functions on EIA861 data tables.

All transformations include: - Replace . values with NA.

pudl.transform.eia861.advanced_metering_infrastructure(tfr_dfs)
Transform the EIA 861 Advanced Metering Infrastructure table.

Transformations include:

• Tidy data by customer class.

• Drop total_meters columns (it’s calculable with other fields).

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.balancing_authority(tfr_dfs)
Transform the EIA 861 Balancing Authority table.

Transformations include:

8.10. pudl 181

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

• Fill in balancing authrority IDs based on date, utility ID, and BA Name.

• Backfill balancing authority codes based on BA ID.

• Fix BA code and ID typos.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.balancing_authority_assn(tfr_dfs)
Compile a balancing authority, utility, state association table.

For the years up through 2012, the only BA-Util information that’s available comes from the balanc-
ing_authority_eia861 table, and it does not include any state-level information. However, there is utility-state
association information in the sales_eia861 and other data tables.

For the years from 2013 onward, there’s explicit BA-Util-State information in the data tables (e.g. sales_eia861).
These observed associations can be compiled to give us a picture of which BA-Util-State associations exist.
However, we need to merge in the balancing authority IDs since the data tables only contain the balancing
authority codes.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 dataframes. This must in-
clude any dataframes from which we want to compile BA-Util-State associations, which means
this function has to be called after all the basic transformfunctions that depend on only a single
raw table.

Returns a dictionary of transformed dataframes. This function both compiles the association table,
and finishes the normalization of the balancing authority table. It may be that once the harvesting
process incorporates the EIA 861, some or all of this functionality should be pulled into the
phase-2 transform functions.

Return type dict

pudl.transform.eia861.demand_response(tfr_dfs)
Transform the EIA 861 Demand Response table.

Transformations include:

• Fill in NA balancing authority codes with UNK (because it’s part of the primary key).

• Tidy subset of the data by customer class.

• Drop duplicate rows based on primary keys.

• Convert 1000s of dollars into dollars.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.demand_side_management(tfr_dfs)
Transform the EIA 861 Demand Side Management table.

In 2013, the EIA changed the contents of the 861 form so that information pertaining to demand side manage-
ment was no longer housed in a single table, but rather two seperate ones pertaining to energy efficiency and
demand response. While the pre and post 2013 tables contain similar information, one column in the pre-2013

182 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

demand side management table may not have an obvious column equivalent in the post-2013 energy efficiency
or demand response data. We’ve addressed this by keeping the demand side management and energy efficiency
and demand response tables seperate. Use the DSM table for pre 2013 data and the EE / DR tables for post
2013 data. Despite the uncertainty of comparing across these years, the data are similar and we hope to provide
a cohesive dataset in the future with all years and comprable columns combined.

Transformations include:

• Clean up NERC codes and ensure one per row.

• Remove demand_side_management and data_observed columns (they are all the same).

• Tidy subset of the data by customer class.

• Convert Y/N columns to booleans.

• Convert 1000s of dollars into dollars.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.distributed_generation(tfr_dfs)
Transform the EIA 861 Distributed Generation table.

Transformations include:

• Map full spelling onto code values.

• Convert pre-2010 percent values in mw values.

• Remove total columns calculable with other fields.

• Tidy subset of the data by tech class.

• Tidy subset of the data by fuel class.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.distribution_systems(tfr_dfs)
Transform the EIA 861 Distribution Systems table.

Transformations include:

• No additional transformations.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

8.10. pudl 183

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.transform.eia861.dynamic_pricing(tfr_dfs)
Transform the EIA 861 Dynamic Pricing table.

Transformations include:

• Tidy subset of the data by customer class.

• Convert Y/N columns to booleans.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.energy_efficiency(tfr_dfs)
Transform the EIA 861 Energy Efficiency table.

Transformations include:

• Tidy subset of the data by customer class.

• Drop website column (almost no valid information).

• Convert 1000s of dollars into dollars.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.green_pricing(tfr_dfs)
Transform the EIA 861 Green Pricing table.

Transformations include:

• Tidy subset of the data by customer class.

• Convert 1000s of dollars into dollars.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.mergers(tfr_dfs)
Transform the EIA 861 Mergers table.

Transformations include:

• Map full spelling onto code values.

• Retain preceeding zeros in zipcode field.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

184 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Return type dict

pudl.transform.eia861.net_metering(tfr_dfs)
Transform the EIA 861 Net Metering table.

Transformations include:

• Remove rows with utility ids 99999.

• Tidy subset of the data by customer class.

• Tidy subset of the data by tech class.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.non_net_metering(tfr_dfs)
Transform the EIA 861 Non-Net Metering table.

Transformations include:

• Remove rows with utility ids 99999.

• Drop duplicate rows.

• Tidy subset of the data by customer class.

• Tidy subset of the data by tech class.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.normalize_balancing_authority(tfr_dfs)
Finish the normalization of the balancing_authority_eia861 table.

The balancing_authority_assn_eia861 table depends on information that is only available in the UN-normalized
form of the balancing_authority_eia861 table, so and also on having access to a bunch of transformed data
tables, so it can compile the observed combinations of report dates, balancing authorities, states, and utilities.
This means that we have to hold off on the final normalization of the balancing_authority_eia861 table until the
rest of the transform process is over.

pudl.transform.eia861.operational_data(tfr_dfs)
Transform the EIA 861 Operational Data table.

Transformations include:

• Remove rows with utility ids 88888.

• Remove rows with NA utility id.

• Clean up NERC codes and ensure one per row.

• Convert data_observed field I/O into boolean.

• Tidy subset of the data by revenue class.

• Convert 1000s of dollars into dollars.

8.10. pudl 185

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.reliability(tfr_dfs)
Transform the EIA 861 Reliability table.

Transformations include:

• Tidy subset of the data by reliability standard.

• Convert Y/N columns to booleans.

• Map full spelling onto code values.

• Drop duplicate rows.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia861.sales(tfr_dfs)
Transform the EIA 861 Sales table.

Transformations include:

• Remove rows with utility ids 88888 and 99999.

• Tidy data by customer class.

• Drop primary key duplicates.

• Convert 1000s of dollars into dollars.

• Convert data_observed field I/O into boolean.

• Map full spelling onto code values.

pudl.transform.eia861.service_territory(tfr_dfs)
Transform the EIA 861 utility service territory table.

Transformations include:

• Homogenize spelling of county names.

• Add field for state/county FIPS code.

Parameters tfr_dfs (dict) – A dictionary of DataFrame objects in which pages from EIA861
form (keys) correspond to normalized DataFrames of values from that page (values).

Returns

a dictionary of pandas.DataFrame objects in which pages from EIA861 form (keys) corre-
spond to normalized DataFrames of values from that page (values).

Return type dict

186 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.transform.eia861.transform(raw_dfs, eia861_tables=('service_territory_eia861',
'balancing_authority_eia861', 'sales_eia861', 'ad-
vanced_metering_infrastructure_eia861', 'de-
mand_response_eia861', 'demand_side_management_eia861',
'distributed_generation_eia861', 'distribu-
tion_systems_eia861', 'dynamic_pricing_eia861',
'energy_efficiency_eia861', 'green_pricing_eia861',
'mergers_eia861', 'net_metering_eia861',
'non_net_metering_eia861', 'operational_data_eia861',
'reliability_eia861', 'utility_data_eia861'))

Transform EIA 861 DataFrames.

Parameters

• raw_dfs (dict) – a dictionary of tab names (keys) and DataFrames (values). This can be
generated by pudl.

• eia861_tables (tuple) – A tuple containing the names of the EIA 861 tables that can
be pulled into PUDL.

Returns A dictionary of DataFrame objects in which pages from EIA 861 form (keys) corresponds
to a normalized DataFrame of values from that page (values).

Return type dict

pudl.transform.eia861.utility_assn(tfr_dfs)
Harvest a Utility-Date-State Association Table.

pudl.transform.eia861.utility_data(tfr_dfs)
Transform the EIA 861 Utility Data table.

Transformations include:

• Remove rows with utility ids 88888.

• Clean up NERC codes and ensure one per row.

• Tidy subset of the data by NERC region.

• Tidy subset of the data by RTO.

• Convert Y/N columns to booleans.

Parameters tfr_dfs (dict) – A dictionary of transformed EIA 861 DataFrames, keyed by table
name. It will be mutated by this function.

Returns A dictionary of transformed EIA 861 dataframes, keyed by table name.

Return type dict

pudl.transform.eia923 module

Module to perform data cleaning functions on EIA923 data tables.

pudl.transform.eia923.boiler_fuel(eia923_dfs, eia923_transformed_dfs)
Transforms the boiler_fuel_eia923 table.

Transformations include:

• Remove fields implicated elsewhere.

• Drop values with plant and boiler id values of NA.

8.10. pudl 187

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

• Replace . values with NA.

• Create a fuel_type_code_pudl field that organizes fuel types into clean, distinguishable categories.

• Combine year and month columns into a single date column.

Parameters

• eia923_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA923 form, as reported in the Excel spreadsheets they distribute.

• eia923_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns

eia923_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA923
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia923.coalmine(eia923_dfs, eia923_transformed_dfs)
Transforms the coalmine_eia923 table.

Transformations include:

• Remove fields implicated elsewhere.

• Drop duplicates with MSHA ID.

Parameters

• eia923_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA923 form, as reported in the Excel spreadsheets they distribute.

• eia923_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia923_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA923
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia923.fuel_receipts_costs(eia923_dfs, eia923_transformed_dfs)
Transforms the fuel_receipts_costs_eia923 dataframe.

Transformations include:

• Remove fields implicated elsewhere.

• Replace . values with NA.

• Standardize codes values.

• Fix dates.

• Replace invalid mercury content values with NA.

Fuel cost is reported in cents per mmbtu. Converts cents to dollars.

Parameters

188 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

• eia923_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA923 form, as reported in the Excel spreadsheets they distribute.

• eia923_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia923_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA923
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia923.generation(eia923_dfs, eia923_transformed_dfs)
Transforms the generation_eia923 table.

Transformations include:

• Drop rows with NA for generator id.

• Remove fields implicated elsewhere.

• Replace . values with NA.

• Drop generator-date row duplicates (all have no data).

Parameters

• eia923_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA923 form, as reported in the Excel spreadsheets they distribute.

• eia923_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia923_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA923
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia923.generation_fuel(eia923_dfs, eia923_transformed_dfs)
Transforms the generation_fuel_eia923 table.

Transformations include:

• Remove fields implicated elsewhere.

• Replace . values with NA.

• Remove rows with utility ids 99999.

• Create a fuel_type_code_pudl field that organizes fuel types into clean, distinguishable categories.

• Combine year and month columns into a single date column.

Parameters

• eia923_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a page from the EIA923 form, as reported in the Excel spreadsheets they distribute.

• eia923_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia923_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA923
form (keys) correspond to normalized DataFrames of values from that page (values).

8.10. pudl 189

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Return type dict

pudl.transform.eia923.plants(eia923_dfs, eia923_transformed_dfs)
Transforms the plants_eia923 table.

Much of the static plant information is reported repeatedly, and scattered across several different pages of EIA
923. The data frame that this function uses is assembled from those many different pages, and passed in via the
same dictionary of dataframes that all the other ingest functions use for uniformity.

Transformations include:

• Map full spelling onto code values.

• Convert Y/N columns to booleans.

• Remove excess white space around values.

• Drop duplicate rows.

Parameters

• eia923_dfs (dictionary of pandas.DataFrame) – Each entry in this dictio-
nary of DataFrame objects corresponds to a page from the EIA 923 form, as reported in the
Excel spreadsheets they distribute.

• eia923_transformed_dfs (dict) – A dictionary of DataFrame objects in which
pages from EIA923 form (keys) correspond to normalized DataFrames of values from that
page (values).

Returns eia923_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA923
form (keys) correspond to normalized DataFrames of values from that page (values).

Return type dict

pudl.transform.eia923.transform(eia923_raw_dfs, eia923_tables=('generation_fuel_eia923',
'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923',
'fuel_receipts_costs_eia923'))

Transforms all the EIA 923 tables.

Parameters

• eia923_raw_dfs (dict) – a dictionary of tab names (keys) and DataFrames (values).
Generated from pudl.extract.eia923.extract().

• eia923_tables (tuple) – A tuple containing the EIA923 tables that can be pulled into
PUDL.

Returns A dictionary of DataFrame with table names as keys and pandas.DataFrame objects
as values, where the contents of the DataFrames correspond to cleaned and normalized PUDL
database tables, ready for loading.

Return type dict

190 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.transform.epacems module

Module to perform data cleaning functions on EPA CEMS data tables.

pudl.transform.epacems.add_facility_id_unit_id_epa(df)
Harmonize columns that are added later.

The datapackage validation checks for consistent column names, and these two columns aren’t present before
August 2008, so this adds them in.

Parameters df (pandas.DataFrame) – A CEMS dataframe

Returns The same DataFrame guaranteed to have int facility_id and unit_id_epa cols.

Return type pandas.Dataframe

pudl.transform.epacems.correct_gross_load_mw(df)
Fix values of gross load that are wrong by orders of magnitude.

Parameters df (pandas.DataFrame) – A CEMS dataframe

Returns The same DataFrame with corrected gross load values.

Return type pandas.DataFrame

pudl.transform.epacems.fix_up_dates(df, plant_utc_offset)
Fix the dates for the CEMS data.

Transformations include:

• Account for timezone differences with offset from UTC.

Parameters df (pandas.DataFrame) – A CEMS hourly dataframe for one year-month-state
plant_utc_offset (pandas.DataFrame): A dataframe of plants’ timezones.

Returns The same data, with an op_datetime_utc column added and the op_date and op_hour
columns removed.

Return type pandas.DataFrame

pudl.transform.epacems.harmonize_eia_epa_orispl(df)
Harmonize the ORISPL code to match the EIA data – NOT YET IMPLEMENTED.

The EIA plant IDs and CEMS ORISPL codes almost match, but not quite. EPA has compiled a crosswalk that
maps one set of IDs to the other, but we haven’t integrated it yet. It can be found at:

https://github.com/USEPA/camd-eia-crosswalk

Note that this transformation needs to be run before fix_up_dates, because fix_up_dates uses the plant ID to look
up timezones.

Parameters df (pandas.DataFrame) – A CEMS hourly dataframe for one year-month-state.

Returns The same data, with the ORISPL plant codes corrected to match the EIA plant IDs.

Return type pandas.DataFrame

Todo: Actually implement the function. . .

pudl.transform.epacems.transform(epacems_raw_dfs, datapkg_dir)
Transform EPA CEMS hourly data for use in datapackage export.

8.10. pudl 191

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://github.com/USEPA/camd-eia-crosswalk
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

Todo: Incomplete docstring.

pudl.transform.epaipm module

Module to perform data cleaning functions on EPA IPM data tables.

pudl.transform.epaipm.load_curves(epaipm_dfs, epaipm_transformed_dfs)
Transform the load curve table from wide to tidy format.

Parameters

• epaipm_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a table from EPA’s IPM, as reported in the Excel spreadsheets they distribute.

• epa_epaipm_transformed_dfs (dict) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames of values from
that table (values)

Returns A dictionary of DataFrame objects in which tables from EPA IPM (keys) correspond to
normalized DataFrames of values from that table (values)

Return type dict

pudl.transform.epaipm.plant_region_map(epaipm_dfs, epaipm_transformed_dfs)
Transforms the map of plant ids to IPM regions for all plants.

Parameters

• epaipm_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a table from EPA’s IPM, as reported in the Excel spreadsheets they distribute.

• epaipm_transformed_dfs (dict) – A dictionary of DataFrame objects in which ta-
bles from EPA IPM(keys) correspond to normalized DataFrames of values from that ta-
ble(values)

Returns A dictionary of DataFrame objects in which tables from EPA IPM(keys) correspond to
normalized DataFrames of values from that table(values)

Return type dict

pudl.transform.epaipm.transform(epaipm_raw_dfs, epaipm_tables=('transmission_single_epaipm',
'transmission_joint_epaipm', 'load_curves_epaipm',
'plant_region_map_epaipm'))

Transform EPA IPM DataFrames.

Parameters

• epaipm_raw_dfs (dict) – a dictionary of table names(keys) and DataFrames(values)

• epaipm_tables (list) – The list of EPA IPM tables that can be successfully pulled
into PUDL

Returns A dictionary of DataFrame objects in which tables from EPA IPM(keys) correspond to
normalized DataFrames of values from that table(values)

Return type dict

pudl.transform.epaipm.transmission_joint(epaipm_dfs, epaipm_transformed_dfs)
Transforms transmission constraints between multiple inter-regional links.

Parameters

192 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

• epaipm_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a table from EPA’s IPM, as reported in the Excel spreadsheets they distribute.

• epa_epaipm_transformed_dfs (dict) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames of values from
that table (values)

Returns A dictionary of DataFrame objects in which tables from EPA IPM (keys) correspond to
normalized DataFrames of values from that table (values)

Return type dict

pudl.transform.epaipm.transmission_single(epaipm_dfs, epaipm_transformed_dfs)
Transforms the transmission constraints between individual regions.

Parameters

• epaipm_dfs (dict) – Each entry in this dictionary of DataFrame objects corresponds to
a table from EPA’s IPM, as reported in the Excel spreadsheets they distribute.

• epa_epaipm_transformed_dfs (dict) – A dictionary of DataFrame objects in
which tables from EPA IPM (keys) correspond to normalized DataFrames of values from
that table (values)

Returns A dictionary of DataFrame objects in which tables from EPA IPM (keys) correspond to
normalized DataFrames of values from that table (values)

Return type dict

pudl.transform.ferc1 module

Routines for transforming FERC Form 1 data before loading into the PUDL DB.

This module provides a variety of functions that are used in cleaning up the FERC Form 1 data prior to loading into our
database. This includes adopting standardized units and column names, standardizing the formatting of some string
values, and correcting data entry errors which we can infer based on the existing data. It may also include removing
bad data, or replacing it with the appropriate NA values.

pudl.transform.ferc1.CONSTRUCTION_TYPE_STRINGS = {'conventional': ['conventional', 'conventional', 'conventional boiler', 'conv-b', 'conventionall', 'convention', 'conventional', 'coventional', 'conven full boiler', 'c0nventional', 'conventtional', 'conventialunderground', 'conventional bulb', 'conventrional', '*conventional', 'convential', 'convetional', 'conventioanl', 'conventioinal', 'conventaional', 'indoor construction', 'convenional', 'conventional steam', 'conventinal', 'convntional', 'conventionl', 'conventionsl', 'conventiional', 'convntl steam plants', 'indoor const.', 'full indoor', 'indoor', 'indoor automatic', 'indoor boiler', '(peak load) indoor', 'conventionl,indoor', 'conventionl, indoor', 'conventional, indoor', 'comb. cycle indoor', '3 indoor boiler', '2 indoor boilers', '1 indoor boiler', '2 indoor boiler', '3 indoor boilers', 'fully contained', 'conv - b', 'conventional/boiler', 'cnventional', 'comb. cycle indooor', 'sonventional', 'ind enclosures'], 'outdoor': ['outdoor', 'outdoor boiler', 'full outdoor', 'outdoor boiler', 'outdoor boilers', 'outboilers', 'fuel outdoor', 'full outdoor', 'outdoors', 'outdoor', 'boiler outdoor& full', 'boiler outdoor&full', 'outdoor boiler& full', 'full -outdoor', 'outdoor steam', 'outdoor boiler', 'ob', 'outdoor automatic', 'outdoor repower', 'full outdoor boiler', 'fo', 'outdoor boiler & ful', 'full-outdoor', 'fuel outdoor', 'outoor', 'outdoor', 'outdoor boiler&full', 'boiler outdoor &full', 'outdoor boiler &full', 'boiler outdoor & ful', 'outdoor-boiler', 'outdoor - boiler', 'outdoor const.', '4 outdoor boilers', '3 outdoor boilers', 'full outdoor', 'full outdoors', 'full oudoors', 'outdoor (auto oper)', 'outside boiler', 'outdoor boiler&full', 'outdoor hrsg', 'outdoor hrsg', 'outdoor-steel encl.', 'boiler-outdr & full', 'con.& full outdoor', 'partial outdoor', 'outdoor (auto. oper)', 'outdoor (auto.oper)', 'outdoor construction', '1 outdoor boiler', '2 outdoor boilers', 'outdoor enclosure', '2 outoor boilers', 'boiler outdr.& full', 'boiler outdr. & full', 'ful outdoor', 'outdoor-steel enclos', 'outdoor (auto oper.)', 'con. & full outdoor', 'outdore', 'boiler & full outdor', 'full & outdr boilers', 'outodoor (auto oper)', 'outdoor steel encl.', 'full outoor', 'boiler & outdoor ful', 'otdr. blr. & f. otdr', 'f.otdr & otdr.blr.', 'oudoor (auto oper)', 'outdoor constructin', 'f. otdr. & otdr. blr', 'outdoor boiler & fue'], 'semioutdoor': ['more than 50% outdoo', 'more than 50% outdos', 'over 50% outdoor', 'over 50% outdoors', 'semi-outdoor', 'semi - outdoor', 'semi outdoor', 'semi-enclosed', 'semi-outdoor boiler', 'semi outdoor boiler', 'semi- outdoor', 'semi - outdoors', 'semi -outdoorconven & semi-outdr', 'conv & semi-outdoor', 'conv & semi- outdoor', 'convent. semi-outdr', 'conv. semi outdoor', 'conv(u1)/semiod(u2)', 'conv u1/semi-od u2', 'conv-one blr-semi-od', 'convent semioutdoor', 'conv. u1/semi-od u2', 'conv - 1 blr semi od', 'conv. ui/semi-od u2', 'conv-1 blr semi-od', 'conven. semi-outdoor', 'conv semi-outdoor', 'u1-conv./u2-semi-od', 'u1-conv./u2-semi -od', 'convent. semi-outdoo', 'u1-conv. / u2-semi', 'conven & semi-outdr', 'semi -outdoor', 'outdr & conventnl', 'conven. full outdoor', 'conv. & outdoor blr', 'conv. & outdoor blr.', 'conv. & outdoor boil', 'conv. & outdr boiler', 'conv. & out. boiler', 'convntl,outdoor blr', 'outdoor & conv.', '2 conv., 1 out. boil', 'outdoor/conventional', 'conv. boiler outdoor', 'conv-one boiler-outd', 'conventional outdoor', 'conventional outdor', 'conv. outdoor boiler', 'conv.outdoor boiler', 'conventional outdr.', 'conven,outdoorboiler', 'conven full outdoor', 'conven,full outdoor', '1 out boil, 2 conv', 'conv. & full outdoor', 'conv. & outdr. boilr', 'conv outdoor boiler', 'convention. outdoor', 'conv. sem. outdoor', 'convntl, outdoor blr', 'conv & outdoor boil', 'conv & outdoor boil.', 'outdoor & conv', 'conv. broiler outdor', '1 out boilr, 2 conv', 'conv.& outdoor boil.', 'conven,outdr.boiler', 'conven,outdr boiler', 'outdoor & conventil', '1 out boilr 2 conv', 'conv & outdr. boilr', 'conven, full outdoor', 'conven full outdr.', 'conven, full outdr.', 'conv/outdoor boiler', "convnt'l outdr boilr", '1 out boil 2 conv', 'conv full outdoor', 'conven, outdr boiler', 'conventional/outdoor', 'conv&outdoor boiler', 'outdoor & convention', 'conv & outdoor boilr', 'conv & full outdoor', 'convntl. outdoor blr', 'conv - ob', "1conv'l/2odboilers", "2conv'l/1odboiler", 'conv-ob', 'conv.-ob', '1 conv/ 2odboilers', '2 conv /1 odboilers', 'conv- ob', 'conv -ob', 'con sem outdoor', 'cnvntl, outdr, boilr', 'less than 50% outdoo', 'under 50% outdoor', 'under 50% outdoors', '1cnvntnl/2odboilers', '2cnvntnl1/1odboiler', 'con & ob', 'combination (b)', 'indoor & outdoor', 'conven. blr. & full', 'conv. & otdr. blr.', 'combination', 'indoor and outdoor', 'conven boiler & full', "2conv'l/10dboiler", '4 indor/outdr boiler', '4 indr/outdr boilerr', '4 indr/outdr boiler', 'indoor & outdoof'], 'unknown': ['', 'automatic operation', 'comb. turb. installn', 'comb. turb. instaln', 'com. turb. installn', 'n/a', 'for detailed info.', 'for detailed info', 'combined cycle', 'na', 'not applicable', 'gas', 'heated individually', 'metal enclosure', 'pressurized water', 'nuclear', 'jet engine', 'gas turbine', 'storage/pipelines', '0', 'during 1994', 'peaking - automatic', 'gas turbine/int. cm', '2 oil/gas turbines', 'wind', 'package', 'mobile', 'auto-operated', 'steam plants', 'other production', 'all nuclear plants', 'other power gen.', 'automatically operad', 'automatically operd', 'circ fluidized bed', 'jet turbine', 'gas turbne/int comb', 'automatically oper.', 'retired 1/1/95', 'during 1995', '1996. plant sold', 'reactivated 7/1/96', 'gas turbine/int comb', 'portable', 'head individually', 'automatic opertion', 'peaking-automatic', 'cycle', 'full order', 'circ. fluidized bed', 'gas turbine/intcomb', '0.0000', 'none', '2 oil / gas', 'block & steel', 'and 2000', 'comb.turb. instaln', 'automatic oper.', 'pakage', '---', 'n/a (ct)', 'comb turb instain', 'ind encloures', '2 oil /gas turbines', 'combustion turbine', '1970', 'gas/oil turbines', 'combined cycle steam', 'pwr', '2 oil/ gas', '2 oil / gas turbines', 'gas / oil turbines', 'no boiler', 'internal combustion', 'gasturbine no boiler', 'boiler', 'tower -10 unit facy', 'gas trubine', '4 gas/oil trubines', '2 oil/ 4 gas/oil tur', '5 gas/oil turbines', 'tower 16', '2 on 1 gas turbine', 'tower 23', 'tower -10 unit', 'tower - 101 unit', '3 on 1 gas turbine', 'tower - 10 units', 'tower - 165 units', 'wind turbine', 'fixed tilt pv', 'tracking pv', 'o', 'wind trubine', 'subcritical', 'sucritical', 'simple cycle', 'simple & reciprocat']}
A dictionary of construction types (keys) and lists of construction type strings associated with each type (values)
from FERC Form 1.

There are many strings that weren’t categorized, including crosses between conventional and outdoor, PV, wind,
combined cycle, and internal combustion. The lists are broken out into the two types specified in Form 1:
conventional and outdoor. These lists are inclusive so that variants of conventional (e.g. “conventional full”)
and outdoor (e.g. “outdoor full” and “outdoor hrsg”) are included.

Type dict

class pudl.transform.ferc1.FERCPlantClassifier(min_sim=0.75, plants_df=None)
Bases: sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin

A classifier for identifying FERC plant time series in FERC Form 1 data.

We want to be able to give the classifier a FERC plant record, and get back the group of records(or the ID of the
group of records) that it ought to be part of.

There are hundreds of different groups of records, and we can only know what they are by looking at the whole
dataset ahead of time. This is the “fitting” step, in which the groups of records resulting from a particular set of
model parameters(e.g. the weights that are attributes of the class) are generated.

8.10. pudl 193

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html#sklearn.base.ClassifierMixin

PUDL, Release 0.4.0

Once we have that set of record categories, we can test how well the classifier performs, by checking it against
test / training data which we have already classified by hand. The test / training set is a list of lists of unique
FERC plant record IDs(each record ID is the concatenation of: report year, respondent id, supplement number,
and row number). It could also be stored as a dataframe where each column is associated with a year of
data(some of which could be empty). Not sure what the best structure would be.

If it’s useful, we can assign each group a unique ID that is the time ordered concatenation of each of the
constituent record IDs. Need to understand what the process for checking the classification of an input record
looks like.

To score a given classifier, we can look at what proportion of the records in the test dataset are assigned to the
same group as in our manual classification of those records. There are much more complicated ways to do the
scoring too. . . but for now let’s just keep it as simple as possible.

fit(X, y=None)
Use weighted FERC plant features to group records into time series.

The fit method takes the vectorized, normalized, weighted FERC plant features (X) as input, calculates the
pairwise cosine similarity matrix between all records, and groups the records in their best time series. The
similarity matrix and best time series are stored as data members in the object for later use in scoring &
predicting.

This isn’t quite the way a fit method would normally work.

Parameters

• () (y) – a sparse matrix of size n_samples x n_features.

• () –

Returns

Return type pandas.DataFrame

Todo: Zane revisit args and returns

predict(X, y=None)
Identify time series of similar records to input record_ids.

Given a one-dimensional dataframe X, containing FERC record IDs, return a dataframe in which each row
corresponds to one of the input record_id values (ordered as the input was ordered), with each column
corresponding to one of the years worth of data. Values in the returned dataframe are the FERC record_ids
of the record most similar to the input record within that year. Some of them may be null, if there was no
sufficiently good match.

Row index is the seed record IDs. Column index is years.

TODO: * This method is hideously inefficient. It should be vectorized. * There’s a line that throws a
FutureWarning that needs to be fixed.

score(X, y=None)
Scores a collection of FERC plant categorizations.

For every record ID in X, predict its record group and calculate a metric of similarity between the prediction
and the “ground truth” group that was passed in for that value of X.

Parameters

• X (pandas.DataFrame) – an n_samples x 1 pandas dataframe of FERC Form 1 record
IDs.

194 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• y (pandas.DataFrame) – a dataframe of “ground truth” FERC Form 1 record groups,
corresponding to the list record IDs in X

Returns The average of all the similarity metrics as the score.

Return type numpy.ndarray

transform(X, y=None)
Passthrough transform method – just returns self.

pudl.transform.ferc1.FUEL_STRINGS = {'coal': ['coal', 'coal-subbit', 'lignite', 'coal(sb)', 'coal (sb)', 'coal-lignite', 'coke', 'coa', 'lignite/coal', 'coal - subbit', 'coal-subb', 'coal-sub', 'coal-lig', 'coal-sub bit', 'coals', 'ciak', 'petcoke', 'coal.oil', 'coal/gas', 'bit coal', 'coal-unit #3', 'coal-subbitum', 'coal tons', 'coal mcf', 'coal unit #3', 'pet. coke', 'coal-u3', 'coal&coke', 'tons'], 'gas': ['gas', 'gass', 'methane', 'natural gas', 'blast gas', 'gas mcf', 'propane', 'prop', 'natural gas', 'nat.gas', 'nat gas', 'nat. gas', 'natl gas', 'ga', 'gas`', 'syngas', 'ng', 'mcf', 'blast gaa', 'nat gas', 'gac', 'syngass', 'prop.', 'natural', 'coal.gas', 'n. gas', 'lp gas', 'natuaral gas', 'coke gas', 'gas #2016', 'propane**', '* propane', 'propane **', 'gas expander', 'gas ct', '# 6 gas', '#6 gas', 'coke oven gas'], 'hydro': [], 'nuclear': ['nuclear', 'grams of uran', 'grams of', 'grams of ura', 'grams', 'nucleur', 'nulear', 'nucl', 'nucleart', 'nucelar', 'gr.uranium', 'grams of urm', 'nuclear (9)', 'nulcear', 'nuc', 'gr. uranium', 'nuclear mw da', 'grams of ura'], 'oil': ['oil', '#6 oil', '#2 oil', 'fuel oil', 'jet', 'no. 2 oil', 'no.2 oil', 'no.6& used', 'used oil', 'oil-2', 'oil (#2)', 'diesel oil', 'residual oil', '# 2 oil', 'resid. oil', 'tall oil', 'oil/gas', 'no.6 oil', 'oil-fuel', 'oil-diesel', 'oil / gas', 'oil bbls', 'oil bls', 'no. 6 oil', '#1 kerosene', 'diesel', 'no. 2 oils', 'blend oil', '#2oil diesel', '#2 oil-diesel', '# 2 oil', 'light oil', 'heavy oil', 'gas.oil', '#2', '2', '6', 'bbl', 'no 2 oil', 'no 6 oil', '#1 oil', '#6', 'oil-kero', 'oil bbl', 'biofuel', 'no 2', 'kero', '#1 fuel oil', 'no. 2 oil', 'blended oil', 'no 2. oil', '# 6 oil', 'nno. 2 oil', '#2 fuel', 'oill', 'oils', 'gas/oil', 'no.2 oil gas', '#2 fuel oil', 'oli', 'oil (#6)', 'oil/diesel', '2 oil', '#6 hvy oil', 'jet fuel', 'diesel/compos', 'oil-8', 'oil {6}', 'oil-unit #1', 'bbl.', 'oil.', 'oil #6', 'oil (6)', 'oil(#2)', 'oil-unit1&2', 'oil-6', '#2 fue oil', 'dielel oil', 'dielsel oil', '#6 & used', 'barrels', 'oil un 1 & 2', 'jet oil', 'oil-u1&2', 'oiul', 'pil', 'oil - 2', '#6 & used', 'oial'], 'solar': [], 'unknown': ['steam', 'purch steam', 'all', 'tdf', 'n/a', 'purch. steam', 'other', 'composite', 'composit', 'mbtus', 'total', 'avg', 'avg.', 'blo', 'all fuel', 'comb.', 'alt. fuels', 'na', 'comb', '/#=2\x80â\x91?', 'kã\xadgv¸\x9d?', "mbtu's", 'gas, oil', 'rrm', '3\x9c', 'average', 'furfural', '0', 'watson bng', 'toal', 'bng', '# 6 & used', 'combined', 'blo bls', 'compsite', '*', 'compos.', 'gas / oil', 'mw days', 'g', 'c', 'lime', 'all fuels', 'at right', '20', '1', 'comp oil/gas', 'all fuels to', 'the right are', 'c omposite', 'all fuels are', 'total pr crk', 'all fuels =', 'total pc', 'comp', 'alternative', 'alt. fuel', 'bio fuel', 'total prairie', ''], 'waste': ['tires', 'tire', 'refuse', 'switchgrass', 'wood waste', 'woodchips', 'biomass', 'wood', 'wood chips', 'rdf', 'tires/refuse', 'tire refuse', 'waste oil', 'waste', 'woodships', 'tire chips'], 'wind': []}
A mapping a canonical fuel name to a list of strings which are used to represent that fuel in the FERC Form 1
Reporting. Case is ignored, as all fuel strings are converted to a lower case in the data set.

Type dict

pudl.transform.ferc1.FUEL_UNIT_STRINGS = {'bbl': ['barrel', 'bbls', 'bbl', 'barrels', 'bbrl', 'bbl.', 'bbls.', 'oil 42 gal', 'oil-barrels', 'barrrels', 'bbl-42 gal', 'oil-barrel', 'bb.', 'barrells', 'bar', 'bbld', 'oil- barrel', 'barrels .', 'bbl .', 'barels', 'barrell', 'berrels', 'bb', 'bbl.s', 'oil-bbl', 'bls', 'bbl:', 'barrles', 'blb', 'propane-bbl', 'barriel', 'berriel', 'barrile', '(bbl.)', 'barrel *(4)', '(4) barrel', 'bbf', 'blb.', '(bbl)', 'bb1', 'bbsl', 'barrrel', 'barrels 100%', 'bsrrels', "bbl's", '*barrels', 'oil - barrels', 'oil 42 gal ba', 'bll', 'boiler barrel', 'gas barrel', '"boiler" barr', '"gas" barrel', '"boiler"barre', '"boiler barre', 'barrels .', 'bariel', 'brrels', 'oil barrel'], 'btu': ['btus', 'btu'], 'gal': ['gallons', 'gal.', 'gals', 'gals.', 'gallon', 'gal', 'galllons'], 'gramsU': ['gram', 'grams', 'gm u', 'grams u235', 'grams u-235', 'grams of uran', 'grams: u-235', 'grams:u-235', 'grams:u235', 'grams u308', 'grams: u235', 'grams of', 'grams - n/a', 'gms uran', 's e uo2 grams', 'gms uranium', 'grams of urm', 'gms. of uran', 'grams (100%)', 'grams v-235', 'se uo2 grams'], 'kgU': ['kg of uranium', 'kg uranium', 'kilg. u-235', 'kg u-235', 'kilograms-u23', 'kg', 'kilograms u-2', 'kilograms', 'kg of', 'kg-u-235', 'kilgrams', 'kilogr. u235', 'uranium kg', 'kg uranium25', 'kilogr. u-235', 'kg uranium 25', 'kilgr. u-235', 'kguranium 25', 'kg-u235', 'kgm'], 'kgal': ['oil(1000 gal)', 'oil(1000)', 'oil (1000)', 'oil(1000', 'oil(1000ga)'], 'klbs': ['k lbs.', 'k lbs'], 'mcf': ['mcf', "mcf's", 'mcfs', 'mcf.', 'gas mcf', '"gas" mcf', 'gas-mcf', 'mfc', 'mct', ' mcf', 'msfs', 'mlf', 'mscf', 'mci', 'mcl', 'mcg', 'm.cu.ft.', 'kcf', '(mcf)', 'mcf *(4)', 'mcf00', 'm.cu.ft..'], 'mmbtu': ['mmbtu', 'mmbtus', 'mbtus', '(mmbtu)', "mmbtu's", 'nuclear-mmbtu', 'nuclear-mmbt', 'mmbtul'], 'mwdth': ['mwd therman', 'mw days-therm', 'mwd thrml', 'mwd thermal', 'mwd/mtu', 'mw days', 'mwdth', 'mwd', 'mw day', 'dth', 'mwdaysthermal', 'mw day therml', 'mw days thrml', 'nuclear mwd', 'mmwd', 'mw day/thermlmw days/therm', 'mw days (th', 'ermal)'], 'mwhth': ['mwh them', 'mwh threm', 'nwh therm', 'mwhth', 'mwh therm', 'mwh', 'mwh therms.', 'mwh term.uts', 'mwh thermal', 'mwh thermals', 'mw hr therm', 'mwh therma', 'mwh therm.uts'], 'ton': ['toms', 'taons', 'tones', 'col-tons', 'toncoaleq', 'coal', 'tons coal eq', 'coal-tons', 'ton', 'tons', 'tons coal', 'coal-ton', 'tires-tons', 'coal tons -2 ', 'oil-tons', 'coal tons 200', 'ton-2000', 'coal tons', 'coal tons -2', 'coal-tone', 'tire-ton', 'tire-tons', 'ton coal eqv', 'tos', 'coal tons - 2', 'c. t.', 'c.t.', 'toncoalequiv'], 'unknown': ['', '1265', 'mwh units', 'composite', 'therms', 'n/a', 'mbtu/kg', 'uranium 235', 'oil', 'ccf', '2261', 'uo2', '(7)', 'oil #2', 'oil #6', '\x99å\x83\x90?"', 'dekatherm', '0', 'mw day/therml', 'nuclear', 'gas', '62,679', 'mw days/therm', 'na', 'uranium', 'oil/gas', 'thermal', '(thermal)', 'se uo2', '181679', '83', '3070', '248', '273976', '747', '-', 'are total', 'pr. creek', 'decatherms', 'uramium', '.', 'total pr crk', '>>>>>>>>', 'all', 'total', 'alternative-t', 'oil-mcf', '3303671', '929', '7182175', '319', '1490442', '10881', '1363663', '7171', '1726497', '4783', '7800', '12559', '2398', 'creek fuels', 'propane-barre', '509', 'barrels/mcf', 'propane-bar', '4853325', '4069628', '1431536', '708903', 'mcf/oil (1000']}
A dictionary linking fuel units (keys) to lists of various strings representing those fuel units (values)

Type dict

pudl.transform.ferc1.PLANT_KIND_STRINGS = {'combined_cycle': ['Combined cycle', 'combined cycle', 'combined', 'gas & steam turbine', 'gas turb. & heat rec', 'combined cycle', 'com. cyc', 'com. cycle', 'gas turb-combined cy', 'combined cycle ctg', 'combined cycle - 40%', 'com cycle gas turb', 'combined cycle oper', 'gas turb/comb. cyc', 'combine cycle', 'cc', 'comb. cycle', 'gas turb-combined cy', 'steam and cc', 'steam cc', 'gas steam', 'ctg steam gas', 'steam comb cycle', 'gas/steam comb. cycl', 'steam (comb. cycle)gas turbine/steam', 'steam & gas turbine', 'gas trb & heat rec', 'steam & combined ce', 'st/gas turb comb cyc', 'gas tur & comb cycl', 'combined cycle (a,b)', 'gas turbine/ steam', 'steam/gas turb.', 'steam & comb cycle', 'gas/steam comb cycle', 'comb cycle (a,b)', 'igcc', 'steam/gas turbine', 'gas turbine / steam', 'gas tur & comb cyc', 'comb cyc (a) (b)', 'comb cycle', 'comb cyc', 'combined turbine', 'combine cycle oper', 'comb cycle/steam tur', 'cc / gas turb', 'steam (comb. cycle)', 'steam & cc', 'gas turbine/steam', 'gas turb/cumbus cycl', 'gas turb/comb cycle', 'gasturb/comb cycle', 'gas turb/cumb. cyc', 'igcc/gas turbine', 'gas / steam', 'ctg/steam-gas', 'ctg/steam -gas', 'gas fired cc turbine', 'combinedcycle', 'comb cycle gas turb', 'combined cycle opern', 'comb. cycle gas turb'], 'combustion_turbine': ['combustion turbine', 'gt', 'gas turbine', 'gas turbine # 1', 'gas turbine', 'gas turbine (note 1)', 'gas turbines', 'simple cycle', 'combustion turbine', 'comb.turb.peak.units', 'gas turbine', 'combustion turbine', 'com turbine peaking', 'gas turbine peaking', 'comb turb peaking', 'combustine turbine', 'comb. turine', 'conbustion turbine', 'combustine turbine', 'gas turbine (leased)', 'combustion tubine', 'gas turb', 'gas turbine peaker', 'gtg/gas', 'simple cycle turbine', 'gas-turbine', 'gas turbine-simple', 'gas turbine - note 1', 'gas turbine #1', 'simple cycle', 'gasturbine', 'combustionturbine', 'gas turbine (2)', 'comb turb peak units', 'jet engine', 'jet powered turbine', '*gas turbine', 'gas turb.(see note5)', 'gas turb. (see note', 'combutsion turbine', 'combustion turbin', 'gas turbine-unit 2', 'gas - turbine', 'comb turbine peaking', 'gas expander turbine', 'jet turbine', 'gas turbin (lease', 'gas turbine (leased', 'gas turbine/int. cm', 'comb.turb-gas oper.', 'comb.turb.gas/oil op', 'comb.turb.oil oper.', 'jet', 'comb. turbine (a)', 'gas turb.(see notes)', 'gas turb(see notes)', 'comb. turb-gas oper', 'comb.turb.oil oper', 'gas turbin (leasd)', 'gas turbne/int comb', 'gas turbine (note1)', 'combution turbin', '* gas turbine', 'add to gas turbine', 'gas turbine (a)', 'gas turbinint comb', 'gas turbine (note 3)', 'resp share gas note3', 'gas trubine', '*gas turbine(note3)', 'gas turbine note 3,6', 'gas turbine note 4,6', 'gas turbine peakload', 'combusition turbine', 'gas turbine (lease)', 'comb. turb-gas oper.', 'combution turbine', 'combusion turbine', 'comb. turb. oil oper', 'combustion burbine', 'combustion and gas', 'comb. turb.', 'gas turbine (lease', 'gas turbine (leasd)', 'gas turbine/int comb', '*gas turbine(note 3)', 'gas turbine (see nos', 'i.c.e./gas turbine', 'gas turbine/intcomb', 'cumbustion turbine', 'gas turb, int. comb.', 'gas turb, diesel', 'gas turb, int. comb', 'i.c.e/gas turbine', 'diesel turbine', 'comubstion turbine', 'i.c.e. /gas turbine', 'i.c.e/ gas turbine', 'i.c.e./gas tubine'], 'geothermal': ['steam - geothermal', 'steam_geothermal', 'geothermal'], 'internal_combustion': ['ic', 'internal combustion', 'internal comb.', 'internl combustiondiesel turbine', 'int combust (note 1)', 'int. combust (note1)', 'int.combustine', 'comb. cyc', 'internal comb', 'diesel', 'diesel engine', 'internal combustion', 'int combust - note 1', 'int. combust - note1', 'internal comb recip', 'reciprocating engine', 'comb. turbine', 'internal combust.', 'int. combustion (1)', '*int combustion (1)', "*internal combust'n", 'internal', 'internal comb.', 'steam internal comb', 'combustion', 'int. combustion', 'int combust (note1)', 'int. combustine', 'internl combustion', '*int. combustion (1)'], 'nuclear': ['nuclear', 'nuclear (3)', 'steam(nuclear)', 'nuclear(see note4)nuclear steam', 'nuclear turbine', 'nuclear - steam', 'nuclear (a)(b)(c)', 'nuclear (b)(c)', '* nuclear', 'nuclear (b) (c)', 'nuclear (see notes)', 'steam (nuclear)', '* nuclear (note 2)', 'nuclear (note 2)', 'nuclear (see note 2)', 'nuclear(see note4)', 'nuclear steam', 'nuclear(see notes)', 'nuclear-steam', 'nuclear (see note 3)'], 'photovoltaic': ['solar photovoltaic', 'photovoltaic', 'solar', 'solar project'], 'solar_thermal': ['solar thermal'], 'steam': ['coal', 'steam', 'steam units 1 2 3', 'steam units 4 5', 'steam fossil', 'steam turbine', 'steam a', 'steam 100', 'steam units 1 2 3', 'steams', 'steam 1', 'steam retired 2013', 'stream', 'steam units 1,2,3', 'steam units 4&5', 'steam units 4&6', 'steam conventional', 'unit total-steam', 'unit total steam', '*resp. share steam', 'resp. share steam', 'steam (see note 1,', 'steam (see note 3)', 'mpc 50%share steam', '40% share steamsteam (2)', 'steam (3)', 'steam (4)', 'steam (5)', 'steam (6)', 'steam (7)', 'steam (8)', 'steam units 1 and 2', 'steam units 3 and 4', 'steam (note 1)', 'steam (retired)', 'steam (leased)', 'coal-fired steam', 'oil-fired steam', 'steam/fossil', 'steam (a,b)', 'steam (a)', 'stean', 'steam-internal comb', 'steam (see notes)', 'steam units 4 & 6', 'resp share stm note3', 'mpc50% share steam', 'mpc40%share steam', 'steam - 64%', 'steam - 100%', 'steam (1) & (2)', 'resp share st note3', 'mpc 50% shares steam', 'steam-64%', 'steam-100%', 'steam (see note 1)', 'mpc 50% share steam', 'steam units 1, 2, 3', 'steam units 4, 5', 'steam (2)', 'steam (1)', 'steam 4, 5', 'steam - 72%', 'steam (incl i.c.)', 'steam- 72%', 'steam;retired - 2013', "respondent's sh.-st.", "respondent's sh-st", '40% share steam', 'resp share stm note3', 'mpc50% share steam', 'resp share st note 3', '\x02steam (1)'], 'unknown': ['', 'n/a', 'see pgs 402.1-402.3', 'see pgs 403.1-403.9', "respondent's share", '--', '(see note 7)', 'other', 'not applicable', 'peach bottom', 'none.', 'fuel facilities', '0', 'not in service', 'none', 'common expenses', 'expenses common to', 'retired in 1981', 'retired in 1978', 'na', 'unit total (note3)', 'unit total (note2)', 'resp. share (note2)', 'resp. share (note8)', 'resp. share (note 9)', 'resp. share (note11)', 'resp. share (note4)', 'resp. share (note6)', 'conventional', 'expenses commom to', 'not in service in', 'unit total (note 3)', 'unit total (note 2)', 'resp. share (note 8)', 'resp. share (note 3)', 'resp. share note 11', 'resp. share (note 4)', 'resp. share (note 6)', '(see note 5)', 'resp. share (note 2)', 'package', '(left blank)', 'common', '0.0000', 'other generation', 'resp share (note 11)', 'retired', 'storage/pipelines', 'sold april 16, 1999', 'sold may 07, 1999', 'plants sold in 1999', 'gas', 'not applicable.', 'resp. share - note 2', 'resp. share - note 8', 'resp. share - note 9', 'resp share - note 11', 'resp. share - note 4', 'resp. share - note 6', 'plant retired- 2013', 'retired - 2013', 'resp share - note 5', 'resp. share - note 7', 'non-applicable', 'other generation plt', 'combined heat/power', 'oil'], 'wind': ['wind', 'wind energy', 'wind turbine', 'wind - turbine', 'wind generation']}
A mapping from canonical plant kinds (keys) to the associated freeform strings (values) identified as being
associated with that kind of plant in the FERC Form 1 raw data. There are many strings that weren’t categorized,
Solar and Solar Project were not classified as these do not indicate if they are solar thermal or photovoltaic.
Variants on Steam (e.g. “steam 72” and “steam and gas”) were classified based on additional research of the
plants on the Internet.

Type dict

pudl.transform.ferc1.accumulated_depreciation(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 depreciation data for loading into PUDL.

This information is organized by FERC account, with each line of the FERC Form 1 having a different descrip-
tive identifier like ‘balance_end_of_year’ or ‘transmission’.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

Returns The dictionary of the transformed DataFrames.

Return type dict

pudl.transform.ferc1.cols_to_cats(df, cat_name, col_cats)
Turn top-level MultiIndex columns into a categorial column.

In some cases FERC Form 1 data comes with many different types of related values interleaved in the same
table – e.g. current year and previous year income – this can result in DataFrames that are hundreds of columns
wide, which is unwieldy. This function takes those top level MultiIndex labels and turns them into categories in
a single column, which can be used to select a particular type of report.

Parameters

• df (pandas.DataFrame) – the dataframe to be simplified.

• cat_name (str) – the label of the column to be created indicating what MultiIndex label
the values came from.

• col_cats (dict) – a dictionary with top level MultiIndex labels as keys, and the category
to which they should be mapped as values.

8.10. pudl 195

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Returns A re-shaped/re-labeled dataframe with one fewer levels of MultiIndex in the columns, and
an additional column containing the assigned labels.

Return type pandas.DataFrame

pudl.transform.ferc1.fuel(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 fuel data for loading into PUDL Database.

This process includes converting some columns to be in terms of our preferred units, like MWh and mmbtu
instead of kWh and btu. Plant names are also standardized (stripped & lower). Fuel and fuel unit strings are also
standardized using our cleanstrings() function and string cleaning dictionaries found above (FUEL_STRINGS,
etc.)

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

Returns The dictionary of transformed dataframes.

Return type dict

pudl.transform.ferc1.fuel_by_plant_ferc1(fuel_df, thresh=0.5)
Calculates useful FERC Form 1 fuel metrics on a per plant-year basis.

Each record in the FERC Form 1 corresponds to a particular type of fuel. Many plants – especially coal plants –
use more than one fuel, with gas and/or diesel serving as startup fuels. In order to be able to classify the type of
plant based on relative proportions of fuel consumed or fuel costs it is useful to aggregate these per-fuel records
into a single record for each plant.

Fuel cost (in nominal dollars) and fuel heat content (in mmBTU) are calculated for each fuel based on the cost
and heat content per unit, and the number of units consumed, and then summed by fuel type (there can be more
than one record for a given type of fuel in each plant because we are simplifying the fuel categories). The
per-fuel records are then pivoted to create one column per fuel type. The total is summed and stored separately,
and the individual fuel costs & heat contents are divided by that total, to yield fuel proportions. Based on those
proportions and a minimum threshold that’s passed in, a “primary” fuel type is then assigned to the plant-year
record and given a string label.

Parameters

• fuel_df (pandas.DataFrame) – Pandas DataFrame resembling the post-transform
result for the fuel_ferc1 table.

• thresh (float) – A value between 0.5 and 1.0 indicating the minimum fraction of overall
heat content that must have been provided by a fuel in a plant-year for it to be considered
the “primary” fuel for the plant in that year. Default value: 0.5.

Returns A DataFrame with a single record for each plant-year, including the columns required
to merge it with the plants_steam_ferc1 table/DataFrame (report_year, utility_id_ferc1, and
plant_name) as well as totals for fuel mmbtu consumed in that plant-year, and the cost of fuel in
that year, the proportions of heat content and fuel costs for each fuel in that year, and a column
that labels the plant’s primary fuel for that year.

Return type pandas.DataFrame

Raises AssertionError – If the DataFrame input does not have the columns required to run the
function.

196 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#AssertionError

PUDL, Release 0.4.0

pudl.transform.ferc1.make_ferc1_clf(plants_df, ngram_min=2, ngram_max=10,
min_sim=0.75, plant_name_ferc1_wt=2.0,
plant_type_wt=2.0, construction_type_wt=1.0, ca-
pacity_mw_wt=1.0, construction_year_wt=1.0, util-
ity_id_ferc1_wt=1.0, fuel_fraction_wt=1.0)

Create a FERC Plant Classifier using several weighted features.

Given a FERC steam plants dataframe plants_df, which also includes fuel consumption information, transform
a selection of useful columns into features suitable for use in calculating inter-record cosine similarities. Indi-
vidual features are weighted according to the keyword arguments.

Features include:

• plant_name (via TF-IDF, with ngram_min and ngram_max as parameters)

• plant_type (OneHot encoded categorical feature)

• construction_type (OneHot encoded categorical feature)

• capacity_mw (MinMax scaled numerical feature)

• construction year (OneHot encoded categorical feature)

• utility_id_ferc1 (OneHot encoded categorical feature)

• fuel_fraction_mmbtu (several MinMax scaled numerical columns, which are normalized and treated as a
single feature.)

This feature matrix is then used to instantiate a FERCPlantClassifier.

The combination of the ColumnTransformer and FERCPlantClassifier are combined in a sklearn Pipeline, which
is returned by the function.

Parameters

• ngram_min (int) – the minimum lengths to consider in the vectorization of the
plant_name feature.

• ngram_max (int) – the maximum n-gram lengths to consider in the vectorization of the
plant_name feature.

• min_sim (float) – the minimum cosine similarity between two records that can be con-
sidered a “match” (a number between 0.0 and 1.0).

• plant_name_ferc1_wt (float) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine similarity between
records. Used to scale each individual feature before the vectors are normalized.

• plant_type_wt (float) – weight used to determine the relative importance of each of
the features in the feature matrix used to calculate the cosine similarity between records.
Used to scale each individual feature before the vectors are normalized.

• construction_type_wt (float) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine similarity between
records. Used to scale each individual feature before the vectors are normalized.

• capacity_mw_wt (float) – weight used to determine the relative importance of each
of the features in the feature matrix used to calculate the cosine similarity between records.
Used to scale each individual feature before the vectors are normalized.

• construction_year_wt (float) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine similarity between
records. Used to scale each individual feature before the vectors are normalized.

8.10. pudl 197

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PUDL, Release 0.4.0

• utility_id_ferc1_wt (float) – weight used to determine the relative importance
of each of the features in the feature matrix used to calculate the cosine similarity between
records. Used to scale each individual feature before the vectors are normalized.

• fuel_fraction_wt (float) – weight used to determine the relative importance of
each of the features in the feature matrix used to calculate the cosine similarity between
records. Used to scale each individual feature before the vectors are normalized.

Returns an sklearn Pipeline that performs reprocessing and classification with a FERCPlantClassi-
fier object.

Return type sklearn.pipeline.Pipeline

pudl.transform.ferc1.plant_in_service(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 Plant in Service data for loading into PUDL.

Re-organizes the original FERC Form 1 Plant in Service data by unpacking the rows as needed on a year by year
basis, to organize them into columns. The “columns” in the original FERC Form 1 denote starting balancing,
ending balance, additions, retirements, adjustments, and transfers – these categories are turned into labels in
a column called “amount_type”. Because each row in the transformed table is composed of many individual
records (rows) from the original table, row_number can’t be part of the record_id, which means they are no
longer unique. To infer exactly what record a given piece of data came from, the record_id and the row_map
(found in the PUDL package_data directory) can be used.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

Returns The dictionary of the transformed DataFrames.

Return type dict

pudl.transform.ferc1.plants_hydro(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 plant_hydro data for loading into PUDL Database.

Standardizes plant names (stripping whitespace and Using Title Case). Also converts into our preferred units of
MW and MWh.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

Returns The dictionary of transformed dataframes.

Return type dict

pudl.transform.ferc1.plants_pumped_storage(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 pumped storage data for loading into PUDL.

Standardizes plant names (stripping whitespace and Using Title Case). Also converts into our preferred units of
MW and MWh.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

198 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Returns The dictionary of transformed dataframes.

Return type dict

pudl.transform.ferc1.plants_small(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 plant_small data for loading into PUDL Database.

This FERC Form 1 table contains information about a large number of small plants, including many small
hydroelectric and other renewable generation facilities. Unfortunately the data is not well standardized, and so
the plants have been categorized manually, with the results of that categorization stored in an Excel spreadsheet.
This function reads in the plant type data from the spreadsheet and merges it with the rest of the information
from the FERC DB based on record number, FERC respondent ID, and report year. When possible the FERC
license number for small hydro plants is also manually extracted from the data.

This categorization will need to be renewed with each additional year of FERC data we pull in. As of v0.1 the
small plants have been categorized for 2004-2015.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

Returns The dictionary of transformed dataframes.

Return type dict

pudl.transform.ferc1.plants_steam(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 plant_steam data for loading into PUDL Database.

This includes converting to our preferred units of MWh and MW, as well as standardizing the strings describing
the kind of plant and construction.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

Returns of transformed dataframes, including the newly transformed plants_steam_ferc1 dataframe.

Return type dict

pudl.transform.ferc1.plants_steam_validate_ids(ferc1_steam_df)
Tests that plant_id_ferc1 times series includes one record per year.

Parameters ferc1_steam_df (pandas.DataFrame) – A DataFrame of the data from the
FERC 1 Steam table.

Returns None

pudl.transform.ferc1.purchased_power(ferc1_raw_dfs, ferc1_transformed_dfs)
Transforms FERC Form 1 pumped storage data for loading into PUDL.

This table has data about inter-utility power purchases into the PUDL DB. This includes how much electricty
was purchased, how much it cost, and who it was purchased from. Unfortunately the field describing which
other utility the power was being bought from is poorly standardized, making it difficult to correlate with other
data. It will need to be categorized by hand or with some fuzzy matching eventually.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database.

8.10. pudl 199

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

• ferc1_transformed_dfs (dict) – A dictionary of DataFrames to be transformed.

Returns The dictionary of the transformed DataFrames.

Return type dict

pudl.transform.ferc1.transform(ferc1_raw_dfs, ferc1_tables=('fuel_ferc1', 'plants_steam_ferc1',
'plants_small_ferc1', 'plants_hydro_ferc1',
'plants_pumped_storage_ferc1', 'purchased_power_ferc1',
'plant_in_service_ferc1'))

Transforms FERC 1.

Parameters

• ferc1_raw_dfs (dict) – Each entry in this dictionary of DataFrame objects corre-
sponds to a table from the FERC Form 1 DBC database

• ferc1_tables (tuple) – A tuple containing the set of tables which have been success-
fully integrated into PUDL

Returns A dictionary of the transformed DataFrames.

Return type dict

pudl.transform.ferc1.unpack_table(ferc1_df, table_name, data_cols, data_rows)
Normalize a row-and-column based FERC Form 1 table.

Pulls the named database table from the FERC Form 1 DB and uses the corresponding ferc1_row_map to unpack
the row_number coded data.

Parameters

• ferc1_df (pandas.DataFrame) – Raw FERC Form 1 DataFrame from the DB.

• table_name (str) – Original name of the FERC Form 1 DB table.

• data_cols (list) – List of strings corresponding to the original FERC Form 1 database
table column labels – these are the columns of data that we are extracting (it can be a subset
of the columns which are present in the original database).

• data_rows (list) – List of row_names to extract, as defined in the FERC 1 row maps.
Set to slice(None) if you want all rows.

Returns pandas.DataFrame

pudl.transform.ferc714 module

Transformation of the FERC Form 714 data.

pudl.transform.ferc714.BAD_RESPONDENTS = [319, 99991, 99992, 99993, 99994, 99995]
Fake respondent IDs for database test entities.

pudl.transform.ferc714.EIA_CODE_FIXES = {125: 2775, 134: 5416, 203: 12341, 257: 59504, 292: 20382, 295: 40229, 301: 14725, 302: 14725, 303: 14725, 304: 14725, 305: 14725, 306: 14725, 307: 14379, 309: 12427, 315: 56090, 323: 58790, 324: 58791, 329: 39347}
Overrides of FERC 714 respondent IDs with wrong or missing EIA Codes

pudl.transform.ferc714.OFFSET_CODES = {'AKDT': Timedelta('-1 days +15:00:00'), 'AKST': Timedelta('-1 days +15:00:00'), 'CDT': Timedelta('-1 days +18:00:00'), 'CST': Timedelta('-1 days +18:00:00'), 'EDT': Timedelta('-1 days +19:00:00'), 'EST': Timedelta('-1 days +19:00:00'), 'HST': Timedelta('-1 days +14:00:00'), 'MDT': Timedelta('-1 days +17:00:00'), 'MST': Timedelta('-1 days +17:00:00'), 'PDT': Timedelta('-1 days +16:00:00'), 'PST': Timedelta('-1 days +16:00:00')}
A mapping of timezone offset codes to Timedelta offsets from UTC.

from one year to the next, and these result in duplicate records, which are Note that the FERC 714 instructions
state that all hourly demand is to be reported in STANDARD time for whatever timezone is being used. Even
though many respondents use daylight savings / standard time abbreviations, a large majority do appear to
conform to using a single UTC offset throughout the year. There are 6 instances in which the timezone associated
with reporting changed dropped.

200 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

pudl.transform.ferc714.TZ_CODES = {'AKDT': 'America/Anchorage', 'AKST': 'America/Anchorage', 'CDT': 'America/Chicago', 'CST': 'America/Chicago', 'EDT': 'America/New_York', 'EST': 'America/New_York', 'HST': 'Pacific/Honolulu', 'MDT': 'America/Denver', 'MST': 'America/Denver', 'PDT': 'America/Los_Angeles', 'PST': 'America/Los_Angeles'}
Mapping between standardized time offset codes and canonical timezones.

pudl.transform.ferc714.adjacency_ba(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.demand_forecast_pa(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.demand_hourly_pa(tfr_dfs)
Transform the hourly demand time series by Planning Area.

Transformations include:

• Clean UTC offset codes.

• Replace UTC offset codes with UTC offset and timezone.

• Drop 25th hour rows.

• Set records with 0 UTC code to 0 demand.

• Drop duplicate rows.

• Flip negative signs for reported demand.

Parameters tfr_dfs (dict) – A dictionary of (partially) transformed dataframes, to be cleaned
up.

Returns The input dictionary of dataframes, but with a finished pa_demand_hourly_ferc714
dataframe.

Return type dict

pudl.transform.ferc714.demand_monthly_ba(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.description_pa(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.gen_plants_ba(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.id_certification(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.interchange_ba(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.lambda_description(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.lambda_hourly_ba(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.net_energy_load_ba(tfr_dfs)
A stub transform function.

pudl.transform.ferc714.respondent_id(tfr_dfs)
Transform the FERC 714 respondent IDs, names, and EIA utility IDs.

This consists primarily of dropping test respondents and manually assigning EIA utility IDs to a few FERC
Form 714 respondents that report planning area demand, but which don’t have their corresponding EIA utility
IDs provided by FERC for some reason (including PacifiCorp).

8.10. pudl 201

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Parameters tfr_dfs (dict) – A dictionary of (partially) transformed dataframes, to be cleaned
up.

Returns The input dictionary of dataframes, but with a finished respondent_id_ferc714 dataframe.

Return type dict

pudl.transform.ferc714.transform(raw_dfs, tables=('respondent_id_ferc714',
'id_certification_ferc714', 'gen_plants_ba_ferc714', 'de-
mand_monthly_ba_ferc714', 'net_energy_load_ba_ferc714',
'adjacency_ba_ferc714', 'interchange_ba_ferc714',
'lambda_hourly_ba_ferc714', 'lambda_description_ferc714',
'description_pa_ferc714', 'demand_forecast_pa_ferc714',
'demand_hourly_pa_ferc714'))

Transform the raw FERC 714 dataframes into datapackage ready ouputs.

Parameters

• raw_dfs (dict) – A dictionary of raw pandas.DataFrame objects, as read out of the
original FERC 714 CSV files. Generated by the pudl.extract.ferc714.extract() function.

• tables (iterable) – The set of PUDL tables within FERC 714 that we should process.
Typically set to all of them, unless

Returns A dictionary of pandas.DataFrame objects that are ready to be output in a data package /
database table.

Return type dict

Module contents

Modules implementing the “Transform” step of the PUDL ETL pipeline.

Each module in this subpackage transforms the tabular data associated with a single data source from the PUDL
:ref: data-sources. This process begins with a dictionary of “raw” pandas.DataFrame objects produced by the
corresponding data source specific routines from the pudl.extract subpackage, and ends with a dictionary of
pandas.DataFrame objects that are fully normalized, cleaned, and congruent with the tabular datapackage meta-
data – i.e. they are ready to be exported by the pudl.load module.

Inputs to the transform functions are a dictionary of dataframes, each of which represents a concatenation of records
with common column names from across some set of years of reported data. The names of those columns are deter-
mined by the xlsx_maps metadata associated with the given dataset in PUDL’s package_metadata.

This raw data is transformed in 3 main steps:

1. Structural transformations that re-shape / tidy the data and turn it into rows that represent a single observation,
and columns that represent a single variable. These transformations should not require knowledge of or access
to the contents of the data, which may or may not yet be usable at this point, depending on the true data type
and how much cleaning has to happen. One exception to this that may come up is the need to clean up columns
that are part of the primary composite key, since you can’t usefully index on NA values. Alternatively this might
mean removing rows that have invalid key values.

2. Data type compatibility: whatever massaging of the data is required to ensure that it can be cast to the appropriate
data type, including identifying NA values and assigning them to an appropriate type-specific NA value. At the
end of this you can assign all the columns their (preferably nullable) types. Note that because some of the
columns that exist at this point may not end up in the final database table, you may need to set them individually,
rather than using the systemwide dictionary of column data types.

3. Value based data cleaning: At this point every column should have a known, homogenous type, allowing it to
be reliably manipulated as a Series, so we can move on to cleaning up the values themselves. This includes

202 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

re-coding freeform string fields to impose a controlled vocabulary, converting column units (e.g. kWh to MWh)
and renaming the columns appropriately, as well as correcting clear data entry errors.

At the end of the main coordinating transform() function, every column that remains in each of the transformed
dataframes should correspond to a column that will exist in the database and be associated with the EIA datasets,
which means it is also part of the EIA column namespace. It’s important that you make sure these column names
match the naming conventions that are being used, and if any of the columns exist in other tables, that they have
exactly the same name and datatype.

If you find that you need to rename a column for it to conform to those requirements, in many cases that should
happen in the xlsx_map metadata, so that column renamings can be kept to a minimum and only used for real semantic
transformations of a column (like a unit conversion).

At the end of this step, it should be easy to categorize every column in every dataframe as to whether it is a “data”
column (containing data unique to the table it is found in) or whether it is part of the primary key for the table (the
minimal set of columns whose values are required to uniquely specify a record), and/or whether it is a “denormalized”
column whose home table is really elsewhere in the database. Note that denormalized columns may also be part of the
primary key. This information is important for the step after the intra-table transformations during which the collection
of EIA tables is normalized as a whole.

pudl.workspace package

Submodules

pudl.workspace.datastore module

Datastore manages file retrieval for PUDL datasets.

exception pudl.workspace.datastore.ChecksumMismatch
Bases: ValueError

Resource checksum (md5) does not match.

class pudl.workspace.datastore.DatapackageDescriptor(datapackage_json: dict,
dataset: str, doi: str)

Bases: object

A simple wrapper providing access to datapackage.json contents.

get_json_string()→ str
Exports the underlying json as normalized (sorted, indented) json string.

get_partitions(name: Optional[str] = None)→ Dict[str, Set[str]]
Returns mapping of all known partition keys to the set of its known values.

get_resource_path(name: str)→ str
Returns zenodo url that holds contents of given named resource.

get_resources(name: Optional[str] = None, **filters: Any) → Itera-
tor[pudl.workspace.resource_cache.PudlResourceKey]

Returns series of PudlResourceKey identifiers for matching resources.

Parameters

• name (str) – if specified, find resource(s) with this name.

• filters (dict) – if specified, find resoure(s) matching these key=value constraints.
The constraints are matched against the ‘parts’ field of the resource entry in the datapack-
age.json.

8.10. pudl 203

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

validate_checksum(name: str, content: str)→ bool
Returns True if content matches checksum for given named resource.

class pudl.workspace.datastore.Datastore(local_cache_path: Optional[pathlib.Path] =
None, gcs_cache_path: Optional[str] = None,
sandbox: bool = False, timeout: float = 15)

Bases: object

Handle connections and downloading of Zenodo Source archives.

get_datapackage_descriptor(dataset: str)→ pudl.workspace.datastore.DatapackageDescriptor
Fetch datapackage descriptor for given dataset either from cache or from zenodo.

get_known_datasets()→ List[str]
Returns list of supported datasets.

get_resources(dataset: str, cached_only: bool = False, skip_optimally_cached: bool = False,
**filters: Any)→ Iterator[Tuple[pudl.workspace.resource_cache.PudlResourceKey,
bytes]]

Return content of the matching resources.

Parameters

• dataset (str) – name of the dataset to query.

• cached_only (bool) – if True, only retrieve resources that are present in the cache.

• skip_optimally_cached (bool) – if True, only retrieve resources that are not op-
timally cached. This triggers attempt to optimally cache these resources.

• filters (key=val) – only return resources that match the key-value mapping in their

• metadata["parts"] –

Yields (PudlResourceKey, io.BytesIO) holding content for each matching resource

get_unique_resource(dataset: str, **filters: Any)→ bytes
Returns content of a resource assuming there is exactly one that matches.

get_zipfile_resource(dataset: str, **filters: Any)→ zipfile.ZipFile
Retrieves unique resource and opens it as a ZipFile.

remove_from_cache(res: pudl.workspace.resource_cache.PudlResourceKey)
Remove given resource from the associated cache.

class pudl.workspace.datastore.ParseKeyValues(option_strings, dest, nargs=None,
const=None, default=None, type=None,
choices=None, required=False,
help=None, metavar=None)

Bases: argparse.Action

Transforms k1=v1,k2=v2,. . . into dict(k1=v1, k2=v2, . . .).

class pudl.workspace.datastore.ZenodoFetcher(sandbox: bool = False, timeout: float =
15.0)

Bases: object

API for fetching datapackage descriptors and resource contents from zenodo.

API_ROOT = {'production': 'https://zenodo.org/api', 'sandbox': 'https://sandbox.zenodo.org/api'}

DOI = {'production': {'censusdp1tract': '10.5281/zenodo.4127049', 'eia860': '10.5281/zenodo.4127027', 'eia860m': '10.5281/zenodo.4540268', 'eia861': '10.5281/zenodo.4127029', 'eia923': '10.5281/zenodo.4127040', 'epacems': '10.5281/zenodo.4660268', 'ferc1': '10.5281/zenodo.4127044', 'ferc714': '10.5281/zenodo.4127101'}, 'sandbox': {'censusdp1tract': '10.5072/zenodo.674992', 'eia860': '10.5072/zenodo.672210', 'eia860m': '10.5072/zenodo.692655', 'eia861': '10.5072/zenodo.687052', 'eia923': '10.5072/zenodo.687071', 'epacems': '10.5072/zenodo.672963', 'ferc1': '10.5072/zenodo.687072', 'ferc714': '10.5072/zenodo.672224'}}

TOKEN = {'production': 'KXcG5s9TqeuPh1Ukt5QYbzhCElp9LxuqAuiwdqHP0WS4qGIQiydHn6FBtdJ5', 'sandbox': 'qyPC29wGPaflUUVAv1oGw99ytwBqwEEdwi4NuUrpwc3xUcEwbmuB4emwysco'}

204 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/argparse.html#argparse.Action
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

PUDL, Release 0.4.0

get_descriptor(dataset: str)→ pudl.workspace.datastore.DatapackageDescriptor
Returns DatapackageDescriptor for given dataset.

get_doi(dataset: str)→ str
Returns DOI for given dataset.

get_known_datasets()→ List[str]
Returns list of supported datasets.

get_resource(res: pudl.workspace.resource_cache.PudlResourceKey)→ bytes
Given resource key, retrieve contents of the file from zenodo.

get_resource_key(dataset: str, name: str)→ pudl.workspace.resource_cache.PudlResourceKey
Returns PudlResourceKey for given resource.

pudl.workspace.datastore.fetch_resources(dstore: pudl.workspace.datastore.Datastore,
datasets: List[str], args: argparse.Namespace)
→ None

Retrieve all matching resources and store them in the cache.

pudl.workspace.datastore.main()
Cache datasets.

pudl.workspace.datastore.parse_command_line()
Collect the command line arguments.

pudl.workspace.datastore.print_partitions(dstore: pudl.workspace.datastore.Datastore,
datasets: List[str])→ None

Prints known partition keys and its values for each of the datasets.

pudl.workspace.datastore.validate_cache(dstore: pudl.workspace.datastore.Datastore,
datasets: List[str], args: argparse.Namespace)→
None

Validate elements in the datastore cache. Delete invalid entires from cache.

pudl.workspace.resource_cache module

Implementations of datastore resource caches.

class pudl.workspace.resource_cache.AbstractCache(read_only: bool = False)
Bases: abc.ABC

Defines interaface for the generic resource caching layer.

abstract add(resource: pudl.workspace.resource_cache.PudlResourceKey, content: bytes)→ None
Adds resource to the cache and sets the content.

abstract contains(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bool
Returns True if the resource is present in the cache.

abstract delete(resource: pudl.workspace.resource_cache.PudlResourceKey)→ None
Removes the resource from cache.

abstract get(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bytes
Retrieves content of given resource or throws KeyError.

is_read_only()→ bool
Returns true if the cache is read-only and should not be modified.

class pudl.workspace.resource_cache.GoogleCloudStorageCache(gcs_path: str,
**kwargs: Any)

Bases: pudl.workspace.resource_cache.AbstractCache

8.10. pudl 205

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

Implements file cache backed by Google Cloud Storage bucket.

add(resource: pudl.workspace.resource_cache.PudlResourceKey, value: bytes)
Adds (or updates) resource to the cache with given value.

contains(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bool
Returns True if resource is present in the cache.

delete(resource: pudl.workspace.resource_cache.PudlResourceKey)
Deletes resource from the cache.

get(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bytes
Retrieves value associated with given resource.

class pudl.workspace.resource_cache.LayeredCache(*caches:
List[pudl.workspace.resource_cache.AbstractCache],
**kwargs: Any)

Bases: pudl.workspace.resource_cache.AbstractCache

Implements multi-layered system of caches.

This allows building multi-layered system of caches. The idea is that you can have faster local caches with
fall-back to the more remote or expensive caches that can be acessed in case of missing content.

Only the closest layer is being written to (set, delete), while all remaining layers are read-only (get).

add(resource: pudl.workspace.resource_cache.PudlResourceKey, value)
Adds (or replaces) resource into the cache with given value.

add_cache_layer(cache: pudl.workspace.resource_cache.AbstractCache)
Adds caching layer. The priority is below all other.

contains(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bool
Returns True if resource is present in the cache.

delete(resource: pudl.workspace.resource_cache.PudlResourceKey)
Removes resource from the cache if the cache is not in the read_only mode.

get(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bytes
Returns content of a given resource.

is_optimally_cached(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bool
Returns true if the resource is contained in the closest write-enabled layer.

num_layers()
Returns number of caching layers that are in this LayeredCache.

class pudl.workspace.resource_cache.LocalFileCache(cache_root_dir: pathlib.Path,
**kwargs: Any)

Bases: pudl.workspace.resource_cache.AbstractCache

Simple key-value store mapping PudlResourceKeys to ByteIO contents.

add(resource: pudl.workspace.resource_cache.PudlResourceKey, content: bytes)
Adds (or updates) resource to the cache with given value.

contains(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bool
Returns True if resource is present in the cache.

delete(resource: pudl.workspace.resource_cache.PudlResourceKey)
Deletes resource from the cache.

get(resource: pudl.workspace.resource_cache.PudlResourceKey)→ bytes
Retrieves value associated with a given resource.

206 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes

PUDL, Release 0.4.0

class pudl.workspace.resource_cache.PudlResourceKey(dataset: str, doi: str, name: str)
Bases: tuple

Uniquely identifies a specific resource.

dataset: str
Alias for field number 0

doi: str
Alias for field number 1

get_local_path()→ pathlib.Path
Returns (relative) path that should be used when caching this resource.

name: str
Alias for field number 2

pudl.workspace.setup module

Tools for setting up and managing PUDL workspaces.

pudl.workspace.setup.deploy(pkg_path, deploy_dir, ignore_files, clobber=False)
Deploy all files from a package_data directory into a workspace.

Parameters

• pkg_path (str) – Dotted module path to the subpackage inside of package_data contain-
ing the resources to be deployed.

• deploy_dir (os.PathLike) – Directory on the filesystem to which the files within
pkg_path should be deployed.

• ignore_files (iterable) – List of filenames (strings) that may be present in the
pkg_path subpackage, but that should be ignored.

• clobber (bool) – if True, replace existing copies of the files that are being deployed from
pkg_path to deploy_dir. If False, do not replace existing files.

Returns None

pudl.workspace.setup.derive_paths(pudl_in, pudl_out)
Derive PUDL paths based on given input and output paths.

If no configuration file path is provided, attempt to read in the user configuration from a file called .pudl.yml in
the user’s HOME directory. Presently the only values we expect are pudl_in and pudl_out, directories that store
files that PUDL either depends on that rely on PUDL.

Parameters

• pudl_in (os.PathLike) – Path to the directory containing the PUDL input files, most
notably the data directory which houses the raw data downloaded from public agencies
by the pudl.workspace.datastore tools. pudl_in may be the same directory as
pudl_out.

• pudl_out (os.PathLike) – Path to the directory where PUDL should write the outputs
it generates. These will be organized into directories according to the output format (sqlite,
datapackage, etc.).

Returns

A dictionary containing common PUDL settings, derived from those read out of the YAML
file. Mostly paths for inputs & outputs.

8.10. pudl 207

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/os.html#os.PathLike

PUDL, Release 0.4.0

Return type dict

pudl.workspace.setup.get_defaults()
Read paths to default PUDL input/output dirs from user’s $HOME/.pudl.yml.

Parameters None –

Returns The contents of the user’s PUDL settings file, with keys pudl_in and pudl_out defin-
ing their default PUDL workspace. If the $HOME/.pudl.yml file does not exist, set these
paths to None.

Return type dict

pudl.workspace.setup.init(pudl_in, pudl_out, clobber=False)
Set up a new PUDL working environment based on the user settings.

Parameters

• pudl_in (os.PathLike) – Path to the directory containing the PUDL input files, most
notably the data directory which houses the raw data downloaded from public agencies
by the pudl.workspace.datastore tools. pudl_in may be the same directory as
pudl_out.

• pudl_out (os.PathLike) – Path to the directory where PUDL should write the outputs
it generates. These will be organized into directories according to the output format (sqlite,
datapackage, etc.).

• clobber (bool) – if True, replace existing files. If False (the default) do not replace
existing files.

Returns None

pudl.workspace.setup.set_defaults(pudl_in, pudl_out, clobber=False)
Set default user input and output locations in $HOME/.pudl.yml.

Create a user settings file for future reference, that defines the default PUDL input and output directories. If
this file already exists, behavior depends on the clobber parameter, which is False by default. If it’s True, the
existing file is replaced. If False, the existing file is not changed.

Parameters

• pudl_in (os.PathLike) – Path to be used as the default input directory for PUDL –
this is where pudl.workspace.datastore will look to find the data directory, full
of data from public agencies.

• pudl_out (os.PathLike) – Path to the default output directory for PUDL, where re-
sults of data processing will be organized.

• clobber (bool) – If True and a user settings file exists, overwrite it. If False, do not alter
the existing file. Defaults to False.

Returns None

208 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#bool

PUDL, Release 0.4.0

pudl.workspace.setup_cli module

Set up a well-organized PUDL data management workspace.

This script creates a well-defined directory structure for use by the PUDL package, and copies several example settings
files and Jupyter notebooks into it to get you started. If the command is run without any arguments, it will create this
workspace in your current directory.

The script will also create a file named .pudl.yml, describing the location of your PUDL workspace. The PUDL
package will refer to this location in the future to know where it should look for raw data, where to put its outputs,
etc. This file can be edited to change the default input and output directories if you wish. However, make sure those
workspaces are set up using this script.

It’s also possible to specify different input and output directories, which is useful if you want to use a single PUDL data
store (which may contain many GB of data) to support several different workspaces. See the –pudl_in and –pudl_out
options.

By default the script will not overwrite existing files. If you want it to replace existing files (including your .pudl.yml
file which defines your default PUDL workspace) use the –clobber option.

The directory structure set up for PUDL looks like this:

PUDL_IN

data censusdp1tract eia860 eia860m eia861 eia923 epacems ferc1
ferc714 tmp

PUDL_OUT datapkg parquet settings sqlite

Initially, the directories in the data store will be empty. The pudl_datastore or pudl_etl commands will download data
from public sources and organize it for you there by source. The PUDL_OUT directories are organized by the type of
file they contain.

pudl.workspace.setup_cli.initialize_parser()
Parse command line arguments for the pudl_setup script.

pudl.workspace.setup_cli.main()
Set up a new default PUDL workspace.

Module contents

Tools for acquiring PUDL’s original input data and organizing it locally.

The datastore subpackage takes care of downloading original data form various public sources, organizing it locally,
and providing a programmatic interface to that collection of raw inputs, which we refer to as the PUDL datastore.

These tools are available both as a library module, and via a command line interface installed as an entrypoint script
called pudl_datastore. For full reproducibility of PUDL’s ETL pipeline outputs, the datastore should be archived
alongside the PUDL release which was used and the resulting datapackage outputs.

8.10. pudl 209

PUDL, Release 0.4.0

Submodules

pudl.cli module

A command line interface (CLI) to the main PUDL ETL functionality.

This script generates datapacakges based on the datapackage settings enumerated in the settings_file which is given
as an argument to this script. If the settings has empty datapackage parameters (meaning there are no years or tables
included), no datapacakges will be generated. If the settings include a datapackage that has empty parameters, the
other valid datatpackages will be generated, but not the empty one. If there are invalid parameters (meaning a partition
that is not included in the pudl.constant.working_partitions), the build will fail early on in the process.

The datapackages will be stored in “PUDL_OUT” in the “datapackge” subdirectory. Currently, this function only uses
default directories for “PUDL_IN” and “PUDL_OUT” (meaning those stored in $HOME/.pudl.yml). To setup your
default pudl directories see the pudl_setup script (pudl_setup –help for more details).

pudl.cli.main()
Parse command line and initialize PUDL DB.

pudl.cli.parse_command_line(argv)
Parse script command line arguments. See the -h option.

Parameters argv (list) – command line arguments including caller file name.

Returns A dictionary mapping command line arguments to their values.

Return type dict

pudl.constants module

A warehouse for constant values required to initilize the PUDL Database.

This constants module stores and organizes a bunch of constant values which are used throughout PUDL to populate
static lists within the data packages or for data cleaning purposes.

pudl.constants.TRANSIT_TYPE_DICT = {'CV': 'conveyer', 'PL': 'pipeline', 'RR': 'railroad', 'TK': 'truck', 'UN': 'unknown', 'WA': 'water'}
A dictionary of datasets (keys) and keywords (values).

Type dict

pudl.constants.aer_coal_strings = ['col', 'woc', 'pc']
A list of EIA 923 AER fuel type strings associated with coal.

Type list

pudl.constants.aer_fuel_type_strings = {'coal': ['col', 'woc', 'pc'], 'gas': ['mlg', 'ng', 'oog'], 'hydro': ['hps', 'hyc'], 'nuclear': ['nuc'], 'oil': ['dfo', 'rfo', 'woo'], 'other': ['geo', 'orw', 'oth'], 'solar': ['sun'], 'waste': ['www'], 'wind': ['wnd']}
A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values).

Type dict

pudl.constants.aer_gas_strings = ['mlg', 'ng', 'oog']
A list of EIA 923 AER fuel type strings associated with gas.

Type list

pudl.constants.aer_hydro_strings = ['hps', 'hyc']
A list of EIA 923 AER fuel type strings associated with hydro power.

Type list

pudl.constants.aer_nuclear_strings = ['nuc']
A list of EIA 923 AER fuel type strings associated with nuclear power.

210 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

Type list

pudl.constants.aer_oil_strings = ['dfo', 'rfo', 'woo']
A list of EIA 923 AER fuel type strings associated with oil.

Type list

pudl.constants.aer_other_strings = ['geo', 'orw', 'oth']
A list of EIA 923 AER fuel type strings associated with other fuel.

Type list

pudl.constants.aer_solar_strings = ['sun']
A list of EIA 923 AER fuel type strings associated with solar power.

Type list

pudl.constants.aer_waste_strings = ['www']
A list of EIA 923 AER fuel type strings associated with waste.

Type list

pudl.constants.aer_wind_strings = ['wnd']
A list of EIA 923 AER fuel type strings associated with wind power.

Type list

pudl.constants.base_data_urls = {'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'pudl': 'https://catalyst.coop/pudl/'}
A dictionary containing data sources (keys) and their base data URLs (values).

Type dict

pudl.constants.canada_prov_terr = {'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NL': 'Newfoundland and Labrador', 'NS': 'Nova Scotia', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory'}
A dictionary containing Canadian provinces’ and territories’ abbreviations (keys) and names (values)

Type dict

pudl.constants.cems_states = {'AL': 'Alabama', 'AR': 'Arkansas', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MS': 'Mississippi', 'MT': 'Montana', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming'}
A dictionary containing US state abbreviations (keys) and names (values) that are present in the CEMS dataset

Type dict

pudl.constants.census_region = {'ENC': 'East North Central', 'ESC': 'East South Central', 'MAT': 'Middle Atlantic', 'MTN': 'Mountain', 'NEW': 'New England', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', 'SAT': 'South Atlantic', 'WNC': 'West North Central', 'WSC': 'West South Central'}
A dictionary mapping Census Region abbreviations (keys) to Census Region names (values).

Type dict

pudl.constants.coalmine_country_eia923 = {'AU': 'AUS', 'CL': 'COL', 'CN': 'CAN', 'IM': 'unknown', 'IS': 'IDN', 'OT': 'other_country', 'PL': 'POL', 'RS': 'RUS', 'UK': 'GBR', 'VZ': 'VEN'}
A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three letter country codes (values).

Type dict

pudl.constants.coalmine_type_eia923 = {'P': 'Preparation Plant', 'S': 'Surface', 'SU': 'Both an underground and surface mine with most coal extracted from surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground'}
A dictionary mapping EIA 923 coal mine type codes (keys) to descriptions (values).

Type dict

pudl.constants.contract_type_eia923 = {'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'N': 'New Contract - see NC code. This abbreviation existed only in 2008 before being replaced by NC.', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'S': 'Spot Purchase', 'T': 'Tolling Agreement - Fuel received under a tolling agreement (bartering arrangement of fuel for generation)'}
A dictionary mapping EIA 923 contract codes (keys) to contract descriptions (values) for each month in the Fuel
Receipts and Costs table.

Type dict

pudl.constants.contributors = {'alana-wilson': {'email': 'alana.wilson@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Alana Wilson'}, 'catalyst-cooperative': {'email': 'pudl@catalyst.coop', 'organization': 'Catalyst Cooperative', 'path': 'https://catalyst.coop/', 'role': 'publisher', 'title': 'Catalyst Cooperative'}, 'christina-gosnell': {'email': 'christina.gosnell@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Christina Gosnell'}, 'greg-schivley': {'role': 'contributor', 'title': 'Greg Schivley'}, 'karl-dunkle-werner': {'email': 'karldw@berkeley.edu', 'organization': 'UC Berkeley', 'path': 'https://karldw.org/', 'role': 'contributor', 'title': 'Karl Dunkle Werner'}, 'steven-winter': {'email': 'steven.winter@catalyst.coop', 'organization': 'Catalyst Cooperative', 'role': 'contributor', 'title': 'Steven Winter'}, 'zane-selvans': {'email': 'zane.selvans@catalyst.coop', 'organization': 'Catalyst Cooperative', 'path': 'https://amateurearthling.org/', 'role': 'wrangler', 'title': 'Zane Selvans'}}
A dictionary of dictionaries containing organization names (keys) and their attributes (values).

Type dict

8.10. pudl 211

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.constants.contributors_by_source = {'eia860': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson'], 'eia923': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter'], 'epacems': ['catalyst-cooperative', 'karl-dunkle-werner', 'zane-selvans'], 'epaipm': ['greg-schivley'], 'ferc1': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson'], 'pudl': ['catalyst-cooperative', 'zane-selvans', 'christina-gosnell', 'steven-winter', 'alana-wilson', 'karl-dunkle-werner']}
A dictionary of data sources (keys) and lists of contributors (values).

Type dict

pudl.constants.data_source_info = {'eia860': {'path': 'https://www.eia.gov/electricity/data/eia860/', 'title': 'EIA Form 860'}, 'eia861': {'path': 'https://www.eia.gov/electricity/data/eia861/', 'title': 'EIA Form 861'}, 'eia923': {'path': 'https://www.eia.gov/electricity/data/eia923/', 'title': 'EIA Form 923'}, 'eiawater': {'path': 'https://www.eia.gov/electricity/data/water/', 'title': 'EIA Water Use for Power'}, 'epacems': {'path': 'https://ampd.epa.gov/ampd/', 'title': 'EPA Air Markets Program Data'}, 'epaipm': {'path': 'https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6', 'title': 'EPA Integrated Planning Model'}, 'ferc1': {'path': 'https://www.ferc.gov/docs-filing/forms/form-1/data.asp', 'title': 'FERC Form 1'}, 'ferc714': {'path': 'https://www.ferc.gov/docs-filing/forms/form-714/data.asp', 'title': 'FERC Form 714'}, 'ferceqr': {'path': 'https://www.ferc.gov/docs-filing/eqr.asp', 'title': 'FERC Electric Quarterly Report'}, 'msha': {'path': 'https://www.msha.gov/mine-data-retrieval-system', 'title': 'Mining Safety and Health Administration'}, 'phmsa': {'path': 'https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview', 'title': 'Pipelines and Hazardous Materials Safety Administration'}, 'pudl': {'email': 'pudl@catalyst.coop', 'path': 'https://catalyst.coop/pudl/', 'title': 'The Public Utility Data Liberation Project (PUDL)'}}
A dictionary of dictionaries containing datasources (keys) and associated attributes (values)

Type dict

pudl.constants.data_sources = ('eia860', 'eia861', 'eia923', 'epacems', 'epaipm', 'ferc1', 'ferc714')
A tuple containing the data sources we are able to pull into PUDL.

Type tuple

pudl.constants.data_years = {'eia860': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'eia861': (1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'eia923': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'epacems': (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020), 'epaipm': (None,), 'ferc1': (1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019), 'ferc714': (None,)}
A dictionary of data sources (keys) and tuples containing the years that we expect to be able to download for
each data source (values).

Type dict

pudl.constants.dbf_typemap = {'+': 'XXX', '0': <class 'sqlalchemy.sql.sqltypes.Integer'>, '@': 'XXX', 'B': 'XXX', 'C': <class 'sqlalchemy.sql.sqltypes.String'>, 'D': <class 'sqlalchemy.sql.sqltypes.Date'>, 'F': <class 'sqlalchemy.sql.sqltypes.Float'>, 'G': 'XXX', 'I': <class 'sqlalchemy.sql.sqltypes.Integer'>, 'L': <class 'sqlalchemy.sql.sqltypes.Boolean'>, 'M': <class 'sqlalchemy.sql.sqltypes.Text'>, 'N': <class 'sqlalchemy.sql.sqltypes.Float'>, 'O': 'XXX', 'T': <class 'sqlalchemy.sql.sqltypes.DateTime'>}
A dictionary mapping field types in the DBF objects (keys) to the corresponding generic SQLAlchemy Column
types.

Type dict

pudl.constants.eia860_pudl_tables = ('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860')
A tuple enumerating EIA 860 tables for which PUDL’s ETL works.

Type tuple

pudl.constants.eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923')
A tuple containing the EIA923 tables that can be successfully integrated into PUDL.

Type tuple

pudl.constants.energy_source_eia923 = {'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BM': 'Biomass', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'OG': 'Other Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SG': 'Synthesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.'}
A dictionary mapping fuel codes (keys) to fuel descriptions (values) for each fuel receipt from the EIA 923 Fuel
Receipts and Costs table.

Type dict

pudl.constants.energy_source_eia_simple_map = {'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'], 'solar': ['SUN'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'wind': ['WND']}
A dictionary mapping EIA fuel types (keys) to fuel codes (values).

Type dict

pudl.constants.entities = {'boilers': [['plant_id_eia', 'boiler_id'], ['prime_mover_code'], [], {}], 'generators': [['plant_id_eia', 'generator_id'], ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'bypass_heat_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'owned_by_non_utility', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'summer_capacity_estimate', 'winter_capacity_estimate', 'minimum_load_mw', 'distributed_generation', 'technology_description', 'reactive_power_output_mvar', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'energy_source_1_transport_1', 'energy_source_1_transport_2', 'energy_source_1_transport_3', 'energy_source_2_transport_1', 'energy_source_2_transport_2', 'energy_source_2_transport_3', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date', 'utility_id_eia', 'data_source'], {}], 'plants': [['plant_id_eia'], ['balancing_authority_code_eia', 'balancing_authority_name_eia', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'latitude', 'longitude', 'service_area', 'plant_name_eia', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'datum', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'nerc_region', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], {}], 'utilities': [['utility_id_eia'], ['utility_name_eia'], ['street_address', 'city', 'state', 'zip_code', 'entity_type', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship', 'attention_line', 'address_2', 'zip_code_4', 'contact_firstname', 'contact_lastname', 'contact_title', 'contact_firstname_2', 'contact_lastname_2', 'contact_title_2', 'phone_extension_1', 'phone_extension_2', 'phone_number_1', 'phone_number_2'], {'utility_id_eia': 'int64'}]}
A dictionary containing table name strings (keys) and lists of columns to keep for those tables (values).

Type dict

pudl.constants.entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm']
A list of PUDL entity tables.

Type list

pudl.constants.epacems_tables = 'hourly_emissions_epacems'
A tuple containing tables of EPA CEMS data to pull into PUDL.

Type tuple

pudl.constants.epaipm_pudl_tables = ('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm')
A tuple containing the EPA IPM tables that can be successfully integrated into PUDL.

212 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

PUDL, Release 0.4.0

Type tuple

pudl.constants.epaipm_region_aggregations = {'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': ['MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS'], 'NYISO': ['NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K'], 'PJM': ['PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC'], 'SPP': ['SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE'], 'WECC_NW': ['WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY']}
A dictionary containing EPA IPM regions (keys) and lists of their associated abbreviations (values).

Type dict

pudl.constants.epaipm_region_names = ['ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK']
A list of EPA IPM region names.

Type list

pudl.constants.epaipm_url_ext = {'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx'}
A dictionary of EPA IPM tables and associated URLs extensions for downloading that table’s data.

Type dict

pudl.constants.ferc1_data_tables = ('f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev')
A tuple containing the FERC Form 1 tables that have the same composite primary keys: [respondent_id, re-
port_year, report_prd, row_number, spplmnt_num].

Type tuple

pudl.constants.ferc1_dbf2tbl = {'F1_1': 'f1_respondent_id', 'F1_10': 'f1_allowances', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_106_2009': 'f1_106_2009', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_2': 'f1_acb_epda', 'F1_20': 'f1_csscslc_pcsircs', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_3': 'f1_accumdepr_prvsn', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_33': 'f1_gnrt_plant', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_40': 'f1_mtrl_spply', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_43': 'f1_note_fin_stmnt', 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_5': 'f1_adit_190_detail', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_6': 'f1_adit_190_notes', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_7': 'f1_adit_amrt_prop', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_8': 'f1_adit_other', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_9': 'f1_adit_other_prop', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security'}
A dictionary mapping FERC Form 1 DBF files(w / o .DBF file extension) (keys) to database table names
(values).

Type dict

pudl.constants.ferc1_huge_tables = {'f1_footnote_data', 'f1_footnote_tbl', 'f1_note_fin_stmnt'}
A set containing large FERC Form 1 tables.

Type set

pudl.constants.ferc1_power_purchase_type = {'AD': 'adjustment', 'EX': 'electricity_exchange', 'IF': 'intermediate_firm', 'IU': 'intermediate_unit', 'LF': 'long_firm', 'LU': 'long_unit', 'OS': 'other_service', 'RQ': 'requirement', 'SF': 'short_firm'}
A dictionary of abbreviations (keys) and types (values) for power purchase agreements from FERC Form 1.

Type dict

pudl.constants.ferc1_pudl_tables = ('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'purchased_power_ferc1', 'plant_in_service_ferc1')
A tuple containing the FERC Form 1 tables that can be successfully integrated into PUDL.

Type tuple

pudl.constants.ferc1_tbl2dbf = {'f1_106_2009': 'F1_106_2009', 'f1_106a_2009': 'F1_106A_2009', 'f1_106b_2009': 'F1_106B_2009', 'f1_208_elc_dep': 'F1_208_ELC_DEP', 'f1_231_trn_stdycst': 'F1_231_TRN_STDYCST', 'f1_324_elc_expns': 'F1_324_ELC_EXPNS', 'f1_325_elc_cust': 'F1_325_ELC_CUST', 'f1_331_transiso': 'F1_331_TRANSISO', 'f1_338_dep_depl': 'F1_338_DEP_DEPL', 'f1_397_isorto_stl': 'F1_397_ISORTO_STL', 'f1_398_ancl_ps': 'F1_398_ANCL_PS', 'f1_399_mth_peak': 'F1_399_MTH_PEAK', 'f1_400_sys_peak': 'F1_400_SYS_PEAK', 'f1_400a_iso_peak': 'F1_400A_ISO_PEAK', 'f1_429_trans_aff': 'F1_429_TRANS_AFF', 'f1_acb_epda': 'F1_2', 'f1_accumdepr_prvsn': 'F1_3', 'f1_accumdfrrdtaxcr': 'F1_4', 'f1_adit_190_detail': 'F1_5', 'f1_adit_190_notes': 'F1_6', 'f1_adit_amrt_prop': 'F1_7', 'f1_adit_other': 'F1_8', 'f1_adit_other_prop': 'F1_9', 'f1_allowances': 'F1_10', 'f1_allowances_nox': 'F1_ALLOWANCES_NOX', 'f1_audit_log': 'F1_78', 'f1_bal_sheet_cr': 'F1_11', 'f1_capital_stock': 'F1_12', 'f1_cash_flow': 'F1_13', 'f1_cmmn_utlty_p_e': 'F1_14', 'f1_cmpinc_hedge': 'F1_CMPINC_HEDGE', 'f1_cmpinc_hedge_a': 'F1_CMPINC_HEDGE_A', 'f1_co_directors': 'F1_18', 'f1_codes_val': 'F1_76', 'f1_col_lit_tbl': 'F1_79', 'f1_comp_balance_db': 'F1_15', 'f1_construction': 'F1_16', 'f1_control_respdnt': 'F1_17', 'f1_cptl_stk_expns': 'F1_19', 'f1_csscslc_pcsircs': 'F1_20', 'f1_dacs_epda': 'F1_21', 'f1_dscnt_cptl_stk': 'F1_22', 'f1_edcfu_epda': 'F1_23', 'f1_elc_op_mnt_expn': 'F1_27', 'f1_elc_oper_rev_nb': 'F1_26', 'f1_elctrc_erg_acct': 'F1_24', 'f1_elctrc_oper_rev': 'F1_25', 'f1_electric': 'F1_28', 'f1_email': 'F1_EMAIL', 'f1_envrnmntl_expns': 'F1_29', 'f1_envrnmntl_fclty': 'F1_30', 'f1_footnote_data': 'F1_85', 'f1_footnote_tbl': 'F1_87', 'f1_fuel': 'F1_31', 'f1_general_info': 'F1_32', 'f1_gnrt_plant': 'F1_33', 'f1_hydro': 'F1_86', 'f1_ident_attsttn': 'F1_88', 'f1_important_chg': 'F1_34', 'f1_incm_stmnt_2': 'F1_35', 'f1_income_stmnt': 'F1_36', 'f1_leased': 'F1_90', 'f1_load_file_names': 'F1_80', 'f1_long_term_debt': 'F1_93', 'f1_misc_dfrrd_dr': 'F1_38', 'f1_miscgen_expnelc': 'F1_37', 'f1_mthly_peak_otpt': 'F1_39', 'f1_mtrl_spply': 'F1_40', 'f1_nbr_elc_deptemp': 'F1_41', 'f1_nonutility_prop': 'F1_42', 'f1_note_fin_stmnt': 'F1_43', 'f1_nuclear_fuel': 'F1_44', 'f1_officers_co': 'F1_45', 'f1_othr_dfrrd_cr': 'F1_46', 'f1_othr_pd_in_cptl': 'F1_47', 'f1_othr_reg_assets': 'F1_48', 'f1_othr_reg_liab': 'F1_49', 'f1_overhead': 'F1_50', 'f1_pccidica': 'F1_51', 'f1_plant': 'F1_92', 'f1_plant_in_srvce': 'F1_52', 'f1_privilege': 'F1_81', 'f1_pumped_storage': 'F1_53', 'f1_purchased_pwr': 'F1_54', 'f1_r_d_demo_actvty': 'F1_59', 'f1_reconrpt_netinc': 'F1_55', 'f1_reg_comm_expn': 'F1_56', 'f1_respdnt_control': 'F1_57', 'f1_respondent_id': 'F1_1', 'f1_retained_erng': 'F1_58', 'f1_rg_trn_srv_rev': 'F1_RG_TRN_SRV_REV', 'f1_row_lit_tbl': 'F1_84', 'f1_s0_checks': 'F1_S0_CHECKS', 'f1_s0_filing_log': 'F1_S0_FILING_LOG', 'f1_sale_for_resale': 'F1_61', 'f1_sales_by_sched': 'F1_60', 'f1_sbsdry_detail': 'F1_91', 'f1_sbsdry_totals': 'F1_62', 'f1_sched_lit_tbl': 'F1_77', 'f1_schedules_list': 'F1_63', 'f1_security': 'F1_SECURITY', 'f1_security_holder': 'F1_64', 'f1_slry_wg_dstrbtn': 'F1_65', 'f1_steam': 'F1_89', 'f1_substations': 'F1_66', 'f1_sys_error_log': 'F1_82', 'f1_taxacc_ppchrgyr': 'F1_67', 'f1_unique_num_val': 'F1_83', 'f1_unrcvrd_cost': 'F1_68', 'f1_utltyplnt_smmry': 'F1_69', 'f1_work': 'F1_70', 'f1_xmssn_adds': 'F1_71', 'f1_xmssn_elc_bothr': 'F1_72', 'f1_xmssn_elc_fothr': 'F1_73', 'f1_xmssn_line': 'F1_74', 'f1_xtraordnry_loss': 'F1_75'}
A dictionary mapping database table names (keys) to FERC Form 1 DBF files(w / o .DBF file extension)
(values).

Type dict

pudl.constants.ferc_accumulated_depreciation = row_number ... ferc_account_description 0 1 ... Balance Beginning of Year 1 3 ... (403) Depreciation Expense 2 4 ... (403.1) Depreciation Expense for Asset Retirem... 3 5 ... (413) Exp. of Elec. Plt. Leas. to Others 4 6 ... Transportation Expenses-Clearing 5 7 ... Other Clearing Accounts 6 8 ... Other Accounts (Specify, details in footnote): 7 9 ... Other Charges: 8 10 ... TOTAL Deprec. Prov for Year (Enter Total of li... 9 11 ... Net Charges for Plant Retired: 10 12 ... Book Cost of Plant Retired 11 13 ... Cost of Removal 12 14 ... Salvage (Credit) 13 15 ... TOTAL Net Chrgs. for Plant Ret. (Enter Total o... 14 16 ... Other Debit or Cr. Items (Describe, details in... 15 17 ... Other Charges 2 16 18 ... Book Cost or Asset Retirement Costs Retired 17 19 ... Balance End of Year (Enter Totals of lines 1, ... 18 20 ... Steam Production 19 21 ... Nuclear Production 20 22 ... Hydraulic Production-Conventional 21 23 ... Hydraulic Production-Pumped Storage 22 24 ... Other Production 23 25 ... Transmission 24 26 ... Distribution 25 27 ... Regional Transmission and Market Operation 26 28 ... General 27 29 ... TOTAL (Enter Total of lines 20 thru 28) [28 rows x 3 columns]
A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form
1 page 219, Accumulated Provision for Depreciation of electric utility plant(Account 108).

Type list

pudl.constants.ferc_electric_plant_accounts = row_number ... ferc_account_description 0 2.0 ... Intangible: Organization 1 3.0 ... Intangible: Franchises and consents 2 4.0 ... Intangible: Miscellaneous intangible plant 3 5.0 ... Subtotal: Intangible Plant 4 8.0 ... Steam production: Land and land rights 92 100.0 ... Electric plant in service (Major only) 93 101.0 ... Electric plant purchased 94 102.0 ... Electric plant sold 95 103.0 ... Experimental plant unclassified 96 104.0 ... TOTAL Electric Plant in Service [97 rows x 3 columns]
A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form
1 pages 204 - 207, Electric Plant in Service.

Type list

pudl.constants.files_dict_epaipm = {'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'transmission_single_epaipm': '*table_3-21*'}
A dictionary of EPA IPM tables and strings that files of those tables contain.

Type dict

8.10. pudl 213

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.constants.fuel_group_eia923 = ('coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas')
A tuple containing EIA 923 fuel groups.

Type tuple

pudl.constants.fuel_group_eia923_simple_map = {'coal': ['coal', 'petroleum coke'], 'gas': ['natural gas', 'other gas'], 'oil': ['petroleum']}
A dictionary mapping EIA 923 simple fuel types(“oil”, “coal”, “gas”) (keys) to fuel types (values).

Type dict

pudl.constants.fuel_type_aer_eia923 = {'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'SUN': 'Solar PV and thermal', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste'}
A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values).

Type dict

pudl.constants.fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc']
A list of strings from EIA 860 associated with fuel type coal.

Type list

pudl.constants.fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg']
A list of strings from EIA 860 associated with fuel type gas.

Type list

pudl.constants.fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro']
A list of strings from EIA 860 associated with hydro power.

Type list

pudl.constants.fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear']
A list of strings from EIA 860 associated with nuclear power.

Type list

pudl.constants.fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum']
A list of strings from EIA 860 associated with fuel type oil.

Type list

pudl.constants.fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other']
A list of strings from EIA 860 associated with fuel type other.

Type list

pudl.constants.fuel_type_eia860_simple_map = {'coal': ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'], 'gas': ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'], 'hydro': ['wat', 'hyc', 'hps', 'hydro'], 'nuclear': ['nuc', 'nuclear'], 'oil': ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'], 'other': ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'], 'solar': ['sun', 'solar'], 'waste': ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'], 'wind': ['wnd', 'wind', 'wt']}
A dictionary mapping EIA 860 fuel types (keys) to lists of strings associated with that fuel type (values).

Type dict

pudl.constants.fuel_type_eia860_solar_strings = ['sun', 'solar']
A list of strings from EIA 860 associated with solar power.

Type list

pudl.constants.fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www']
A list of strings from EIA 860 associated with fuel type waste.

Type list

pudl.constants.fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt']
A list of strings from EIA 860 associated with wind power.

Type list

pudl.constants.fuel_type_eia923 = {'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.'}
A dictionary mapping EIA 923 fuel type codes (keys) and fuel type names / descriptions (values).

214 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

Type dict

pudl.constants.fuel_type_eia923_boiler_fuel_coal_strings = ['ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc']
A list of strings from EIA 923 Boiler Fuel associated with fuel type coal.

Type list

pudl.constants.fuel_type_eia923_boiler_fuel_gas_strings = ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp']
A list of strings from EIA 923 Boiler Fuel associated with fuel type gas.

Type list

pudl.constants.fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker']
A list of strings from EIA 923 Boiler Fuel associated with fuel type oil.

Type list

pudl.constants.fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh']
A list of strings from EIA 923 Boiler Fuel associated with fuel type other.

Type list

pudl.constants.fuel_type_eia923_boiler_fuel_simple_map = {'coal': ['ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc'], 'gas': ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp'], 'oil': ['dfo', 'rfo', 'wo', 'jf', 'ker'], 'other': ['oth', 'pur', 'wh'], 'waste': ['ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']}
A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists of strings associated with that fuel type
(values).

Type dict

pudl.constants.fuel_type_eia923_boiler_fuel_waste_strings = ['ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']
A list of strings from EIA 923 Boiler Fuel associated with fuel type waste.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc']
The list of EIA 923 Generation Fuel strings associated with coal fuel.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_gas_strings = ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp']
The list of EIA 923 Generation Fuel strings associated with gas fuel.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_hydro_strings = ['wat']
The list of EIA 923 Generation Fuel strings associated with hydro power.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc']
The list of EIA 923 Generation Fuel strings associated with nuclear power.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker']
The list of EIA 923 Generation Fuel strings associated with oil fuel.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh']
The list of EIA 923 Generation Fuel strings associated with geothermal power.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_simple_map = {'coal': ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc'], 'gas': ['bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp'], 'hydro': ['wat'], 'nuclear': ['nuc'], 'oil': ['dfo', 'rfo', 'wo', 'jf', 'ker'], 'other': ['geo', 'mwh', 'oth', 'pur', 'wh'], 'solar': ['sun'], 'waste': ['ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'], 'wind': ['wnd']}
A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists of strings associated with that fuel type
(values).

8.10. pudl 215

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PUDL, Release 0.4.0

Type dict

pudl.constants.fuel_type_eia923_gen_fuel_solar_strings = ['sun']
The list of EIA 923 Generation Fuel strings associated with solar power.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_waste_strings = ['ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds']
The list of EIA 923 Generation Fuel strings associated with solid waste fuel.

Type list

pudl.constants.fuel_type_eia923_gen_fuel_wind_strings = ['wnd']
The list of EIA 923 Generation Fuel strings associated with wind power.

Type list

pudl.constants.fuel_units_eia923 = {'barrels': 'Barrels (for liquids)', 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)'}
A dictionary mapping EIA 923 fuel units (keys) to fuel unit descriptions (values).

Type dict

pudl.constants.glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn')
A dictionary of dictionaries containing EPA IPM tables (keys) and items for each table to be renamed along
with the replacement name (values).

Type dict

pudl.constants.keywords_by_data_source = {'eia860': ['electricity', 'electric', 'boiler', 'generator', 'plant', 'utility', 'fuel', 'coal', 'natural gas', 'prime mover', 'eia860', 'retirement', 'capacity', 'planned', 'proposed', 'energy', 'hydro', 'solar', 'wind', 'nuclear', 'form 860', 'eia', 'annual', 'gas', 'ownership', 'steam', 'turbine', 'combustion', 'combined cycle', 'eia', 'energy information administration'], 'eia923': ['fuel', 'boiler', 'generator', 'plant', 'utility', 'cost', 'price', 'natural gas', 'coal', 'eia923', 'energy', 'electricity', 'form 923', 'receipts', 'generation', 'net generation', 'monthly', 'annual', 'gas', 'fuel consumption', 'MWh', 'energy information administration', 'eia', 'mercury', 'sulfur', 'ash', 'lignite', 'bituminous', 'subbituminous', 'heat content'], 'epacems': ['epa', 'us', 'emissions', 'pollution', 'ghg', 'so2', 'co2', 'sox', 'nox', 'load', 'utility', 'electricity', 'plant', 'generator', 'unit', 'generation', 'capacity', 'output', 'power', 'heat content', 'mmbtu', 'steam', 'cems', 'continuous emissions monitoring system', 'hourlyenvironmental protection agency', 'ampd', 'air markets program data'], 'epaipm': ['epaipm', 'integrated planning'], 'ferc1': ['electricity', 'electric', 'utility', 'plant', 'steam', 'generation', 'cost', 'expense', 'price', 'heat content', 'ferc', 'form 1', 'federal energy regulatory commission', 'capital', 'accounting', 'depreciation', 'finance', 'plant in service', 'hydro', 'coal', 'natural gas', 'gas', 'opex', 'capex', 'accounts', 'investment', 'capacity'], 'ferc714': ['electricity', 'electric', 'utility', 'planning area', 'form 714', 'balancing authority', 'demand', 'system lambda', 'ferc', 'federal energy regulatory commission', 'hourly', 'generation', 'interchange', 'forecast', 'load', 'adjacency', 'plants'], 'pudl': ['us', 'electricity']}
A dictionary of datasets (keys) and keywords (values).

Type dict

pudl.constants.licenses = {'cc-by-4.0': {'name': 'CC-BY-4.0', 'path': 'https://creativecommons.org/licenses/by/4.0/', 'title': 'Creative Commons Attribution 4.0'}, 'us-govt': {'name': 'other-pd', 'path': 'http://www.usa.gov/publicdomain/label/1.0/', 'title': 'U.S. Government Work'}}
A dictionary of dictionaries containing license types and their attributes.

Type dict

pudl.constants.need_fix_inting = {'hourly_emissions_epacems': ('facility_id', 'unit_id_epa'), 'plants_hydro_ferc1': ('construction_year', 'installation_year'), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_steam_ferc1': ('construction_year', 'installation_year')}
A dictionary containing tables (keys) and column names (values) containing integer - type columns whose null
values need fixing.

Type dict

pudl.constants.nerc_region = {'ASCC': 'Alaska Systems Coordinating Council', 'FRCC': 'Florida Reliability Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'NPCC': 'Northeast Power Coordinating Council', 'RFC': 'Reliability First Corporation', 'SERC': 'SERC Reliability Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'WECC': 'Western Electricity Coordinating Council'}
A dictionary mapping NERC Region abbreviations (keys) to NERC Region names (values).

Type dict

pudl.constants.output_formats = ['sqlite', 'parquet', 'datapkg']
A list of types of PUDL output formats.

Type list

pudl.constants.prime_movers = ['steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine']
A list of the types of prime movers

Type list

pudl.constants.prime_movers_eia923 = {'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CC': 'Combined-Cycle, Total Unit', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'OT': 'Other', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'PV': 'Photovoltaic', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'WS': 'Wind Turbine, Offshore', 'WT': 'Wind Turbine, Onshore'}
A dictionary mapping EIA 923 prime mover codes (keys) and prime mover names / descriptions (values).

Type dict

216 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

pudl.constants.pudl_tables = {'eia860': ('boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860'), 'eia861': ('service_territory_eia861', 'balancing_authority_eia861', 'sales_eia861', 'advanced_metering_infrastructure_eia861', 'demand_response_eia861', 'demand_side_management_eia861', 'distributed_generation_eia861', 'distribution_systems_eia861', 'dynamic_pricing_eia861', 'energy_efficiency_eia861', 'green_pricing_eia861', 'mergers_eia861', 'net_metering_eia861', 'non_net_metering_eia861', 'operational_data_eia861', 'reliability_eia861', 'utility_data_eia861'), 'eia923': ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923'), 'epacems': 'hourly_emissions_epacems', 'epaipm': ('transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm'), 'ferc1': ('fuel_ferc1', 'plants_steam_ferc1', 'plants_small_ferc1', 'plants_hydro_ferc1', 'plants_pumped_storage_ferc1', 'purchased_power_ferc1', 'plant_in_service_ferc1'), 'ferc714': ('respondent_id_ferc714', 'id_certification_ferc714', 'gen_plants_ba_ferc714', 'demand_monthly_ba_ferc714', 'net_energy_load_ba_ferc714', 'adjacency_ba_ferc714', 'interchange_ba_ferc714', 'lambda_hourly_ba_ferc714', 'lambda_description_ferc714', 'description_pa_ferc714', 'demand_forecast_pa_ferc714', 'demand_hourly_pa_ferc714'), 'glue': ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn')}
A dictionary containing data sources (keys) and the list of associated tables from that datasource that can be
pulled into PUDL (values).

Type dict

pudl.constants.rto_iso = {'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'ISO-NE': 'ISO New England', 'MISO': 'Midcontinent ISO', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool'}
A dictionary containing ISO/RTO abbreviations (keys) and names (values)

Type dict

pudl.constants.sector_eia = {'1': 'Electric Utility', '2': 'NAICS-22 Non-Cogen', '3': 'NAICS-22 Cogen', '4': 'Commercial NAICS Non-Cogen', '5': 'Commercial NAICS Cogen', '6': 'Industrial NAICS Non-Cogen', '7': 'Industrial NAICS Cogen'}
A dictionary mapping EIA numeric codes (keys) to EIA’s internal consolidated NAICS sectors (values).

Type dict

pudl.constants.state_tz_approx = {'AB': 'America/Edmonton', 'AK': 'US/Alaska', 'AL': 'US/Central', 'AR': 'US/Central', 'AS': 'Pacific/Pago_Pago', 'AZ': 'US/Arizona', 'BC': 'America/Vancouver', 'CA': 'US/Pacific', 'CO': 'US/Mountain', 'CT': 'US/Eastern', 'DC': 'US/Eastern', 'DE': 'US/Eastern', 'FL': 'US/Eastern', 'GA': 'US/Eastern', 'GU': 'Pacific/Guam', 'HI': 'US/Hawaii', 'IA': 'US/Central', 'ID': 'US/Mountain', 'IL': 'US/Central', 'IN': 'US/Eastern', 'KS': 'US/Central', 'KY': 'US/Eastern', 'LA': 'US/Central', 'MA': 'US/Eastern', 'MB': 'America/Winnipeg', 'MD': 'US/Eastern', 'ME': 'US/Eastern', 'MI': 'America/Detroit', 'MN': 'US/Central', 'MO': 'US/Central', 'MP': 'Pacific/Saipan', 'MS': 'US/Central', 'MT': 'US/Mountain', 'NB': 'America/Moncton', 'NC': 'US/Eastern', 'ND': 'US/Central', 'NE': 'US/Central', 'NH': 'US/Eastern', 'NJ': 'US/Eastern', 'NL': 'America/St_Johns', 'NM': 'US/Mountain', 'NS': 'America/Halifax', 'NT': 'America/Yellowknife', 'NU': 'America/Iqaluit', 'NV': 'US/Pacific', 'NY': 'US/Eastern', 'OH': 'US/Eastern', 'OK': 'US/Central', 'ON': 'America/Toronto', 'OR': 'US/Pacific', 'PA': 'US/Eastern', 'PE': 'America/Halifax', 'PR': 'America/Puerto_Rico', 'QC': 'America/Montreal', 'RI': 'US/Eastern', 'SC': 'US/Eastern', 'SD': 'US/Central', 'SK': 'America/Regina', 'TN': 'US/Central', 'TX': 'US/Central', 'UT': 'US/Mountain', 'VA': 'US/Eastern', 'VI': 'America/Puerto_Rico', 'VT': 'US/Eastern', 'WA': 'US/Pacific', 'WI': 'US/Central', 'WV': 'US/Eastern', 'WY': 'US/Mountain', 'YT': 'America/Whitehorse'}
A dictionary containing US and Canadian state/territory abbreviations (keys) and timezones (values)

Type dict

pudl.constants.table_map_ferc1_pudl = {'fuel_ferc1': 'f1_fuel', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_steam_ferc1': 'f1_steam', 'purchased_power_ferc1': 'f1_purchased_pwr'}
A dictionary mapping PUDL table names (keys) to the corresponding FERC Form 1 DBF table names.

Type dict

pudl.constants.transport_modes_eia923 = {'GL': 'Great Lakes: Shipments of coal moved to consumers via the Great Lakes. These shipments are moved via the Great Lakes coal loading docks, which are identified by name and location as follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; KCBX Terminals Inc., Chicago, Illinois; Superior Midwest Energy Terminal, Superior, Wisconsin', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline', 'RR': 'Rail: Shipments of fuel moved to consumers by rail (private or public/commercial). Included is coal hauled to or away from a railroad siding by truck if the truck did not use public roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. Not included are shipments to Great Lakes coal loading docks, tidewater piers, or coastal ports.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers by slurry pipeline.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers by tramway or conveyor.', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to Tidewater Piers and Coastal Ports for further shipments to consumers via coastal water or ocean. The Tidewater Piers and Coastal Ports are identified by name and location as follows: Dominion Terminal Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, Alabama; IC Railmarine Terminal, Convent, Louisiana; International Marine Terminals, Myrtle Grove, Louisiana; Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, Inc., Los Angeles, California; Levin-Richmond Terminal Corp., Richmond, California; Baltimore Terminal, Baltimore, Maryland; Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, Newport News, Virginia; Electro-Coal Transport Corp., Davant, Louisiana', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. Not included is fuel hauled to or away from a railroad siding by truck on non-public roads.', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. Not included is fuel hauled to or away from a railroad siding by truck on non-public roads.'}
A dictionary mapping primary and secondary transportation mode codes (keys) to descriptions (values).

Type dict

pudl.constants.us_states = {'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming'}
A dictionary containing US state abbreviations (keys) and names (values)

Type dict

pudl.constants.working_partitions = {'eia860': {'years': (2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'eia860m': {'year_month': '2020-11'}, 'eia861': {'years': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'eia923': {'years': (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'epacems': {'states': ('AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY'), 'years': (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020)}, 'ferc1': {'years': (1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)}, 'ferc714': {}}
A dictionary of data sources (keys) and dictionaries (values) of names of partition type (sub-key) and paritions
(sub-value) containing the paritions such as tuples of years for each data source that are able to be ingested into
PUDL.

Type dict

pudl.constants.xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps'
The location of the xlsx maps within the PUDL package data.

Type string

pudl.dfc module

Implemenation of DataFrameCollection.

Pudl ETL needs to exchange collections of named tables (pandas.DataFrame) between ETL tasks and the volume of
data contained in these tables can far exceed the memory of a single machine.

Prefect framework currently caches task results in-memory and this can lead to out of memory problem, especially
when dealing with large datasets (e.g. during the full data release). To alleviate this problem, prefect team recommends
passing “references” to actual data that is stored separately.

DataFrameCollection does just this. It keeps lightweight references to named data frames and stores the data either
locally or on cloud storage (we use pandas.to_pickle method which supports these various storage backends out of the
box).

8.10. pudl 217

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Think of DataFrameCollection as a dict-like structure backed by a disk.

class pudl.dfc.DataFrameCollection(storage_path: Optional[str] = None, **data_frames:
Dict[str, pandas.core.frame.DataFrame])

Bases: object

This class can hold named pandas.DataFrame that are stored on disk or GCS.

This should be used whenever dictionaries of named pandas.DataFrames are passed between prefect tasks. Due
to the implicit in-memory caching of task results it is important to keep the in-memory footprint of the exchanged
data small.

This wrapper achieves this by maintaining references to tables that themselves are stored on a persistent medium
such as local disk of GCS bucket.

This is intended to be used from within prefect flows and new instances can be configured by setting relevant
prefect.context variables.

add_reference(name: str, table_id: uuid.UUID)
Adds reference to a named dataframe to this collection.

This assumes that the data is already present on disk.

static from_dict(d: Dict[str, pandas.core.frame.DataFrame])
Constructs new DataFrameCollection from dataframe dictionary.

get(name: str)→ pandas.core.frame.DataFrame
Returns the content of the named dataframe.

get_table_names()→ List[str]
Returns sorted list of dataframes that are contained in this collection.

items()→ Iterator[Tuple[str, pandas.core.frame.DataFrame]]
Iterates over table names and the corresponding pd.DataFrame objects.

references()→ Iterator[Tuple[str, uuid.UUID]]
Returns a set-like object with (name, table_id) tuples.

store(name: str, data: pandas.core.frame.DataFrame)
Adds named dataframe to collection and stores its contents on disk.

to_dict()→ Dict[str, pandas.core.frame.DataFrame]
Loads the entire collection to memory as a dictionary.

union(*others)
Returns new DataFrameCollection that is union of self and others.

update(other)
Adds references to tables from the other DataFrameCollection.

exception pudl.dfc.TableExistsError
Bases: Exception

The table already exists.

Either the table already exists in the DataFrameCollection when it is added or the file containing the serialized
form is found on disk.

218 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

PUDL, Release 0.4.0

pudl.etl module

Run the PUDL ETL Pipeline.

The PUDL project integrates several different public data sets into well normalized data packages allowing easier
access and interaction between all each dataset. This module coordinates the extract/transfrom/load process for data
from:

• US Energy Information Agency (EIA): - Form 860 (eia860) - Form 923 (eia923)

• US Federal Energy Regulatory Commission (FERC): - Form 1 (ferc1)

• US Environmental Protection Agency (EPA): - Continuous Emissions Monitory System (epacems) - Integrated
Planning Model (epaipm)

pudl.etl.check_for_bad_tables(try_tables, dataset)
Check for bad data tables.

pudl.etl.check_for_bad_years(try_years, dataset)
Check for bad data years.

pudl.etl.etl(datapkg_settings, output_dir, pudl_settings, ds_kwargs)
Run ETL process for data package specified by datapkg_settings dictionary.

This is the coordinating function for generating all of the CSV’s for a data package. For each of the datasets
enumerated in the datapkg_settings, this function runs the dataset specific ETL function. Along the way, we
are accumulating which tables have been loaded. This is useful for generating the metadata associated with the
package.

Parameters

• datapkg_settings (dict) – Validated ETL parameters for a single datapackage, orig-
inally read in from the PUDL ETL input file.

• output_dir (path-like) – The individual datapackage directory, which will contain
the datapackage.json file and the data directory.

• pudl_settings (dict) – a dictionary describing paths to various resources and outputs.

• ds_kwargs (dict) – named-arguments to pass to Datastore constructor when creating
new instance. This contains values derived from command-line flags that control how
caching layers operate.

Returns The names of the tables included in the output datapackage.

Return type list

pudl.etl.generate_datapkg_bundle(datapkg_bundle_settings, pudl_settings, dat-
apkg_bundle_name, datapkg_bundle_doi=None, clob-
ber=False, use_local_cache: bool = True, gcs_cache_path:
Optional[str] = None)

Coordinate the generation of data packages.

For each bundle of packages laid out in the package_settings, this function generates data packages. First, the
settings are validated (which runs through each of the settings listed in the package_settings). Then for each of
the packages, run through the etl (extract, transform, load) functions, which generates CSVs. Then the metadata
for the packages is generated by pulling from the metadata (which is a json file containing the schema for all of
the possible pudl tables).

Parameters

8.10. pudl 219

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

• datapkg_bundle_settings (iterable) – a list of dictionaries. Each item in the
list corresponds to a data package. Each data package’s dictionary contains the arguements
for its ETL function.

• pudl_settings (dict) – a dictionary filled with settings that mostly describe paths to
various resources and outputs.

• datapkg_bundle_name (str) – name of directory you want the bundle of data pack-
ages to live.

• clobber (bool) – If True and there is already a directory with data packages with the
datapkg_bundle_name, the existing data packages will be deleted and new data packages
will be generated in their place.

• use_local_cache (bool) – controls whether datastore should be using local file cache.

• gcs_cache_path (str) – controls whether datastore should be using Google Cloud
Storage based cache.

Returns A dictionary with datapackage names as the keys, and Python dictionaries representing
tabular datapackage resource descriptors as the values, one per datapackage that was generated
as part of the bundle.

Return type dict

pudl.etl.get_flattened_etl_parameters(datapkg_bundle_settings)
Compile flattened etl parameters.

The datapkg_bundle_settings is a list of dictionaries with the specific etl parameters for each dataset nested
inside the dictionary. This function extracts the years, states, tables, etc. from the list datapackage settings and
compiles them into one dictionary.

Parameters datapkg_bundle_settings (iterable) – a list of data package parameters,
with each element of the list being a dictionary specifying the data to be packaged.

Returns dictionary of etl parameters with etl parameter names (keys) (i.e. ferc1_years,
eia923_years) and etl parameters (values) (i.e. a list of years for ferc1_years)

Return type dict

pudl.etl.validate_params(datapkg_bundle_settings, pudl_settings)
Enforce validity of ETL parameters found in datapackage bundle settings.

For each enumerated data package in the datapkg_bundle_settings, this function checks to ensure the input
parameters for each of the datasets are consistent with the known input options. Most of those options are
enumerated in pudl.constants. For each dataset, the years, states, tables, etc. are checked to ensure that they are
valid and present. If parameters are not valid, assertions will be raised.

There is some options that have default options or are hard coded during validation. Tables will typically be
defaulted to all of the tables if they aren’t set. CEMS is always going to be partitioned by year and state. This
means we have functinoally removed the option to not partition or partition another way.

Parameters

• datapkg_bundle_settings (iterable) – a list of data package parameters, with
each element of the list being a dictionary specifying the data to be packaged.

• pudl_settings (dict) – a dictionary describing paths to various resources and outputs.

Returns

validated list of data package parameters, with each element of the list being a dictionary
specitying the data to be packaged.

220 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Return type iterable

pudl.helpers module

General utility functions that are used in a variety of contexts.

The functions in this module are used in various stages of the ETL and post-etl processes. They are usually not dataset
specific, but not always. If a function is designed to be used as a general purpose tool, applicable in multiple scenarios,
it should probably live here. There are lost of transform type functions in here that help with cleaning and restructing
dataframes.

pudl.helpers.add_fips_ids(df, state_col='state', county_col='county', vintage=2015)
Add State and County FIPS IDs to a dataframe.

pudl.helpers.clean_eia_counties(df, fixes, state_col='state', county_col='county')
Replace non-standard county names with county nmes from US Census.

pudl.helpers.clean_merge_asof(left, right, left_on='report_date', right_on='report_date', by={})
Merge two dataframes having different time report_date frequencies.

We often need to bring together data which is reported on a monthly basis, and entity attributes that are reported
on an annual basis. The pandas.merge_asof() is designed to do this, but requires that dataframes are
sorted by the merge keys (left_on, right_on, and by.keys() here). We also need to make sure that
all merge keys have identical data types in the two dataframes (e.g. plant_id_eia needs to be a nullable
integer in both dataframes, not a python int in one, and a nullable pandas.Int64Dtype() in the other).
Note that pandas.merge_asof() performs a left merge, so the higher frequency dataframe must be the
left dataframe.

We also force both left_on and right_on to be a Datetime using pandas.to_datetime() to allow
merging dataframes having integer years with those having datetime columns.

Because pandas.merge_asof() searches backwards for the first matching date, this function only works if
the less granular dataframe uses the convention of reporting the first date in the time period for which it reports.
E.g. annual dataframes need to have January 1st as the date. This is what happens by defualt if only a year or
year-month are provided to pandas.to_datetime() as strings.

Parameters

• left (pandas.DataFrame) – The higher frequency “data” dataframe. Typically
monthly in our use cases. E.g. generation_eia923. Must contain report_date
and any columns specified in the by argument.

• right (pandas.DataFrame) – The lower frequency “attribute” dataframe. Typically
annual in our uses cases. E.g. generators_eia860. Must contain report_date and
any columns specified in the by argument.

• left_on (str) – Column in left to merge on using merge_asof. Default is
report_date. Must be convertible to a Datetime using pandas.to_datetime()

• right_on (str) – Column in right to merge on using merge_asof. Default is
report_date. Must be convertible to a Datetime using pandas.to_datetime()

• by (dict) – A dictionary enumerating any columns to merge on other than
report_date. Typically ID columns like plant_id_eia, generator_id or
boiler_id. The keys of the dictionary are the names of the columns, and the values
are their data source, as defined in pudl.constants (e.g. ferc1 or eia). The data
source is used to look up the column’s canonical data type.

8.10. pudl 221

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://docs.python.org/3/library/stdtypes.html#dict

PUDL, Release 0.4.0

Returns Merged contents of left and right input dataframes. Will be sorted by left_on and any
columns specified in by. See documentation for pandas.merge_asof() to understand how
this kind of merge works.

Return type pandas.DataFrame

Raises

• ValueError – if left_on or right_on columns are missing from their respective
input dataframes.

• ValueError – if any of the labels referenced in by are missing from either the left or
right dataframes.

pudl.helpers.cleanstrings(df, columns, stringmaps, unmapped=None, simplify=True)
Consolidate freeform strings in several dataframe columns.

This function will consolidate freeform strings found in columns into simplified categories, as defined by
stringmaps. This is useful when a field contains many different strings that are really meant to represent a
finite number of categories, e.g. a type of fuel. It can also be used to create simplified categories that apply to
similar attributes that are reported in various data sources from different agencies that use their own taxonomies.

The function takes and returns a pandas.DataFrame, making it suitable for use with the pandas.DataFrame.
pipe() method in a chain.

Parameters

• df (pandas.DataFrame) – the DataFrame containing the string columns to be cleaned
up.

• columns (list) – a list of string column labels found in the column index of df. These
are the columns that will be cleaned.

• stringmaps (list) – a list of dictionaries. The keys of these dictionaries are strings,
and the values are lists of strings. Each dictionary in the list corresponds to a column in
columns. The keys of the dictionaries are the values with which every string in the list of
values will be replaced.

• unmapped (str, None) – the value with which strings not found in the stringmap dic-
tionary will be replaced. Typically the null string ‘’. If None, then strings found in the
columns but not in the stringmap will be left unchanged.

• simplify (bool) – If true, strip whitespace, remove duplicate whitespace, and force
lower-case on both the string map and the values found in the columns to be cleaned. This
can reduce the overall number of string values that need to be tracked.

Returns The function returns a new DataFrame containing the cleaned strings.

Return type pandas.DataFrame

pudl.helpers.cleanstrings_series(col, str_map, unmapped=None, simplify=True)
Clean up the strings in a single column/Series.

Parameters

• col (pandas.Series) – A pandas Series, typically a single column of a dataframe,
containing the freeform strings that are to be cleaned.

• str_map (dict) – A dictionary of lists of strings, in which the keys are the simplified
canonical strings, witch which each string found in the corresponding list will be replaced.

• unmapped (str) – A value with which to replace any string found in col that is not found
in one of the lists of strings in map. Typically the null string ‘’. If None, these strings will
not be replaced.

222 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge_asof.html#pandas.merge_asof
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

• simplify (bool) – If True, strip and compact whitespace, and lowercase all strings in
both the list of values to be replaced, and the values found in col. This can reduce the
number of strings that need to be kept track of.

Returns The cleaned up Series / column, suitable for replacing the original messy column in a
pandas.DataFrame.

Return type pandas.Series

pudl.helpers.cleanstrings_snake(df, cols)
Clean the strings in a columns in a dataframe with snake case.

Parameters

• df (panda.DataFrame) – original dataframe.

• cols (list) – list of columns in df to apply snake case to.

pudl.helpers.convert_cols_dtypes(df, data_source, name=None)
Convert the data types for a dataframe.

This function will convert a PUDL dataframe’s columns to the correct data type. It uses a dictionary in con-
stants.py called column_dtypes to assign the right type. Within a given data source (e.g. eia923, ferc1) each
column name is assumed to always have the same data type whenever it is found.

Boolean type conversions created a special problem, because null values in boolean columns get converted to
True (which is bonkers!). . . we generally want to preserve the null values and definitely don’t want them to be
True, so we are keeping those columns as objects and preforming a simple mask for the boolean columns.

The other exception in here is with the utility_id_eia column. It is often an object column of strings. All of
the strings are numbers, so it should be possible to convert to pandas.Int32Dtype() directly, but it is
requiring us to convert to int first. There will probably be other columns that have this problem. . . and hopefully
pandas just enables this direct conversion.

Parameters

• df (pandas.DataFrame) – dataframe with columns that appear in the PUDL tables.

• data_source (str) – the name of the datasource (eia, ferc1, etc.)

• name (str) – name of the table (for logging only!)

Returns a dataframe with columns as specified by the pudl.constants column_dtypes dic-
tionary.

Return type pandas.DataFrame

pudl.helpers.convert_dfs_dict_dtypes(dfs_dict, data_source)
Convert the data types of a dictionary of dataframes.

This is a wrapper for pudl.helpers.convert_cols_dtypes() which loops over an entire dictionary
of dataframes, assuming they are all from the specified data source, and appropriately assigning data types to
each column based on the data source specific type map stored in pudl.constants

pudl.helpers.convert_to_date(df, date_col='report_date', year_col='report_year',
month_col='report_month', day_col='report_day', month_value=1,
day_value=1)

Convert specified year, month or day columns into a datetime object.

If the input date_col already exists in the input dataframe, then no conversion is applied, and the original
dataframe is returned unchanged. Otherwise the constructed date is placed in that column, and the columns
which were used to create the date are dropped.

Parameters

8.10. pudl 223

https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• df (pandas.DataFrame) – dataframe to convert

• date_col (str) – the name of the column you want in the output.

• year_col (str) – the name of the year column in the original table.

• month_col (str) – the name of the month column in the original table.

• day_col – the name of the day column in the original table.

• month_value (int) – generated month if no month exists.

• day_value (int) – generated day if no month exists.

Returns A DataFrame in which the year, month, day columns values have been converted into
datetime objects.

Return type pandas.DataFrame

Todo: Update docstring.

pudl.helpers.count_records(df, cols, new_count_col_name)
Count the number of unique records in group in a dataframe.

Parameters

• df (panda.DataFrame) – dataframe you would like to groupby and count.

• cols (iterable) – list of columns to group and count by.

• new_count_col_name (string) – the name that will be assigned to the column that
will contain the count.

Returns dataframe containing only cols and new_count_col_name.

Return type pandas.DataFrame

pudl.helpers.download_zip_url(url, save_path, chunk_size=128)
Download and save a Zipfile locally.

Useful for acquiring and storing non-PUDL data locally.

Parameters

• url (str) – The URL from which to download the Zipfile

• save_path (pathlib.Path) – The location to save the file.

• chunk_size (int) – Data chunk in bytes to use while downloading.

Returns None

pudl.helpers.drop_tables(engine, clobber=False)
Drops all tables from a SQLite database.

Creates an sa.schema.MetaData object reflecting the structure of the database that the passed in engine refers
to, and uses that schema to drop all existing tables.

Todo: Treat DB connection as a context manager (with/as).

Parameters engine (sa.engine.Engine) – An SQL Alchemy SQLite database Engine point-
ing at an exising SQLite database to be deleted.

224 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int

PUDL, Release 0.4.0

Returns None

pudl.helpers.fillna_w_rolling_avg(df_og, group_cols, data_col, window=12, **kwargs)
Filling NaNs with a rolling average.

Imputes null values from a dataframe on a rolling monthly average. To note, this was designed to work with the
PudlTabl object’s tables.

Parameters

• df_og (pandas.DataFrame) – Original dataframe. Must have group_cols column, a
data_col column and a ‘report_date’ column.

• group_cols (iterable) – a list of columns to groupby.

• data_col (str) – the name of the data column.

• window (int) – window from pandas.Series.rolling

• kwargs – Additional arguments to pass to pandas.Series.rolling.

Returns dataframe with nulls filled in.

Return type pandas.DataFrame

pudl.helpers.find_timezone(*, lng=None, lat=None, state=None, strict=True)
Find the timezone associated with the a specified input location.

Note that this function requires named arguments. The names are lng, lat, and state. lng and lat must be
provided, but they may be NA. state isn’t required, and isn’t used unless lng/lat are NA or timezonefinder can’t
find a corresponding timezone.

Timezones based on states are imprecise, so it’s far better to use lng/lat if possible. If strict is True, state will not
be used. More on state-to-timezone conversion here: https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.
S._state_and_territory

Parameters

• lng (int or float in [-180,180]) – Longitude, in decimal degrees

• lat (int or float in [-90, 90]) – Latitude, in decimal degrees

• state (str) – Abbreviation for US state or Canadian province

• strict (bool) – Raise an error if no timezone is found?

Returns The timezone (as an IANA string) for that location.

Return type str

Todo: Update docstring.

pudl.helpers.fix_eia_na(df)
Replace common ill-posed EIA NA spreadsheet values with np.nan.

Currently replaces empty string, single decimal points with no numbers, and any single whitespace character
with np.nan.

Parameters df (pandas.DataFrame) – The DataFrame to clean.

Returns The cleaned DataFrame.

Return type pandas.DataFrame

8.10. pudl 225

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory
https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

pudl.helpers.fix_int_na(df, columns, float_na=nan, int_na=- 1, str_na='')
Convert NA containing integer columns from float to string.

Numpy doesn’t have a real NA value for integers. When pandas stores integer data which has NA values, it
thus upcasts integers to floating point values, using np.nan values for NA. However, in order to dump some of
our dataframes to CSV files for use in data packages, we need to write out integer formatted numbers, with
empty strings as the NA value. This function replaces np.nan values with a sentinel value, converts the column
to integers, and then to strings, finally replacing the sentinel value with the desired NA string.

This is an interim solution – now that pandas extension arrays have been implemented, we need to go back
through and convert all of these integer columns that contain NA values to Nullable Integer types like Int64.

Parameters

• df (pandas.DataFrame) – The dataframe to be fixed. This argument allows method
chaining with the pipe() method.

• columns (iterable of strings) – A list of DataFrame column labels indicating
which columns need to be reformatted for output.

• float_na (float) – The floating point value to be interpreted as NA and replaced in col.

• int_na (int) – Sentinel value to substitute for float_na prior to conversion of the column
to integers.

• str_na (str) – sa.String value to substitute for int_na after the column has been converted
to strings.

Returns a new DataFrame, with the selected columns converted to strings that look like integers,
compatible with the postgresql COPY FROM command.

Return type df (pandas.DataFrame)

pudl.helpers.fix_leading_zero_gen_ids(df)
Remove leading zeros from EIA generator IDs which are numeric strings.

If the DataFrame contains a column named generator_id then that column will be cast to a string, and any
all numeric value with leading zeroes will have the leading zeroes removed. This is necessary because in some
but not all years of data, some of the generator IDs are treated as integers in the Excel spreadsheets published
by EIA, so the same generator may show up with the ID “0001” and “1” in different years.

Alphanumeric generator IDs with leadings zeroes are not affected, as we found no instances in which an al-
phanumeric generator ID appeared both with and without leading zeroes.

Parameters df (pandas.DataFrame) – DataFrame, presumably containing a column named
generator_id (otherwise no action will be taken.)

Returns pandas.DataFrame

pudl.helpers.generate_rolling_avg(df, group_cols, data_col, window, **kwargs)
Generate a rolling average.

For a given dataframe with a report_date column, generate a monthly rolling average and use this rolling
average to impute missing values.

Parameters

• df (pandas.DataFrame) – Original dataframe. Must have group_cols column, a
data_col column and a report_date column.

• group_cols (iterable) – a list of columns to groupby.

• data_col (str) – the name of the data column.

• window (int) – window from pandas.Series.rolling().

226 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PUDL, Release 0.4.0

• kwargs – Additional arguments to pass to pandas.Series.rolling().

Returns pandas.DataFrame

pudl.helpers.get_pudl_dtype(col, data_source)
Look up a column’s canonical data type based on its PUDL data source.

pudl.helpers.get_pudl_dtypes(col_source_dict)
Look up canonical PUDL data types for columns based on data sources.

pudl.helpers.get_working_eia_dates()
Get all working EIA dates as a DatetimeIndex.

pudl.helpers.is_doi(doi)
Determine if a string is a valid digital object identifier (DOI).

Function simply checks whether the offered string matches a regular expresssion – it doesn’t check whether the
DOI is actually registered with the relevant authority.

Parameters doi (str) – String to validate.

Returns True if doi matches the regex for valid DOIs, False otherwise.

Return type bool

pudl.helpers.iterate_multivalue_dict(**kwargs)
Make dicts from dict with main dict key and one value of main dict.

pudl.helpers.merge_dicts(list_of_dicts)
Merge multipe dictionaries together.

Given any number of dicts, shallow copy and merge into a new dict, precedence goes to key value pairs in latter
dicts.

Parameters dict_args (list) – a list of dictionaries.

Returns dict

pudl.helpers.month_year_to_date(df)
Convert all pairs of year/month fields in a dataframe into Date fields.

This function finds all column names within a dataframe that match the regular expression ‘_month$’ and
‘_year$’, and looks for pairs that have identical prefixes before the underscore. These fields are assumed to
describe a date, accurate to the month. The two fields are used to construct a new _date column (having the
same prefix) and the month/year columns are then dropped.

Todo: This function needs to be combined with convert_to_date, and improved: * find and use a _day$ column
as well * allow specification of default month & day values, if none are found. * allow specification of lists of
year, month, and day columns to be combined, rather than automataically finding all the matching ones. * Do
the Right Thing when invalid or NA values are encountered.

Parameters df (pandas.DataFrame) – The DataFrame in which to convert year/months fields
to Date fields.

Returns A DataFrame in which the year/month fields have been converted into Date fields.

Return type pandas.DataFrame

pudl.helpers.oob_to_nan(df, cols, lb=None, ub=None)
Set non-numeric values and those outside of a given rage to NaN.

Parameters

8.10. pudl 227

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

• df (pandas.DataFrame) – The dataframe containing values to be altered.

• cols (iterable) – Labels of the columns whose values are to be changed.

• lb – (number): Lower bound, below which values are set to NaN. If None, don’t use a
lower bound.

• ub – (number): Upper bound, below which values are set to NaN. If None, don’t use an
upper bound.

Returns The altered DataFrame.

Return type pandas.DataFrame

pudl.helpers.organize_cols(df, cols)
Organize columns into key ID & name fields & alphabetical data columns.

For readability, it’s nice to group a few key columns at the beginning of the dataframe (e.g. report_year or
report_date, plant_id. . .) and then put all the rest of the data columns in alphabetical order.

Parameters

• df – The DataFrame to be re-organized.

• cols – The columns to put first, in their desired output ordering.

Returns A dataframe with the same columns as the input DataFrame df, but with cols first, in the
same order as they were passed in, and the remaining columns sorted alphabetically.

Return type pandas.DataFrame

pudl.helpers.prep_dir(dir_path, clobber=False)
Create (or delete and recreate) a directory.

Parameters

• dir_path (path-like) – path to the directory that you are trying to clean and prepare.

• clobber (bool) – If True and dir_path exists, it will be removed and replaced with a new,
empty directory.

Raises FileExistsError – if a file or directory already exists at dir_path.

Returns Path to the created directory.

Return type pathlib.Path

pudl.helpers.simplify_columns(df)
Simplify column labels for use as snake_case database fields.

All columns will be re-labeled by: * Replacing all non-alphanumeric characters with spaces. * Forcing all letters
to be lower case. * Compacting internal whitespace to a single ” “. * Stripping leading and trailing whitespace.
* Replacing all remaining whitespace with underscores.

Parameters df (pandas.DataFrame) – The DataFrame to clean.

Returns The cleaned DataFrame.

Return type pandas.DataFrame

Todo: Update docstring.

pudl.helpers.simplify_strings(df, columns)
Simplify the strings contained in a set of dataframe columns.

228 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#FileExistsError
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

PUDL, Release 0.4.0

Performs several operations to simplify strings for comparison and parsing purposes. These include removing
Unicode control characters, stripping leading and trailing whitespace, using lowercase characters, and compact-
ing all internal whitespace to a single space.

Leaves null values unaltered. Casts other values with astype(str).

Parameters

• df (pandas.DataFrame) – DataFrame whose columns are being cleaned up.

• columns (iterable) – The labels of the string columns to be simplified.

Returns The whole DataFrame that was passed in, with the string columns cleaned up.

Return type pandas.DataFrame

pudl.helpers.zero_pad_zips(zip_series, n_digits)
Retain prefix zeros in zipcodes.

Parameters

• zip_series (pd.Series) – series containing the zipcode values.

• n_digits (int) – zipcode length (likely 4 or 5 digits).

Returns a series containing zipcodes with their prefix zeros intact and invalid zipcodes rendered as
na.

Return type pandas.Series

pudl.validate module

PUDL data validation functions and test case specifications.

What defines a data validation?

• What data are we checking? * What table or output does it come from? * What selection criteria do we
apply to that table or output?

• What are we checking it against? * Itself (helps validate that the tests themselves are working) * A
processed version of itself (aggregation or derived values) * A hard-coded external standard (e.g. heat
rates, fuel heat content)

pudl.validate.bf_eia923_agg = [{'title': 'Coal ash content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.2, 'mid_q': 0.7, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Coal sulfur content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Coal heat content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
EIA923 Boiler Fuel data validation against aggregated data.

pudl.validate.bf_eia923_coal_ash_content = [{'title': 'Bituminous coal ash content (middle)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.5, 'low_bound': 6.0, 'hi_q': 0.5, 'hi_bound': 15.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal ash content (middle)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.5, 'low_bound': 4.5, 'hi_q': 0.5, 'hi_bound': 7.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite ash content (middle)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'All coal ash content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 4.0, 'hi_q': 0.5, 'hi_bound': 20.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}]
Valid coal ash content (%). Based on historical reporting in EIA 923.

pudl.validate.bf_eia923_coal_heat_content = [{'title': 'Bituminous coal heat content (middle)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Bituminous coal heat content (tails)', 'query': "fuel_type_code=='BIT'", 'low_q': 0.05, 'low_bound': 17.0, 'hi_q': 0.95, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal heat content (middle)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.5, 'low_bound': 16.5, 'hi_q': 0.5, 'hi_bound': 18.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Sub-bituminous coal heat content (tails)', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'low_bound': 15.0, 'hi_q': 0.95, 'hi_bound': 20.5, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content (middle)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.5, 'low_bound': 12.0, 'hi_q': 0.5, 'hi_bound': 14.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content (tails)', 'query': "fuel_type_code=='LIG'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 15.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All coal heat content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
Valid coal (bituminous, sub-bituminous, and lignite) heat content values.

pudl.validate.bf_eia923_coal_sulfur_content = [{'title': 'Coal sulfur content (tails)', 'query': "fuel_type_code_pudl=='coal'", 'hi_q': 0.95, 'hi_bound': 4.0, 'low_q': 0.05, 'low_bound': 0.15, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_consumed_units'}]
Valid coal sulfur content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

pudl.validate.bf_eia923_gas_heat_content = [{'title': 'Natural Gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.5, 'hi_bound': 1.036, 'low_q': 0.5, 'low_bound': 1.018, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Natural Gas heat content (tails)', 'query': "fuel_type_code_pudl=='gas'", 'hi_q': 0.99, 'hi_bound': 1.15, 'low_q': 0.01, 'low_bound': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
Valid natural gas heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs. May fail because of a population of
bad data around 0.1 mmbtu/unit. This appears to be an off-by-10x error, possibly due to reporting error in units
used.

8.10. pudl 229

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

PUDL, Release 0.4.0

pudl.validate.bf_eia923_oil_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "fuel_type_code=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "fuel_type_code=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All petroleum heat content (tails)', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.6, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
Valid petroleum based fuel heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

pudl.validate.bf_eia923_self = [{'title': 'Bituminous coal ash content', 'query': "fuel_type_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.25, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Subbituminous coal ash content', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite coal ash content', 'query': "fuel_type_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_consumed_units'}, {'title': 'Bituminous coal heat content', 'query': "fuel_type_code=='BIT'", 'low_q': 0.07, 'mid_q': 0.5, 'hi_q': 0.98, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Subbituminous coal heat content', 'query': "fuel_type_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.9, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Lignite heat content', 'query': "fuel_type_code=='LIG'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content', 'query': "fuel_type_code=='DFO'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
EIA923 Boiler Fuel data validation against itself.

pudl.validate.bounds_histogram(df, data_col, weight_col, query, low_q, hi_q, low_bound,
hi_bound, title='')

Plot a weighted histogram showing acceptable bounds/actual values.

pudl.validate.check_date_freq(df1, df2, mult)
Verify an expected relationship between time frequencies of two dataframes.

Identify all distinct values of report_date in each of the input dataframes and check that the number of
distinct report_date values in df2 is mult times the number of report_date values in df1 across
only those years which appear in both dataframes. This is primarily aimed at comparing annual and monthly
dataframes, but should also work with e.g. annual (df1) and quarterly (df2) frequency data using mult=4.

Note the function assumes that a dataframe with sub-annual frequency will cover the entire year it’s part of. If
you have a partial year of monthly data in one dataframe that overlaps with annual data in another dataframe
you’ll probably get unexpected behavior.

We use this method rather than attempting to infer a frequency from the observed values because often we have
only a single year of data, and you need at least 3 values in a DatetimeIndex to infer the frequency.

Parameters

• df1 (pandas.DataFrame) – A dataframe with a column named report_date which
contains dates.

• df2 (pandas.DataFrame) – A dataframe with a column named report_date which
contains dates. frequency.

• mult (int) – A multiplicative factor indicating the expected ratio between the number of
distinct date values found in df1 and df2. E.g. if df1 is annual and df2 is monthly, mult
should be 12.

Returns None

Raises

• AssertionError – if the number of distinct report_date values in df2 is not mult
times the number of distinct report_date values in df1.

• ValueError – if either df1 or df2 does not have a column named report_date

pudl.validate.check_max_rows(df, expected_rows=inf, margin=0.05, df_name='')
Validate that a dataframe has less than a maximum number of rows.

pudl.validate.check_min_rows(df, expected_rows=0, margin=0.05, df_name='')
Validate that a dataframe has a certain minimum number of rows.

pudl.validate.check_unique_rows(df, subset=None, df_name='')
Test whether dataframe has unique records within a subset of columns.

Parameters

• df (pandas.DataFrame) – DataFrame to check for duplicate records.

• subset (iterable or None) – Columns to consider in checking for dupes.

• df_name (str) – Name of the dataframe, to aid in debugging/logging.

Returns

230 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

PUDL, Release 0.4.0

The same DataFrame as was passed in, for use in DataFrame.pipe().

Return type pandas.DataFrame

Raises ValueError – If there are duplicate records in the subset of selected columns.

pudl.validate.frc_eia923_ag_byproduct_heat_content = [{'title': 'Agricultural byproduct heat content (tails)', 'query': "energy_source_code=='AB'", 'low_q': 0.05, 'low_bound': 7.0, 'hi_q': 0.95, 'hi_bound': 18.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable agricultural byproduct heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_agg = [{'title': 'Coal ash content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.2, 'mid_q': 0.7, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal chlorine content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'chlorine_content_ppm', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal fuel costs', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal sulfur content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'mid_q': False, 'hi_q': False, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Gas fuel costs', 'query': "fuel_type_code_pudl=='gas'", 'low_q': False, 'mid_q': 0.5, 'hi_q': False, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Petroleum fuel cost', 'query': "fuel_type_code_pudl=='oil'", 'low_q': False, 'mid_q': 0.5, 'hi_q': False, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'fuel_qty_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
EIA923 fuel receipts & costs data validation against aggregated data.

pudl.validate.frc_eia923_biomass_gas_heat_content = [{'title': 'Other biomass gas heat content (tails)', 'query': "energy_source_code=='OBG'", 'low_q': 0.05, 'low_bound': 0.36, 'hi_q': 0.95, 'hi_bound': 1.6, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable other biomass gas heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_biomass_liquids_heat_content = [{'title': 'Other biomass liquids heat content (tails)', 'query': "energy_source_code=='OBL'", 'low_q': 0.05, 'low_bound': 3.5, 'hi_q': 0.95, 'hi_bound': 4.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable other biomass liquids heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_biomass_solids_heat_content = [{'title': 'Other biomass solids heat content (tails)', 'query': "energy_source_code=='OBS'", 'low_q': 0.05, 'low_bound': 8.0, 'hi_q': 0.95, 'hi_bound': 25.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable other biomass solids heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_black_liquor_heat_content = [{'title': 'Black liquor heat content (tails)', 'query': "energy_source_code=='BLQ'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 14.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable black liquor heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_blast_furnace_gas_heat_content = [{'title': 'Blast furnace gas heat content (tails)', 'query': "energy_source_code=='BFG'", 'low_q': 0.05, 'low_bound': 0.07, 'hi_q': 0.95, 'hi_bound': 0.12, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable blast furnace gas heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_coal_ant_heat_content = [{'title': 'Anthracite coal heat content (middle)', 'query': "energy_source_code=='ANT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Anthracite coal heat content (tails)', 'query': "energy_source_code=='ANT'", 'low_q': 0.05, 'low_bound': 22.0, 'hi_q': 0.95, 'hi_bound': 29.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable anthracite coal heat content.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_coal_ash_content = [{'title': 'Bituminous coal ash content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 6.0, 'hi_q': 0.5, 'hi_bound': 15.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal ash content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 4.5, 'hi_q': 0.5, 'hi_bound': 7.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite ash content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'All coal ash content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 4.0, 'hi_q': 0.5, 'hi_bound': 20.0, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}]
Valid coal ash content (%). Based on historical reporting in EIA 923.

pudl.validate.frc_eia923_coal_bit_heat_content = [{'title': 'Bituminous coal heat content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 20.5, 'hi_q': 0.5, 'hi_bound': 26.5, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal heat content (tails)', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'low_bound': 18.0, 'hi_q': 0.95, 'hi_bound': 29.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable bituminous coal heat content.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_coal_cc_heat_content = [{'title': 'Refined coal heat content (tails)', 'query': "energy_source_code=='RC'", 'low_q': 0.05, 'low_bound': 6.5, 'hi_q': 0.95, 'hi_bound': 16.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable refined coal heat content.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_coal_lig_heat_content = [{'title': 'Lignite heat content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 12.0, 'hi_q': 0.5, 'hi_bound': 14.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite heat content (tails)', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 15.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable lignite coal heat content.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_coal_mercury_content = [{'title': 'Coal mercury content (upper tail)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': False, 'low_bound': False, 'hi_q': 0.95, 'hi_bound': 0.125, 'data_col': 'mercury_content_ppm', 'weight_col': 'fuel_qty_units'}, {'title': 'Coal mercury content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 0.0, 'hi_q': 0.5, 'hi_bound': 0.1, 'data_col': 'mercury_content_ppm', 'weight_col': 'fuel_qty_units'}]
Valid coal mercury content limits.

Based on USGS FS095-01: https://pubs.usgs.gov/fs/fs095-01/fs095-01.html Upper tail may fail because of a
population of extremely high mercury content coal (9.0ppm) which is likely a reporting error.

8.10. pudl 231

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://pubs.usgs.gov/fs/fs095-01/fs095-01.html

PUDL, Release 0.4.0

pudl.validate.frc_eia923_coal_moisture_content = [{'title': 'Bituminous coal moisture content (middle)', 'query': "energy_source_code=='BIT'", 'low_q': 0.5, 'low_bound': 5.0, 'hi_q': 0.5, 'hi_bound': 16.5, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal moisture content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 15.0, 'hi_q': 0.5, 'hi_bound': 32.5, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite moisture content (middle)', 'query': "energy_source_code=='LIG'", 'low_q': 0.5, 'low_bound': 25.0, 'hi_q': 0.5, 'hi_bound': 45.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'All coal moisture content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 5.0, 'hi_q': 0.5, 'hi_bound': 40.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}]
Valid coal moisture content, based on historical EIA 923 reporting.

pudl.validate.frc_eia923_coal_sub_heat_content = [{'title': 'Sub-bituminous coal heat content (middle)', 'query': "energy_source_code=='SUB'", 'low_q': 0.5, 'low_bound': 16.5, 'hi_q': 0.5, 'hi_bound': 18.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Sub-bituminous coal heat content (tails)', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'low_bound': 15.0, 'hi_q': 0.95, 'hi_bound': 20.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable Sub-bituminous coal heat content.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_coal_sulfur_content = [{'title': 'Coal sulfur content (tails)', 'query': "fuel_type_code_pudl=='coal'", 'hi_q': 0.95, 'hi_bound': 4.0, 'low_q': 0.05, 'low_bound': 0.15, 'data_col': 'sulfur_content_pct', 'weight_col': 'fuel_qty_units'}]
Valid coal sulfur content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

pudl.validate.frc_eia923_coal_wc_heat_content = [{'title': 'Waste coal heat content (tails)', 'query': "energy_source_code=='WC'", 'low_q': 0.05, 'low_bound': 6.5, 'hi_q': 0.95, 'hi_bound': 16.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable waste coal heat content.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_gas_sgc_heat_content = [{'title': 'Coal syngas heat content (tails)', 'query': "energy_source_code=='SGC'", 'low_q': 0.05, 'low_bound': 0.2, 'hi_q': 0.95, 'hi_bound': 0.3, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable coal syngas heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_landfill_gas_heat_content = [{'title': 'Landfill gas heat content (tails)', 'query': "energy_source_code=='LFG'", 'low_q': 0.05, 'low_bound': 0.3, 'hi_q': 0.95, 'hi_bound': 0.6, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable landfill gas heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_muni_solids_heat_content = [{'title': 'Municipal solid waste heat content (tails)', 'query': "energy_source_code=='MSW'", 'low_q': 0.05, 'low_bound': 9.0, 'hi_q': 0.95, 'hi_bound': 12.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable municipal solid waste heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_natural_gas_heat_content = [{'title': 'Natural gas heat content (tails)', 'query': "energy_source_code=='NG'", 'low_q': 0.05, 'low_bound': 0.8, 'hi_q': 0.95, 'hi_bound': 1.2, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable natural gas heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_oil_dfo_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "energy_source_code=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "energy_source_code=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable diesel fuel oil heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_oil_jf_heat_content = [{'title': 'Jet fuel heat content (tails)', 'query': "energy_source_code=='JF'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable jet fuel heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_oil_ker_heat_content = [{'title': 'Kerosene heat content (tails)', 'query': "energy_source_code=='KER'", 'low_q': 0.05, 'low_bound': 5.4, 'hi_q': 0.95, 'hi_bound': 6.1, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable kerosene heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_other_gas_heat_content = [{'title': 'Other gas heat content (tails)', 'query': "energy_source_code=='OG'", 'low_q': 0.05, 'low_bound': 0.07, 'hi_q': 0.95, 'hi_bound': 3.3, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable other gas heat contents.

Based on values given in the EIA 923 instructions, but with the lower bound set by the expected lower bound of
heat content on blast furnace gas (since there were “other” gasses with bounds lower than the expected 0.32 in
the data) https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_petcoke_heat_content = [{'title': 'Petroleum coke heat content (tails)', 'query': "energy_source_code=='PC'", 'low_q': 0.05, 'low_bound': 24.0, 'hi_q': 0.95, 'hi_bound': 30.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable petroleum coke heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

232 Chapter 8. About Catalyst Cooperative

https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf

PUDL, Release 0.4.0

pudl.validate.frc_eia923_petcoke_syngas_heat_content = [{'title': 'Petcoke syngas heat content (tails)', 'query': "energy_source_code=='SGP'", 'low_q': 0.05, 'low_bound': 0.2, 'hi_q': 0.95, 'hi_bound': 1.1, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable petcoke syngas heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_propane_heat_content = [{'title': 'Propane heat content (tails)', 'query': "energy_source_code=='PG'", 'low_q': 0.05, 'low_bound': 2.5, 'hi_q': 0.95, 'hi_bound': 2.75, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable propane heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_rfo_heat_content = [{'title': 'Residual fuel oil heat content (tails)', 'query': "energy_source_code=='RFO'", 'low_q': 0.05, 'low_bound': 5.7, 'hi_q': 0.95, 'hi_bound': 6.9, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable residual fuel oil heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_self = [{'title': 'Bituminous coal ash content', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.25, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal ash content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite coal ash content', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'ash_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal heat content', 'query': "energy_source_code=='BIT'", 'low_q': 0.07, 'mid_q': 0.5, 'hi_q': 0.98, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal heat content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.9, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite heat content', 'query': "energy_source_code=='LIG'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Diesel Fuel Oil heat content', 'query': "energy_source_code=='DFO'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}, {'title': 'Bituminous coal moisture content', 'query': "energy_source_code=='BIT'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Subbituminous coal moisture content', 'query': "energy_source_code=='SUB'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}, {'title': 'Lignite moisture content', 'query': "energy_source_code=='LIG'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 1.0, 'data_col': 'moisture_content_pct', 'weight_col': 'fuel_qty_units'}]
EIA923 fuel receipts & costs data validation against itself.

pudl.validate.frc_eia923_sludge_heat_content = [{'title': 'Sludge waste heat content (tails)', 'query': "energy_source_code=='SLW'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 16.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable sludget waste heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_waste_oil_heat_content = [{'title': 'Waste oil heat content (tails)', 'query': "energy_source_code=='WO'", 'low_q': 0.05, 'low_bound': 3.0, 'hi_q': 0.95, 'hi_bound': 5.9, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable waste oil heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_wood_liquids_heat_content = [{'title': 'Wood waste liquids heat content (tails)', 'query': "energy_source_code=='WDL'", 'low_q': 0.05, 'low_bound': 8.0, 'hi_q': 0.95, 'hi_bound': 14.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable wood waste liquids heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.frc_eia923_wood_solids_heat_content = [{'title': 'Wood solids heat content (tails)', 'query': "energy_source_code=='WDS'", 'low_q': 0.05, 'low_bound': 7.0, 'hi_q': 0.95, 'hi_bound': 18.0, 'data_col': 'heat_content_mmbtu_per_unit', 'weight_col': 'fuel_qty_units'}]
Check for reasonable wood solids heat contents.

Based on values given in the EIA 923 instructions: https://www.eia.gov/survey/form/eia_923/instructions.pdf

pudl.validate.gf_eia923_agg = [{'title': 'Coal heat content', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Petroleum heat content', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Gas heat content', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.1, 'mid_q': 0.5, 'hi_q': 0.95, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
EIA923 Boiler Fuel data validation against aggregated data.

pudl.validate.gf_eia923_coal_heat_content = [{'title': 'All coal heat content (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
Valid coal heat content values (all coal types).

The Generation Fuel table does not break different coal types out separately, so we can only test the validity of
the entire suite of coal records.

pudl.validate.gf_eia923_gas_heat_content = [{'title': 'All gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.5, 'low_bound': 0.975, 'hi_q': 0.5, 'hi_bound': 1.075, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All gas heat content (middle)', 'query': "fuel_type_code_pudl=='gas'", 'low_q': 0.2, 'low_bound': 0.95, 'hi_q': 0.9, 'hi_bound': 1.1, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
Valid natural gas heat content values.

Focuses on natural gas proper. Lower bound excludes other types of gaseous fuels intentionally.

pudl.validate.gf_eia923_oil_heat_content = [{'title': 'Diesel Fuel Oil heat content (tails)', 'query': "fuel_type_code_aer=='DFO'", 'low_q': 0.05, 'low_bound': 5.5, 'hi_q': 0.95, 'hi_bound': 6.0, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'Diesel Fuel Oil heat content (middle)', 'query': "fuel_type_code_aer=='DFO'", 'low_q': 0.5, 'low_bound': 5.75, 'hi_q': 0.5, 'hi_bound': 5.85, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}, {'title': 'All petroleum heat content (tails)', 'query': "fuel_type_code_pudl=='oil'", 'low_q': 0.05, 'low_bound': 5.0, 'hi_q': 0.95, 'hi_bound': 6.6, 'data_col': 'fuel_mmbtu_per_unit', 'weight_col': 'fuel_consumed_units'}]
Valid petroleum based fuel heat content values.

Based on historically reported values in EIA 923 Fuel Receipts and Costs.

pudl.validate.historical_distribution(df, data_col, weight_col, quantile)
Calculate a historical distribution of weighted values of a column.

In order to know what a “reasonable” value of a particular column is in the pudl data, we can use this function
to see what the value in that column has been in each of the years of data we have on hand, and a given quantile.
This population of values can then be used to set boundaries on acceptable data distributions in the aggregated
and processed data.

Parameters

8.10. pudl 233

https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf
https://www.eia.gov/survey/form/eia_923/instructions.pdf

PUDL, Release 0.4.0

• df (pandas.DataFrame) – a dataframe containing historical data, with a column named
either report_date or report_year.

• data_col (str) – Label of the column containing the data of interest.

• weight_col (str) – Label of the column containing the weights to be used in scaling
the data.

Returns The weighted quantiles of data, for each of the years found in the historical data of df.

Return type list

pudl.validate.historical_histogram(orig_df, test_df, data_col, weight_col, query='',
low_q=0.05, mid_q=0.5, hi_q=0.95, low_bound=None,
hi_bound=None, title='')

Weighted histogram comparing distribution with historical subsamples.

pudl.validate.intersect_indexes(indexes)
Calculate the intersection of a collection of pandas Indexes.

Parameters indexes (iterable of pandas.Index objects) –

Returns The intersection of all values found in the input indexes.

Return type pandas.Index

pudl.validate.mcoe_coal_capacity_factor = [{'title': 'Coal Capacity Factor (middle)', 'query': "fuel_type_code_pudl=='coal' and capacity_factor!=0.0", 'low_q': 0.6, 'low_bound': 0.5, 'hi_q': 0.6, 'hi_bound': 0.9, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}, {'title': 'Coal Capacity Factor (tails)', 'query': "fuel_type_code_pudl=='coal' and capacity_factor!=0.0", 'low_q': 0.1, 'low_bound': 0.04, 'hi_q': 0.95, 'hi_bound': 0.95, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}]
Static constraints on coal fired generator capacity factors.

pudl.validate.mcoe_coal_heat_rate = [{'title': 'Coal Unit Heat Rates (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 10.0, 'hi_q': 0.5, 'hi_bound': 11.0, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Coal Unit Heat Rates (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 9.0, 'hi_q': 0.95, 'hi_bound': 12.5, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}]
Static constraints on coal fired generator heat rates.

pudl.validate.mcoe_fuel_cost_per_mmbtu = [{'title': 'Coal Fuel Costs (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 1.5, 'hi_q': 0.5, 'hi_bound': 3.0, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Coal Fuel Costs (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 1.2, 'hi_q': 0.95, 'hi_bound': 4.5, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Natural Gas Fuel Costs (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 2.0, 'hi_q': 0.5, 'hi_bound': 4.0, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}, {'title': 'Natural Gas Fuel Costs (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 1.75, 'hi_q': 0.95, 'hi_bound': 6.7, 'data_col': 'fuel_cost_per_mmbtu', 'weight_col': 'total_mmbtu'}]
Static constraints on fuel costs per mmbtu of fuel consumed.

pudl.validate.mcoe_fuel_cost_per_mwh = [{'title': 'Coal Fuel Costs (middle)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.5, 'low_bound': 18.0, 'hi_q': 0.5, 'hi_bound': 27.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Coal Fuel Costs (tails)', 'query': "fuel_type_code_pudl=='coal'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 50.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Fuel Costs (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 20.0, 'hi_q': 0.5, 'hi_bound': 30.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Fuel Costs (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 10.0, 'hi_q': 0.95, 'hi_bound': 55.0, 'data_col': 'fuel_cost_per_mwh', 'weight_col': 'net_generation_mwh'}]
Static constraints on fuel costs per MWh net generation.

pudl.validate.mcoe_gas_capacity_factor = [{'title': 'Natural Gas Capacity Factor (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01' and capacity_factor!=0.0", 'low_q': 0.65, 'low_bound': 0.4, 'hi_q': 0.65, 'hi_bound': 0.7, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}, {'title': 'Natural Gas Capacity Factor (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01' and capacity_factor!=0.0", 'low_q': 0.15, 'low_bound': 0.01, 'hi_q': 0.95, 'hi_bound': 0.95, 'data_col': 'capacity_factor', 'weight_col': 'capacity_mw'}]
Static constraints on natural gas generator capacity factors.

pudl.validate.mcoe_gas_heat_rate = [{'title': 'Natural Gas Unit Heat Rates (middle, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.5, 'low_bound': 7.0, 'hi_q': 0.5, 'hi_bound': 7.5, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}, {'title': 'Natural Gas Unit Heat Rates (tails, 2015+)', 'query': "fuel_type_code_pudl=='gas' and report_date>='2015-01-01'", 'low_q': 0.05, 'low_bound': 6.5, 'hi_q': 0.95, 'hi_bound': 13.0, 'data_col': 'heat_rate_mmbtu_mwh', 'weight_col': 'net_generation_mwh'}]
Static constraints on gas fired generator heat rates.

pudl.validate.no_null_cols(df, cols='all', df_name='')
Check that a dataframe has no all-NaN columns.

Occasionally in the concatenation / merging of dataframes we get a label wrong, and it results in a fully NaN
column. . . which should probably never actually happen. This is a quick verification.

Parameters

• df (pandas.DataFrame) – DataFrame to check for null columns.

• cols (iterable or "all") – The labels of columns to check for all-null values. If
“all” check all columns.

• df_name (str) – Name of the dataframe, to aid in debugging/logging.

Returns

The same DataFrame as was passed in, for use in DataFrame.pipe().

Return type pandas.DataFrame

Raises ValueError – If any completely NaN / Null valued columns are found.

234 Chapter 8. About Catalyst Cooperative

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#ValueError

PUDL, Release 0.4.0

pudl.validate.no_null_rows(df, cols='all', df_name='', thresh=0.9)
Check for rows filled with NA values indicating bad merges.

Sum up the number of NA values in each row and the columns specified by cols. If the NA values make up
more than thresh of the columns overall, the row is considered Null and the check fails.

Parameters

• df (pandas.DataFrame) – DataFrame to check for null rows.

• cols (iterable or "all") – The labels of columns to check for all-null values. If
“all” check all columns.

Returns The input DataFrame, for use with DataFrame.pipe().

Return type pandas.DataFrame

Raises

• ValueError – If the fraction of NA values in any row is greater than

• thresh` –

pudl.validate.plot_vs_agg(orig_df, agg_df, validation_cases)
Validate a bunch of distributions against aggregated versions.

pudl.validate.plot_vs_bounds(df, validation_cases)
Run through a data validation based on absolute bounds.

pudl.validate.plot_vs_self(df, validation_cases)
Validate a bunch of distributions against themselves.

pudl.validate.vs_bounds(df, data_col, weight_col, query='', title='', low_q=False,
low_bound=False, hi_q=False, hi_bound=False)

Test a distribution against an upper bound, lower bound, or both.

pudl.validate.vs_historical(orig_df, test_df, data_col, weight_col, query='', low_q=0.05,
mid_q=0.5, hi_q=0.95, title='')

Validate aggregated distributions against original data.

pudl.validate.vs_self(df, data_col, weight_col, query='', title='', low_q=0.05, mid_q=0.5,
hi_q=0.95)

Test a distribution against its own historical range.

This is a special case of the pudl.validate.vs_historical() function, in which both the orig_df
and test_df are the same. Mostly it helps ensure that the test itself is valid for the given distribution.

pudl.validate.weighted_quantile(data, weights, quantile)
Calculate the weighted quantile of a Series or DataFrame column.

This function allows us to take two columns from a pandas.DataFrame one of which contains an observed
value (data) like heat content per unit of fuel, and the other of which (weights) contains a quantity like quantity
of fuel delivered which should be used to scale the importance of the observed value in an overall distribution,
and calculate the values that the scaled distribution will have at various quantiles.

Parameters

• data (pandas.Series) – A series containing numeric data.

• weights (pandas.series) – Weights to use in scaling the data. Must have the same
length as data.

• quantile (float) – A number between 0 and 1, representing the quantile at which we
want to find the value of the weighted data.

8.10. pudl 235

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/functions.html#float

PUDL, Release 0.4.0

Returns the value in the weighted data corresponding to the given quantile. If there are no values in
the data, return numpy.na.

Return type float

Module contents

The Public Utility Data Liberation (PUDL) Project.

236 Chapter 8. About Catalyst Cooperative

https://docs.python.org/3/library/functions.html#float

PYTHON MODULE INDEX

p
pudl, 236
pudl.analysis, 122
pudl.analysis.allocate_net_gen, 95
pudl.analysis.mcoe, 98
pudl.analysis.service_territory, 100
pudl.analysis.spatial, 104
pudl.analysis.state_demand, 106
pudl.analysis.timeseries_cleaning, 112
pudl.cli, 210
pudl.constants, 210
pudl.convert, 128
pudl.convert.censusdp1tract_to_sqlite,

122
pudl.convert.datapkg_to_rst, 123
pudl.convert.datapkg_to_sqlite, 123
pudl.convert.epacems_to_parquet, 124
pudl.convert.ferc1_to_sqlite, 126
pudl.convert.merge_datapkgs, 126
pudl.dfc, 217
pudl.etl, 219
pudl.extract, 144
pudl.extract.eia860, 128
pudl.extract.eia860m, 129
pudl.extract.eia861, 129
pudl.extract.eia923, 130
pudl.extract.epacems, 130
pudl.extract.epaipm, 131
pudl.extract.excel, 132
pudl.extract.ferc1, 134
pudl.extract.ferc714, 144
pudl.glue, 148
pudl.glue.eia_epacems, 144
pudl.glue.ferc1_eia, 145
pudl.helpers, 221
pudl.load, 154
pudl.load.csv, 149
pudl.load.metadata, 150
pudl.output, 176
pudl.output.censusdp1tract, 155
pudl.output.eia860, 155
pudl.output.eia923, 160

pudl.output.epacems, 164
pudl.output.ferc1, 165
pudl.output.ferc714, 166
pudl.output.pudltabl, 170
pudl.transform, 202
pudl.transform.eia, 177
pudl.transform.eia860, 178
pudl.transform.eia861, 181
pudl.transform.eia923, 187
pudl.transform.epacems, 191
pudl.transform.epaipm, 192
pudl.transform.ferc1, 193
pudl.transform.ferc714, 200
pudl.validate, 229
pudl.workspace, 209
pudl.workspace.datastore, 203
pudl.workspace.resource_cache, 205
pudl.workspace.setup, 207
pudl.workspace.setup_cli, 209

237

PUDL, Release 0.4.0

238 Python Module Index

INDEX

A
AbstractCache (class in

pudl.workspace.resource_cache), 205
accumulated_depreciation() (in module

pudl.extract.ferc1), 135
accumulated_depreciation() (in module

pudl.transform.ferc1), 195
add() (pudl.workspace.resource_cache.AbstractCache

method), 205
add() (pudl.workspace.resource_cache.GoogleCloudStorageCache

method), 206
add() (pudl.workspace.resource_cache.LayeredCache

method), 206
add() (pudl.workspace.resource_cache.LocalFileCache

method), 206
add_cache_layer()

(pudl.workspace.resource_cache.LayeredCache
method), 206

add_dates() (in module pudl.output.ferc714), 169
add_facility_id_unit_id_epa() (in module

pudl.transform.epacems), 191
add_fips_ids() (in module pudl.helpers), 221
add_geometries() (in module

pudl.analysis.service_territory), 100
add_reference() (pudl.dfc.DataFrameCollection

method), 218
add_sqlite_table() (in module

pudl.extract.ferc1), 136
adjacency_ba() (in module pudl.transform.ferc714),

201
adjacency_ba_ferc714()

(pudl.output.pudltabl.PudlTabl method),
170

advanced_metering_infrastructure() (in
module pudl.transform.eia861), 181

advanced_metering_infrastructure_eia861()
(pudl.output.pudltabl.PudlTabl method), 170

aer_coal_strings (in module pudl.constants), 210
aer_fuel_type_strings (in module

pudl.constants), 210
aer_gas_strings (in module pudl.constants), 210
aer_hydro_strings (in module pudl.constants), 210

aer_nuclear_strings (in module pudl.constants),
210

aer_oil_strings (in module pudl.constants), 211
aer_other_strings (in module pudl.constants), 211
aer_solar_strings (in module pudl.constants), 211
aer_waste_strings (in module pudl.constants), 211
aer_wind_strings (in module pudl.constants), 211
agg_by_generator() (in module

pudl.analysis.allocate_net_gen), 96
allocate_gen_fuel_by_gen() (in module

pudl.analysis.allocate_net_gen), 96
allocate_gen_fuel_by_gen_pm_fuel() (in

module pudl.analysis.allocate_net_gen), 96
annualize() (pudl.output.ferc714.Respondents

method), 167
API_ROOT (pudl.workspace.datastore.ZenodoFetcher

attribute), 204
append_eia860m() (in module

pudl.extract.eia860m), 129
array_diff() (in module

pudl.analysis.timeseries_cleaning), 118
assign_cc_unit_ids() (in module

pudl.output.eia860), 155
assign_prime_fuel_unit_ids() (in module

pudl.output.eia860), 155
assign_single_gen_unit_ids() (in module

pudl.output.eia860), 156
assign_unit_ids() (in module pudl.output.eia860),

156
associate_generator_tables() (in module

pudl.analysis.allocate_net_gen), 97
ASSOCIATIONS (in module pudl.output.ferc714), 166

B
ba_ids (pudl.output.ferc714.Respondents attribute),

167
BAD_RESPONDENTS (in module

pudl.transform.ferc714), 200
balancing_authority() (in module

pudl.transform.eia861), 181
balancing_authority_assn() (in module

pudl.transform.eia861), 182

239

PUDL, Release 0.4.0

balancing_authority_assn_eia861()
(pudl.output.ferc714.Respondents property),
167

balancing_authority_assn_eia861()
(pudl.output.pudltabl.PudlTabl method),
170

balancing_authority_eia861()
(pudl.output.ferc714.Respondents property),
168

balancing_authority_eia861()
(pudl.output.pudltabl.PudlTabl method),
170

base_data_urls (in module pudl.constants), 211
bf_eia923() (pudl.output.pudltabl.PudlTabl method),

170
bf_eia923_agg (in module pudl.validate), 229
bf_eia923_coal_ash_content (in module

pudl.validate), 229
bf_eia923_coal_heat_content (in module

pudl.validate), 229
bf_eia923_coal_sulfur_content (in module

pudl.validate), 229
bf_eia923_gas_heat_content (in module

pudl.validate), 229
bf_eia923_oil_heat_content (in module

pudl.validate), 229
bf_eia923_self (in module pudl.validate), 230
bga_eia860() (pudl.output.pudltabl.PudlTabl

method), 170
BLACKLISTED_PAGES

(pudl.extract.excel.GenericExtractor attribute),
133

boiler_fuel() (in module pudl.transform.eia923),
187

boiler_fuel_eia923() (in module
pudl.output.eia923), 160

boiler_generator_assn() (in module
pudl.transform.eia860), 178

boiler_generator_assn_eia860() (in module
pudl.output.eia860), 157

bounds_histogram() (in module pudl.validate), 230

C
calc_allocation_fraction() (in module

pudl.analysis.allocate_net_gen), 97
canada_prov_terr (in module pudl.constants), 211
capacity_factor() (in module

pudl.analysis.mcoe), 98
capacity_factor() (pudl.output.pudltabl.PudlTabl

method), 171
categorize() (pudl.output.ferc714.Respondents

method), 168
categorize_eia_code() (in module

pudl.output.ferc714), 169

cems_states (in module pudl.constants), 211
census_region (in module pudl.constants), 211
censusdp1tract_to_sqlite() (in module

pudl.convert.censusdp1tract_to_sqlite), 122
check_date_freq() (in module pudl.validate), 230
check_etl_params() (in module

pudl.convert.merge_datapkgs), 126
check_ferc1_tables() (in module

pudl.extract.ferc1), 136
check_for_bad_tables() (in module pudl.etl),

219
check_for_bad_years() (in module pudl.etl), 219
check_gdf() (in module pudl.analysis.spatial), 104
check_identical_vals() (in module

pudl.convert.merge_datapkgs), 126
check_max_rows() (in module pudl.validate), 230
check_min_rows() (in module pudl.validate), 230
check_unique_rows() (in module pudl.validate),

230
ChecksumMismatch, 203
clean_columns_dump() (in module pudl.load.csv),

149
clean_eia_counties() (in module pudl.helpers),

221
clean_ferc714_hourly_demand_matrix() (in

module pudl.analysis.state_demand), 106
clean_merge_asof() (in module pudl.helpers), 221
cleanstrings() (in module pudl.helpers), 222
cleanstrings_series() (in module pudl.helpers),

222
cleanstrings_snake() (in module pudl.helpers),

223
coalmine() (in module pudl.transform.eia923), 188
coalmine_country_eia923 (in module

pudl.constants), 211
coalmine_type_eia923 (in module

pudl.constants), 211
cols_to_cats() (in module pudl.transform.ferc1),

195
columns (pudl.analysis.timeseries_cleaning.Timeseries

attribute), 113
compare_state_demand() (in module

pudl.analysis.state_demand), 106
compile_geoms() (in module

pudl.analysis.service_territory), 101
compile_keywords() (in module

pudl.load.metadata), 150
compile_partitions() (in module

pudl.load.metadata), 150
CONSTRUCTION_TYPE_STRINGS (in module

pudl.transform.ferc1), 193
contains() (pudl.workspace.resource_cache.AbstractCache

method), 205
contains() (pudl.workspace.resource_cache.GoogleCloudStorageCache

240 Index

PUDL, Release 0.4.0

method), 206
contains() (pudl.workspace.resource_cache.LayeredCache

method), 206
contains() (pudl.workspace.resource_cache.LocalFileCache

method), 206
contract_type_eia923 (in module

pudl.constants), 211
contributors (in module pudl.constants), 211
contributors_by_source (in module

pudl.constants), 211
convert_cols_dtypes() (in module pudl.helpers),

223
convert_cost_json_to_df() (in module

pudl.output.eia923), 161
convert_dfs_dict_dtypes() (in module

pudl.helpers), 223
convert_to_date() (in module pudl.helpers), 223
correct_gross_load_mw() (in module

pudl.transform.epacems), 191
count_records() (in module pudl.helpers), 224
create_cems_schema() (in module

pudl.convert.epacems_to_parquet), 124
create_in_dtypes() (in module

pudl.convert.epacems_to_parquet), 125
CSV_DTYPES (in module pudl.extract.epacems), 130
csv_dump() (in module pudl.load.csv), 149

D
DATA_COLS (in module

pudl.analysis.allocate_net_gen), 96
data_source_info (in module pudl.constants), 212
data_sources (in module pudl.constants), 212
data_sources_from_tables() (in module

pudl.load.metadata), 151
data_years (in module pudl.constants), 212
DataFrameCollection (class in pudl.dfc), 218
DatapackageDescriptor (class in

pudl.workspace.datastore), 203
datapkg2rst() (in module

pudl.convert.datapkg_to_rst), 123
datapkg_to_sqlite() (in module

pudl.convert.datapkg_to_sqlite), 124
dataset (pudl.workspace.resource_cache.PudlResourceKey

attribute), 207
Datastore (class in pudl.workspace.datastore), 204
dbf2sqlite() (in module pudl.extract.ferc1), 136
dbf_typemap (in module pudl.constants), 212
define_sqlite_db() (in module

pudl.extract.ferc1), 137
delete() (pudl.workspace.resource_cache.AbstractCache

method), 205
delete() (pudl.workspace.resource_cache.GoogleCloudStorageCache

method), 206

delete() (pudl.workspace.resource_cache.LayeredCache
method), 206

delete() (pudl.workspace.resource_cache.LocalFileCache
method), 206

demand_forecast_pa() (in module
pudl.transform.ferc714), 201

demand_forecast_pa_ferc714()
(pudl.output.pudltabl.PudlTabl method),
171

demand_hourly_pa() (in module
pudl.transform.ferc714), 201

demand_hourly_pa_ferc714()
(pudl.output.pudltabl.PudlTabl method),
171

demand_monthly_ba() (in module
pudl.transform.ferc714), 201

demand_monthly_ba_ferc714()
(pudl.output.pudltabl.PudlTabl method),
171

demand_response() (in module
pudl.transform.eia861), 182

demand_response_eia861()
(pudl.output.pudltabl.PudlTabl method),
171

demand_side_management() (in module
pudl.transform.eia861), 182

demand_side_management_eia861()
(pudl.output.pudltabl.PudlTabl method),
171

deploy() (in module pudl.workspace.setup), 207
derive_paths() (in module pudl.workspace.setup),

207
description_pa() (in module

pudl.transform.ferc714), 201
description_pa_ferc714()

(pudl.output.pudltabl.PudlTabl method),
171

dict_dump() (in module pudl.load.csv), 150
diff() (pudl.analysis.timeseries_cleaning.Timeseries

method), 113
dissolve() (in module pudl.analysis.spatial), 104
distributed_generation() (in module

pudl.transform.eia861), 183
distributed_generation_eia861()

(pudl.output.pudltabl.PudlTabl method),
171

distribution_systems() (in module
pudl.transform.eia861), 183

distribution_systems_eia861()
(pudl.output.pudltabl.PudlTabl method),
171

DOI (pudl.workspace.datastore.ZenodoFetcher at-
tribute), 204

doi (pudl.workspace.resource_cache.PudlResourceKey

Index 241

PUDL, Release 0.4.0

attribute), 207
download_zip_url() (in module pudl.helpers), 224
drop_tables() (in module pudl.extract.ferc1), 139
drop_tables() (in module pudl.helpers), 224
dynamic_pricing() (in module

pudl.transform.eia861), 183
dynamic_pricing_eia861()

(pudl.output.pudltabl.PudlTabl method),
171

E
eia860_pudl_tables (in module pudl.constants),

212
eia923_pudl_tables (in module pudl.constants),

212
EIA_CODE_FIXES (in module pudl.transform.ferc714),

200
encode_run_length() (in module

pudl.analysis.timeseries_cleaning), 118
energy_efficiency() (in module

pudl.transform.eia861), 184
energy_efficiency_eia861()

(pudl.output.pudltabl.PudlTabl method),
171

energy_source_eia923 (in module
pudl.constants), 212

energy_source_eia_simple_map (in module
pudl.constants), 212

entities (in module pudl.constants), 212
entity_tables (in module pudl.constants), 212
epacems_tables (in module pudl.constants), 212
epacems_to_parquet() (in module

pudl.convert.epacems_to_parquet), 125
EpaCemsDatastore (class in pudl.extract.epacems),

130
EpaCemsPartition (class in pudl.extract.epacems),

130
epaipm_pudl_tables (in module pudl.constants),

212
epaipm_region_aggregations (in module

pudl.constants), 213
epaipm_region_names (in module pudl.constants),

213
epaipm_url_ext (in module pudl.constants), 213
EpaIpmDatastore (class in pudl.extract.epaipm), 131
etl() (in module pudl.etl), 219
etl_eia861() (pudl.output.pudltabl.PudlTabl

method), 171
etl_ferc714() (pudl.output.pudltabl.PudlTabl

method), 171
excel_filename() (pudl.extract.excel.GenericExtractor

method), 133
excel_settings (pudl.extract.epaipm.TableSettings

attribute), 132

explode() (in module pudl.analysis.spatial), 105
extract() (in module pudl.extract.epacems), 131
extract() (in module pudl.extract.epaipm), 132
extract() (in module pudl.extract.ferc1), 139
extract() (in module pudl.extract.ferc714), 144
extract() (pudl.extract.excel.GenericExtractor

method), 133
Extractor (class in pudl.extract.eia860), 128
Extractor (class in pudl.extract.eia860m), 129
Extractor (class in pudl.extract.eia861), 129
Extractor (class in pudl.extract.eia923), 130

F
fbp_ferc1() (pudl.output.pudltabl.PudlTabl method),

172
ferc1_data_tables (in module pudl.constants), 213
ferc1_dbf2tbl (in module pudl.constants), 213
ferc1_huge_tables (in module pudl.constants), 213
ferc1_power_purchase_type (in module

pudl.constants), 213
ferc1_pudl_tables (in module pudl.constants), 213
ferc1_tbl2dbf (in module pudl.constants), 213
Ferc1Datastore (class in pudl.extract.ferc1), 135
FERC1FieldParser (class in pudl.extract.ferc1), 135
ferc_accumulated_depreciation (in module

pudl.constants), 213
ferc_electric_plant_accounts (in module

pudl.constants), 213
FERCPlantClassifier (class in

pudl.transform.ferc1), 193
fetch_resources() (in module

pudl.workspace.datastore), 205
file (pudl.extract.epaipm.TableSettings attribute), 132
files_dict_epaipm (in module pudl.constants), 213
fill_unit_ids() (in module pudl.output.eia860),

157
fillna_w_rolling_avg() (in module

pudl.helpers), 225
filter_ferc714_hourly_demand_matrix()

(in module pudl.analysis.state_demand), 107
find_timezone() (in module pudl.helpers), 225
fipsify() (pudl.output.ferc714.Respondents method),

168
fit() (pudl.transform.ferc1.FERCPlantClassifier

method), 194
fix_eia_na() (in module pudl.helpers), 225
fix_int_na() (in module pudl.helpers), 225
fix_leading_zero_gen_ids() (in module

pudl.helpers), 226
fix_up_dates() (in module

pudl.transform.epacems), 191
flag() (pudl.analysis.timeseries_cleaning.Timeseries

method), 113

242 Index

PUDL, Release 0.4.0

flag_anomalous_region()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 113

flag_double_delta()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 113

flag_global_outlier()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 113

flag_global_outlier_neighbor()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 113

flag_identical_run()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 113

flag_local_outlier()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 114

flag_negative_or_zero()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 114

flag_ruggles() (pudl.analysis.timeseries_cleaning.Timeseries
method), 114

flag_single_delta()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 114

flagged (pudl.analysis.timeseries_cleaning.Timeseries
attribute), 112

flags (pudl.analysis.timeseries_cleaning.Timeseries at-
tribute), 112

fold_tensor() (pudl.analysis.timeseries_cleaning.Timeseries
method), 115

frc_eia923() (pudl.output.pudltabl.PudlTabl
method), 172

frc_eia923_ag_byproduct_heat_content (in
module pudl.validate), 231

frc_eia923_agg (in module pudl.validate), 231
frc_eia923_biomass_gas_heat_content (in

module pudl.validate), 231
frc_eia923_biomass_liquids_heat_content

(in module pudl.validate), 231
frc_eia923_biomass_solids_heat_content

(in module pudl.validate), 231
frc_eia923_black_liquor_heat_content (in

module pudl.validate), 231
frc_eia923_blast_furnace_gas_heat_content

(in module pudl.validate), 231
frc_eia923_coal_ant_heat_content (in mod-

ule pudl.validate), 231
frc_eia923_coal_ash_content (in module

pudl.validate), 231
frc_eia923_coal_bit_heat_content (in mod-

ule pudl.validate), 231
frc_eia923_coal_cc_heat_content (in mod-

ule pudl.validate), 231
frc_eia923_coal_lig_heat_content (in mod-

ule pudl.validate), 231
frc_eia923_coal_mercury_content (in mod-

ule pudl.validate), 231
frc_eia923_coal_moisture_content (in mod-

ule pudl.validate), 231
frc_eia923_coal_sub_heat_content (in mod-

ule pudl.validate), 232
frc_eia923_coal_sulfur_content (in module

pudl.validate), 232
frc_eia923_coal_wc_heat_content (in mod-

ule pudl.validate), 232
frc_eia923_gas_sgc_heat_content (in mod-

ule pudl.validate), 232
frc_eia923_landfill_gas_heat_content (in

module pudl.validate), 232
frc_eia923_muni_solids_heat_content (in

module pudl.validate), 232
frc_eia923_natural_gas_heat_content (in

module pudl.validate), 232
frc_eia923_oil_dfo_heat_content (in mod-

ule pudl.validate), 232
frc_eia923_oil_jf_heat_content (in module

pudl.validate), 232
frc_eia923_oil_ker_heat_content (in mod-

ule pudl.validate), 232
frc_eia923_other_gas_heat_content (in

module pudl.validate), 232
frc_eia923_petcoke_heat_content (in mod-

ule pudl.validate), 232
frc_eia923_petcoke_syngas_heat_content

(in module pudl.validate), 232
frc_eia923_propane_heat_content (in mod-

ule pudl.validate), 233
frc_eia923_rfo_heat_content (in module

pudl.validate), 233
frc_eia923_self (in module pudl.validate), 233
frc_eia923_sludge_heat_content (in module

pudl.validate), 233
frc_eia923_waste_oil_heat_content (in

module pudl.validate), 233
frc_eia923_wood_liquids_heat_content (in

module pudl.validate), 233
frc_eia923_wood_solids_heat_content (in

module pudl.validate), 233
from_dict() (pudl.dfc.DataFrameCollection static

method), 218
fuel() (in module pudl.extract.ferc1), 140
fuel() (in module pudl.transform.ferc1), 196
fuel_by_plant_ferc1() (in module

pudl.output.ferc1), 165
fuel_by_plant_ferc1() (in module

pudl.transform.ferc1), 196

Index 243

PUDL, Release 0.4.0

fuel_cost() (in module pudl.analysis.mcoe), 98
fuel_cost() (pudl.output.pudltabl.PudlTabl method),

172
FUEL_COST_CATEGORIES_EIAAPI (in module

pudl.output.eia923), 160
fuel_ferc1() (in module pudl.output.ferc1), 165
fuel_ferc1() (pudl.output.pudltabl.PudlTabl

method), 172
fuel_group_eia923 (in module pudl.constants), 213
fuel_group_eia923_simple_map (in module

pudl.constants), 214
fuel_receipts_costs() (in module

pudl.transform.eia923), 188
fuel_receipts_costs_eia923() (in module

pudl.output.eia923), 161
FUEL_STRINGS (in module pudl.transform.ferc1), 195
fuel_type_aer_eia923 (in module

pudl.constants), 214
fuel_type_eia860_coal_strings (in module

pudl.constants), 214
fuel_type_eia860_gas_strings (in module

pudl.constants), 214
fuel_type_eia860_hydro_strings (in module

pudl.constants), 214
fuel_type_eia860_nuclear_strings (in mod-

ule pudl.constants), 214
fuel_type_eia860_oil_strings (in module

pudl.constants), 214
fuel_type_eia860_other_strings (in module

pudl.constants), 214
fuel_type_eia860_simple_map (in module

pudl.constants), 214
fuel_type_eia860_solar_strings (in module

pudl.constants), 214
fuel_type_eia860_waste_strings (in module

pudl.constants), 214
fuel_type_eia860_wind_strings (in module

pudl.constants), 214
fuel_type_eia923 (in module pudl.constants), 214
fuel_type_eia923_boiler_fuel_coal_strings

(in module pudl.constants), 215
fuel_type_eia923_boiler_fuel_gas_strings

(in module pudl.constants), 215
fuel_type_eia923_boiler_fuel_oil_strings

(in module pudl.constants), 215
fuel_type_eia923_boiler_fuel_other_strings

(in module pudl.constants), 215
fuel_type_eia923_boiler_fuel_simple_map

(in module pudl.constants), 215
fuel_type_eia923_boiler_fuel_waste_strings

(in module pudl.constants), 215
fuel_type_eia923_gen_fuel_coal_strings

(in module pudl.constants), 215
fuel_type_eia923_gen_fuel_gas_strings

(in module pudl.constants), 215
fuel_type_eia923_gen_fuel_hydro_strings

(in module pudl.constants), 215
fuel_type_eia923_gen_fuel_nuclear_strings

(in module pudl.constants), 215
fuel_type_eia923_gen_fuel_oil_strings

(in module pudl.constants), 215
fuel_type_eia923_gen_fuel_other_strings

(in module pudl.constants), 215
fuel_type_eia923_gen_fuel_simple_map (in

module pudl.constants), 215
fuel_type_eia923_gen_fuel_solar_strings

(in module pudl.constants), 216
fuel_type_eia923_gen_fuel_waste_strings

(in module pudl.constants), 216
fuel_type_eia923_gen_fuel_wind_strings

(in module pudl.constants), 216
FUEL_UNIT_STRINGS (in module

pudl.transform.ferc1), 195
fuel_units_eia923 (in module pudl.constants), 216

G
gen_allocated_eia923()

(pudl.output.pudltabl.PudlTabl method),
172

gen_eia923() (pudl.output.pudltabl.PudlTabl
method), 172

gen_original_eia923()
(pudl.output.pudltabl.PudlTabl method),
173

gen_plants_ba() (in module
pudl.transform.ferc714), 201

gen_plants_ba_ferc714()
(pudl.output.pudltabl.PudlTabl method),
173

generate_datapkg_bundle() (in module
pudl.etl), 219

generate_metadata() (in module
pudl.load.metadata), 151

generate_rolling_avg() (in module
pudl.helpers), 226

generation() (in module pudl.transform.eia923),
189

generation_eia923() (in module
pudl.output.eia923), 162

generation_fuel() (in module
pudl.transform.eia923), 189

generation_fuel_eia923() (in module
pudl.output.eia923), 162

generators() (in module pudl.transform.eia860),
179

generators_eia860() (in module
pudl.output.eia860), 158

GenericExtractor (class in pudl.extract.excel), 132

244 Index

PUDL, Release 0.4.0

gens_eia860() (pudl.output.pudltabl.PudlTabl
method), 173

georef_counties()
(pudl.output.ferc714.Respondents method),
168

georef_respondents()
(pudl.output.ferc714.Respondents method),
168

get() (pudl.dfc.DataFrameCollection method), 218
get() (pudl.workspace.resource_cache.AbstractCache

method), 205
get() (pudl.workspace.resource_cache.GoogleCloudStorageCache

method), 206
get() (pudl.workspace.resource_cache.LayeredCache

method), 206
get() (pudl.workspace.resource_cache.LocalFileCache

method), 206
get_all_columns() (pudl.extract.excel.Metadata

method), 134
get_all_pages() (pudl.extract.excel.Metadata

method), 134
get_all_utils() (in module

pudl.analysis.service_territory), 101
get_autoincrement_columns() (in module

pudl.load.metadata), 152
get_column_map() (pudl.extract.excel.Metadata

method), 134
get_data_columns() (in module

pudl.analysis.spatial), 105
get_data_frame() (pudl.extract.epacems.EpaCemsDatastore

method), 130
get_dataframe() (pudl.extract.epaipm.EpaIpmDatastore

method), 131
get_datapackage_descriptor()

(pudl.workspace.datastore.Datastore method),
204

get_datapkg_fks() (in module
pudl.load.metadata), 152

get_dataset_name() (pudl.extract.excel.Metadata
method), 134

get_db_plants_eia() (in module
pudl.glue.ferc1_eia), 145

get_db_plants_ferc1() (in module
pudl.glue.ferc1_eia), 146

get_db_utils_eia() (in module
pudl.glue.ferc1_eia), 146

get_dbc_map() (in module pudl.extract.ferc1), 140
get_defaults() (in module pudl.workspace.setup),

208
get_dependent_tables() (in module

pudl.load.metadata), 152
get_dependent_tables_from_list() (in mod-

ule pudl.load.metadata), 152
get_descriptor() (pudl.workspace.datastore.ZenodoFetcher

method), 204
get_dir() (pudl.extract.ferc1.Ferc1Datastore

method), 135
get_doi() (pudl.workspace.datastore.ZenodoFetcher

method), 205
get_dtypes() (pudl.extract.eia860.Extractor static

method), 128
get_dtypes() (pudl.extract.eia860m.Extractor static

method), 129
get_dtypes() (pudl.extract.eia861.Extractor static

method), 129
get_dtypes() (pudl.extract.eia923.Extractor static

method), 130
get_dtypes() (pudl.extract.excel.GenericExtractor

static method), 133
get_ferc1_meta() (in module pudl.extract.ferc1),

140
get_fields() (in module pudl.extract.ferc1), 141
get_file() (pudl.extract.ferc1.Ferc1Datastore

method), 135
get_file_name() (pudl.extract.excel.Metadata

method), 134
get_filters() (pudl.extract.epacems.EpaCemsPartition

method), 130
get_flattened_etl_parameters() (in module

pudl.etl), 220
get_fuel_cost_avg_eiaapi() (in module

pudl.output.eia923), 163
get_json_string()

(pudl.workspace.datastore.DatapackageDescriptor
method), 203

get_key() (pudl.extract.epacems.EpaCemsPartition
method), 130

get_known_datasets()
(pudl.workspace.datastore.Datastore method),
204

get_known_datasets()
(pudl.workspace.datastore.ZenodoFetcher
method), 205

get_layer() (in module pudl.output.censusdp1tract),
155

get_local_path() (pudl.workspace.resource_cache.PudlResourceKey
method), 207

get_lost_plants_eia() (in module
pudl.glue.ferc1_eia), 146

get_lost_utils_eia() (in module
pudl.glue.ferc1_eia), 146

get_mapped_plants_eia() (in module
pudl.glue.ferc1_eia), 146

get_mapped_plants_ferc1() (in module
pudl.glue.ferc1_eia), 146

get_mapped_utils_eia() (in module
pudl.glue.ferc1_eia), 147

get_mapped_utils_ferc1() (in module

Index 245

PUDL, Release 0.4.0

pudl.glue.ferc1_eia), 147
get_monthly_file()

(pudl.extract.epacems.EpaCemsPartition
method), 130

get_partitions() (pudl.workspace.datastore.DatapackageDescriptor
method), 203

get_plant_map() (in module pudl.glue.ferc1_eia),
147

get_plant_states() (in module
pudl.output.epacems), 164

get_plant_years() (in module
pudl.output.epacems), 164

get_pudl_dtype() (in module pudl.helpers), 227
get_pudl_dtypes() (in module pudl.helpers), 227
get_raw_df() (in module pudl.extract.ferc1), 141
get_resource() (pudl.workspace.datastore.ZenodoFetcher

method), 205
get_resource_key()

(pudl.workspace.datastore.ZenodoFetcher
method), 205

get_resource_path()
(pudl.workspace.datastore.DatapackageDescriptor
method), 203

get_resources() (pudl.workspace.datastore.DatapackageDescriptor
method), 203

get_resources() (pudl.workspace.datastore.Datastore
method), 204

get_response() (in module pudl.output.eia923), 163
get_sheet_name() (pudl.extract.excel.Metadata

method), 134
get_skipfooter() (pudl.extract.excel.Metadata

method), 134
get_skiprows() (pudl.extract.excel.Metadata

method), 134
get_table_meta() (in module pudl.output.pudltabl),

176
get_table_names() (pudl.dfc.DataFrameCollection

method), 218
get_table_settings()

(pudl.extract.epaipm.EpaIpmDatastore
method), 131

get_tabular_data_resource() (in module
pudl.load.metadata), 152

get_territory_fips() (in module
pudl.analysis.service_territory), 101

get_territory_geometries() (in module
pudl.analysis.service_territory), 102

get_unique_resource()
(pudl.workspace.datastore.Datastore method),
204

get_unmapped_plants_eia() (in module
pudl.glue.ferc1_eia), 147

get_unmapped_plants_ferc1() (in module
pudl.glue.ferc1_eia), 147

get_unmapped_utils_eia() (in module
pudl.glue.ferc1_eia), 147

get_unmapped_utils_ferc1() (in module
pudl.glue.ferc1_eia), 147

get_unmapped_utils_with_plants_eia() (in
module pudl.glue.ferc1_eia), 148

get_unpartitioned_tables() (in module
pudl.load.metadata), 153

get_utility_map() (in module
pudl.glue.ferc1_eia), 148

get_working_eia_dates() (in module
pudl.helpers), 227

get_zipfile_resource()
(pudl.workspace.datastore.Datastore method),
204

gf_eia923() (pudl.output.pudltabl.PudlTabl method),
173

gf_eia923_agg (in module pudl.validate), 233
gf_eia923_coal_heat_content (in module

pudl.validate), 233
gf_eia923_gas_heat_content (in module

pudl.validate), 233
gf_eia923_oil_heat_content (in module

pudl.validate), 233
glue() (in module pudl.glue.ferc1_eia), 148
glue_pudl_tables (in module pudl.constants), 216
GoogleCloudStorageCache (class in

pudl.workspace.resource_cache), 205
grab_clean_split() (in module

pudl.glue.eia_epacems), 145
grab_fuel_state_monthly() (in module

pudl.output.eia923), 163
grab_n_clean_epa_orignal() (in module

pudl.glue.eia_epacems), 145
green_pricing() (in module

pudl.transform.eia861), 184
green_pricing_eia861()

(pudl.output.pudltabl.PudlTabl method),
173

H
harmonize_eia_epa_orispl() (in module

pudl.transform.epacems), 191
harvesting() (in module pudl.transform.eia), 177
hash_csv() (in module pudl.load.metadata), 153
heat_rate_by_gen() (in module

pudl.analysis.mcoe), 99
heat_rate_by_unit() (in module

pudl.analysis.mcoe), 99
historical_distribution() (in module

pudl.validate), 233
historical_histogram() (in module

pudl.validate), 234

246 Index

PUDL, Release 0.4.0

hr_by_gen() (pudl.output.pudltabl.PudlTabl method),
173

hr_by_unit() (pudl.output.pudltabl.PudlTabl
method), 173

I
id_certification() (in module

pudl.transform.ferc714), 201
id_certification_ferc714()

(pudl.output.pudltabl.PudlTabl method),
173

IDX_GENS (in module pudl.analysis.allocate_net_gen),
96

IDX_PM_FUEL (in module
pudl.analysis.allocate_net_gen), 96

IGNORE_COLS (in module pudl.extract.epacems), 131
impute() (pudl.analysis.timeseries_cleaning.Timeseries

method), 115
impute_ferc714_hourly_demand_matrix()

(in module pudl.analysis.state_demand), 107
impute_latc_tnn() (in module

pudl.analysis.timeseries_cleaning), 119
impute_latc_tubal() (in module

pudl.analysis.timeseries_cleaning), 119
index (pudl.analysis.timeseries_cleaning.Timeseries at-

tribute), 113
init() (in module pudl.workspace.setup), 208
initialize_parser() (in module

pudl.workspace.setup_cli), 209
insert_run_length() (in module

pudl.analysis.timeseries_cleaning), 120
interchange_ba() (in module

pudl.transform.ferc714), 201
interchange_ba_ferc714()

(pudl.output.pudltabl.PudlTabl method),
173

intersect_indexes() (in module pudl.validate),
234

iqr_of_diff_of_relative_median_prediction()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 115

is_doi() (in module pudl.helpers), 227
is_optimally_cached()

(pudl.workspace.resource_cache.LayeredCache
method), 206

is_read_only() (pudl.workspace.resource_cache.AbstractCache
method), 205

items() (pudl.dfc.DataFrameCollection method), 218
iterate_multivalue_dict() (in module

pudl.helpers), 227

K
keywords_by_data_source (in module

pudl.constants), 216

L
lambda_description() (in module

pudl.transform.ferc714), 201
lambda_description_ferc714()

(pudl.output.pudltabl.PudlTabl method),
173

lambda_hourly_ba() (in module
pudl.transform.ferc714), 201

lambda_hourly_ba_ferc714()
(pudl.output.pudltabl.PudlTabl method),
173

LayeredCache (class in
pudl.workspace.resource_cache), 206

licenses (in module pudl.constants), 216
limit_by_state (pudl.output.ferc714.Respondents

attribute), 167
load_counties() (in module

pudl.analysis.state_demand), 107
load_curves() (in module pudl.transform.epaipm),

192
load_eia861_state_total_sales() (in mod-

ule pudl.analysis.state_demand), 108
load_excel_file()

(pudl.extract.excel.GenericExtractor method),
133

load_ferc714_county_assignments() (in
module pudl.analysis.state_demand), 108

load_ferc714_hourly_demand_matrix() (in
module pudl.analysis.state_demand), 108

load_ventyx_hourly_state_demand() (in
module pudl.analysis.state_demand), 108

local_to_utc() (in module
pudl.analysis.state_demand), 109

LocalFileCache (class in
pudl.workspace.resource_cache), 206

logger (in module pudl.convert.datapkg_to_rst), 123
lookup_state() (in module

pudl.analysis.state_demand), 109

M
main() (in module pudl.analysis.service_territory), 103
main() (in module pudl.analysis.state_demand), 110
main() (in module pudl.cli), 210
main() (in module pudl.convert.censusdp1tract_to_sqlite),

122
main() (in module pudl.convert.datapkg_to_rst), 123
main() (in module pudl.convert.datapkg_to_sqlite), 124
main() (in module pudl.convert.epacems_to_parquet),

125
main() (in module pudl.convert.ferc1_to_sqlite), 126
main() (in module pudl.workspace.datastore), 205
main() (in module pudl.workspace.setup_cli), 209
make_ferc1_clf() (in module

pudl.transform.ferc1), 196

Index 247

PUDL, Release 0.4.0

make_url_cat_eiaapi() (in module
pudl.output.eia923), 163

make_url_series_eiaapi() (in module
pudl.output.eia923), 164

max_unit_id_by_plant() (in module
pudl.output.eia860), 158

mcoe() (in module pudl.analysis.mcoe), 100
mcoe() (pudl.output.pudltabl.PudlTabl method), 173
mcoe_coal_capacity_factor (in module

pudl.validate), 234
mcoe_coal_heat_rate (in module pudl.validate),

234
mcoe_fuel_cost_per_mmbtu (in module

pudl.validate), 234
mcoe_fuel_cost_per_mwh (in module

pudl.validate), 234
mcoe_gas_capacity_factor (in module

pudl.validate), 234
mcoe_gas_heat_rate (in module pudl.validate), 234
median_of_rolling_median_offset()

(pudl.analysis.timeseries_cleaning.Timeseries
method), 116

median_prediction()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 116

melt_ferc714_hourly_demand_matrix() (in
module pudl.analysis.state_demand), 110

merge_data() (in module
pudl.convert.merge_datapkgs), 127

merge_datapkgs() (in module
pudl.convert.merge_datapkgs), 127

merge_dicts() (in module pudl.helpers), 227
merge_meta() (in module

pudl.convert.merge_datapkgs), 127
mergers() (in module pudl.transform.eia861), 184
mergers_eia861() (pudl.output.pudltabl.PudlTabl

method), 174
Metadata (class in pudl.extract.excel), 133
METADATA (pudl.extract.excel.GenericExtractor at-

tribute), 133
missing_respondents() (in module

pudl.extract.ferc1), 141
module

pudl, 236
pudl.analysis, 122
pudl.analysis.allocate_net_gen, 95
pudl.analysis.mcoe, 98
pudl.analysis.service_territory, 100
pudl.analysis.spatial, 104
pudl.analysis.state_demand, 106
pudl.analysis.timeseries_cleaning,

112
pudl.cli, 210
pudl.constants, 210

pudl.convert, 128
pudl.convert.censusdp1tract_to_sqlite,

122
pudl.convert.datapkg_to_rst, 123
pudl.convert.datapkg_to_sqlite, 123
pudl.convert.epacems_to_parquet, 124
pudl.convert.ferc1_to_sqlite, 126
pudl.convert.merge_datapkgs, 126
pudl.dfc, 217
pudl.etl, 219
pudl.extract, 144
pudl.extract.eia860, 128
pudl.extract.eia860m, 129
pudl.extract.eia861, 129
pudl.extract.eia923, 130
pudl.extract.epacems, 130
pudl.extract.epaipm, 131
pudl.extract.excel, 132
pudl.extract.ferc1, 134
pudl.extract.ferc714, 144
pudl.glue, 148
pudl.glue.eia_epacems, 144
pudl.glue.ferc1_eia, 145
pudl.helpers, 221
pudl.load, 154
pudl.load.csv, 149
pudl.load.metadata, 150
pudl.output, 176
pudl.output.censusdp1tract, 155
pudl.output.eia860, 155
pudl.output.eia923, 160
pudl.output.epacems, 164
pudl.output.ferc1, 165
pudl.output.ferc714, 166
pudl.output.pudltabl, 170
pudl.transform, 202
pudl.transform.eia, 177
pudl.transform.eia860, 178
pudl.transform.eia861, 181
pudl.transform.eia923, 187
pudl.transform.epacems, 191
pudl.transform.epaipm, 192
pudl.transform.ferc1, 193
pudl.transform.ferc714, 200
pudl.validate, 229
pudl.workspace, 209
pudl.workspace.datastore, 203
pudl.workspace.resource_cache, 205
pudl.workspace.setup, 207
pudl.workspace.setup_cli, 209

month_year_to_date() (in module pudl.helpers),
227

248 Index

PUDL, Release 0.4.0

N
name (pudl.workspace.resource_cache.PudlResourceKey

attribute), 207
need_fix_inting (in module pudl.constants), 216
nerc_region (in module pudl.constants), 216
net_energy_load_ba() (in module

pudl.transform.ferc714), 201
net_energy_load_ba_ferc714()

(pudl.output.pudltabl.PudlTabl method),
174

net_metering() (in module pudl.transform.eia861),
185

net_metering_eia861()
(pudl.output.pudltabl.PudlTabl method),
174

no_null_cols() (in module pudl.validate), 234
no_null_rows() (in module pudl.validate), 234
non_net_metering() (in module

pudl.transform.eia861), 185
non_net_metering_eia861()

(pudl.output.pudltabl.PudlTabl method),
174

normalize_balancing_authority() (in mod-
ule pudl.transform.eia861), 185

num_layers() (pudl.workspace.resource_cache.LayeredCache
method), 206

O
observed_respondents() (in module

pudl.extract.ferc1), 141
OFFSET_CODES (in module pudl.transform.ferc714),

200
oob_to_nan() (in module pudl.helpers), 227
operational_data() (in module

pudl.transform.eia861), 185
operational_data_eia861()

(pudl.output.pudltabl.PudlTabl method),
174

organize_cols() (in module pudl.helpers), 228
output_formats (in module pudl.constants), 216
overlay() (in module pudl.analysis.spatial), 105
own_eia860() (pudl.output.pudltabl.PudlTabl

method), 174
ownership() (in module pudl.transform.eia860), 179
ownership_eia860() (in module

pudl.output.eia860), 158
OWNERSHIP_PLANT_GEN_ID_DUPES (in module

pudl.transform.eia860), 178

P
PACKAGE_PATH (pudl.extract.ferc1.Ferc1Datastore at-

tribute), 135
parse_command_line() (in module

pudl.analysis.service_territory), 103

parse_command_line() (in module pudl.cli), 210
parse_command_line() (in module

pudl.convert.censusdp1tract_to_sqlite), 123
parse_command_line() (in module

pudl.convert.datapkg_to_rst), 123
parse_command_line() (in module

pudl.convert.datapkg_to_sqlite), 124
parse_command_line() (in module

pudl.convert.epacems_to_parquet), 125
parse_command_line() (in module

pudl.convert.ferc1_to_sqlite), 126
parse_command_line() (in module

pudl.workspace.datastore), 205
ParseKeyValues (class in pudl.workspace.datastore),

204
parseN() (pudl.extract.ferc1.FERC1FieldParser

method), 135
plant_in_service() (in module

pudl.extract.ferc1), 142
plant_in_service() (in module

pudl.transform.ferc1), 198
plant_in_service_ferc1() (in module

pudl.output.ferc1), 166
plant_in_service_ferc1()

(pudl.output.pudltabl.PudlTabl method),
174

PLANT_KIND_STRINGS (in module
pudl.transform.ferc1), 195

plant_region_map() (in module
pudl.transform.epaipm), 192

plants() (in module pudl.transform.eia860), 180
plants() (in module pudl.transform.eia923), 190
plants_eia860() (in module pudl.output.eia860),

159
plants_eia860() (pudl.output.pudltabl.PudlTabl

method), 175
plants_hydro() (in module pudl.extract.ferc1), 142
plants_hydro() (in module pudl.transform.ferc1),

198
plants_hydro_ferc1() (in module

pudl.output.ferc1), 166
plants_hydro_ferc1()

(pudl.output.pudltabl.PudlTabl method),
175

plants_pumped_storage() (in module
pudl.extract.ferc1), 142

plants_pumped_storage() (in module
pudl.transform.ferc1), 198

plants_pumped_storage_ferc1() (in module
pudl.output.ferc1), 166

plants_pumped_storage_ferc1()
(pudl.output.pudltabl.PudlTabl method),
175

plants_small() (in module pudl.extract.ferc1), 142

Index 249

PUDL, Release 0.4.0

plants_small() (in module pudl.transform.ferc1),
199

plants_small_ferc1() (in module
pudl.output.ferc1), 166

plants_small_ferc1()
(pudl.output.pudltabl.PudlTabl method),
175

plants_steam() (in module pudl.extract.ferc1), 143
plants_steam() (in module pudl.transform.ferc1),

199
plants_steam_ferc1() (in module

pudl.output.ferc1), 166
plants_steam_ferc1()

(pudl.output.pudltabl.PudlTabl method),
175

plants_steam_validate_ids() (in module
pudl.transform.ferc1), 199

plants_utils_eia860() (in module
pudl.output.eia860), 159

plants_utils_ferc1() (in module
pudl.output.ferc1), 166

plot_all_territories() (in module
pudl.analysis.service_territory), 103

plot_demand_scatter() (in module
pudl.analysis.state_demand), 110

plot_demand_timeseries() (in module
pudl.analysis.state_demand), 110

plot_flags() (pudl.analysis.timeseries_cleaning.Timeseries
method), 116

plot_historical_territory() (in module
pudl.analysis.service_territory), 103

plot_vs_agg() (in module pudl.validate), 235
plot_vs_bounds() (in module pudl.validate), 235
plot_vs_self() (in module pudl.validate), 235
polygonize() (in module pudl.analysis.spatial), 105
predict() (pudl.transform.ferc1.FERCPlantClassifier

method), 194
predict_state_hourly_demand() (in module

pudl.analysis.state_demand), 111
prep_alloction_fraction() (in module

pudl.analysis.allocate_net_gen), 98
prep_dir() (in module pudl.helpers), 228
prime_movers (in module pudl.constants), 216
prime_movers_eia923 (in module pudl.constants),

216
print_partitions() (in module

pudl.workspace.datastore), 205
priority (pudl.output.ferc714.Respondents attribute),

167
process_final_page()

(pudl.extract.eia923.Extractor static method),
130

process_final_page()
(pudl.extract.excel.GenericExtractor static

method), 133
process_raw() (pudl.extract.eia860.Extractor

method), 128
process_raw() (pudl.extract.eia860m.Extractor

method), 129
process_raw() (pudl.extract.eia861.Extractor

method), 129
process_raw() (pudl.extract.eia923.Extractor

method), 130
process_raw() (pudl.extract.excel.GenericExtractor

method), 133
process_renamed() (pudl.extract.eia861.Extractor

static method), 129
process_renamed() (pudl.extract.eia923.Extractor

static method), 130
process_renamed()

(pudl.extract.excel.GenericExtractor static
method), 133

pu_eia860() (pudl.output.pudltabl.PudlTabl method),
175

pu_ferc1() (pudl.output.pudltabl.PudlTabl method),
175

pudl
module, 236

pudl.analysis
module, 122

pudl.analysis.allocate_net_gen
module, 95

pudl.analysis.mcoe
module, 98

pudl.analysis.service_territory
module, 100

pudl.analysis.spatial
module, 104

pudl.analysis.state_demand
module, 106

pudl.analysis.timeseries_cleaning
module, 112

pudl.cli
module, 210

pudl.constants
module, 210

pudl.convert
module, 128

pudl.convert.censusdp1tract_to_sqlite
module, 122

pudl.convert.datapkg_to_rst
module, 123

pudl.convert.datapkg_to_sqlite
module, 123

pudl.convert.epacems_to_parquet
module, 124

pudl.convert.ferc1_to_sqlite
module, 126

250 Index

PUDL, Release 0.4.0

pudl.convert.merge_datapkgs
module, 126

pudl.dfc
module, 217

pudl.etl
module, 219

pudl.extract
module, 144

pudl.extract.eia860
module, 128

pudl.extract.eia860m
module, 129

pudl.extract.eia861
module, 129

pudl.extract.eia923
module, 130

pudl.extract.epacems
module, 130

pudl.extract.epaipm
module, 131

pudl.extract.excel
module, 132

pudl.extract.ferc1
module, 134

pudl.extract.ferc714
module, 144

pudl.glue
module, 148

pudl.glue.eia_epacems
module, 144

pudl.glue.ferc1_eia
module, 145

pudl.helpers
module, 221

pudl.load
module, 154

pudl.load.csv
module, 149

pudl.load.metadata
module, 150

pudl.output
module, 176

pudl.output.censusdp1tract
module, 155

pudl.output.eia860
module, 155

pudl.output.eia923
module, 160

pudl.output.epacems
module, 164

pudl.output.ferc1
module, 165

pudl.output.ferc714
module, 166

pudl.output.pudltabl
module, 170

pudl.transform
module, 202

pudl.transform.eia
module, 177

pudl.transform.eia860
module, 178

pudl.transform.eia861
module, 181

pudl.transform.eia923
module, 187

pudl.transform.epacems
module, 191

pudl.transform.epaipm
module, 192

pudl.transform.ferc1
module, 193

pudl.transform.ferc714
module, 200

pudl.validate
module, 229

pudl.workspace
module, 209

pudl.workspace.datastore
module, 203

pudl.workspace.resource_cache
module, 205

pudl.workspace.setup
module, 207

pudl.workspace.setup_cli
module, 209

pudl_out (pudl.output.ferc714.Respondents attribute),
167

PUDL_RIDS (in module pudl.extract.ferc1), 135
pudl_settings (pudl.output.ferc714.Respondents at-

tribute), 167
pudl_tables (in module pudl.constants), 216
PudlResourceKey (class in

pudl.workspace.resource_cache), 206
PudlTabl (class in pudl.output.pudltabl), 170
pull_resource_from_megadata() (in module

pudl.load.metadata), 153
purchased_power() (in module pudl.extract.ferc1),

143
purchased_power() (in module

pudl.transform.ferc1), 199
purchased_power_ferc1() (in module

pudl.output.ferc1), 166
purchased_power_ferc1()

(pudl.output.pudltabl.PudlTabl method),
176

Python Enhancement Proposals
PEP 517, 88, 89

Index 251

PUDL, Release 0.4.0

PEP 518, 88, 89
PEP 8, 68, 82

R
references() (pudl.dfc.DataFrameCollection

method), 218
relative_median_prediction()

(pudl.analysis.timeseries_cleaning.Timeseries
method), 116

reliability() (in module pudl.transform.eia861),
186

reliability_eia861()
(pudl.output.pudltabl.PudlTabl method),
176

remove_from_cache()
(pudl.workspace.datastore.Datastore method),
204

remove_retired_generators() (in module
pudl.analysis.allocate_net_gen), 98

RENAME_DICT (in module pudl.extract.epacems), 131
respondent_id() (in module

pudl.transform.ferc714), 201
respondent_id_ferc714()

(pudl.output.pudltabl.PudlTabl method),
176

Respondents (class in pudl.output.ferc714), 166
rolling_iqr_of_diff()

(pudl.analysis.timeseries_cleaning.Timeseries
method), 116

rolling_iqr_of_rolling_median_offset()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 116

rolling_median() (pudl.analysis.timeseries_cleaning.Timeseries
method), 116

rolling_median_offset()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 117

RST_TEMPLATE (in module
pudl.convert.datapkg_to_rst), 123

rto_iso (in module pudl.constants), 217

S
sales() (in module pudl.transform.eia861), 186
sales_eia861() (pudl.output.pudltabl.PudlTabl

method), 176
score() (pudl.transform.ferc1.FERCPlantClassifier

method), 194
sector_eia (in module pudl.constants), 217
self_union() (in module pudl.analysis.spatial), 105
service_territory() (in module

pudl.transform.eia861), 186
service_territory_eia861()

(pudl.output.ferc714.Respondents property),
168

service_territory_eia861()
(pudl.output.pudltabl.PudlTabl method),
176

set_defaults() (in module pudl.workspace.setup),
208

SETTINGS (pudl.extract.epaipm.EpaIpmDatastore at-
tribute), 131

show_dupes() (in module pudl.extract.ferc1), 143
simplify_columns() (in module pudl.helpers), 228
simplify_strings() (in module pudl.helpers), 228
simulate_nulls() (pudl.analysis.timeseries_cleaning.Timeseries

method), 117
slice_axis() (in module

pudl.analysis.timeseries_cleaning), 121
spatial_coverage() (in module

pudl.load.metadata), 153
split_tables() (in module pudl.glue.eia_epacems),

145
stack_generators() (in module

pudl.analysis.allocate_net_gen), 98
STANDARD_UTC_OFFSETS (in module

pudl.analysis.state_demand), 106
state (pudl.extract.epacems.EpaCemsPartition at-

tribute), 130
state_tz_approx (in module pudl.constants), 217
STATES (in module pudl.analysis.state_demand), 106
store() (pudl.dfc.DataFrameCollection method), 218
summarize_demand()

(pudl.output.ferc714.Respondents method),
168

summarize_flags()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 117

summarize_imputed()
(pudl.analysis.timeseries_cleaning.Timeseries
method), 117

T
TABLE_ENCODING (in module pudl.extract.ferc714),

144
TABLE_FNAME (in module pudl.extract.ferc714), 144
table_map_ferc1_pudl (in module

pudl.constants), 217
table_name (pudl.extract.epaipm.TableSettings

attribute), 132
TableExistsError, 218
TableSettings (class in pudl.extract.epaipm), 131
temporal_coverage() (in module

pudl.load.metadata), 154
Timeseries (class in

pudl.analysis.timeseries_cleaning), 112
to_dataframe() (pudl.analysis.timeseries_cleaning.Timeseries

method), 117

252 Index

PUDL, Release 0.4.0

to_dict() (pudl.dfc.DataFrameCollection method),
218

TOKEN (pudl.workspace.datastore.ZenodoFetcher
attribute), 204

transform() (in module pudl.transform.eia), 178
transform() (in module pudl.transform.eia860), 180
transform() (in module pudl.transform.eia861), 186
transform() (in module pudl.transform.eia923), 190
transform() (in module pudl.transform.epacems),

191
transform() (in module pudl.transform.epaipm), 192
transform() (in module pudl.transform.ferc1), 200
transform() (in module pudl.transform.ferc714), 202
transform() (pudl.transform.ferc1.FERCPlantClassifier

method), 195
TRANSIT_TYPE_DICT (in module pudl.constants), 210
transmission_joint() (in module

pudl.transform.epaipm), 192
transmission_single() (in module

pudl.transform.epaipm), 193
transport_modes_eia923 (in module

pudl.constants), 217
TZ_CODES (in module pudl.transform.ferc714), 200

U
unflag() (pudl.analysis.timeseries_cleaning.Timeseries

method), 118
unfold_tensor() (pudl.analysis.timeseries_cleaning.Timeseries

method), 118
union() (pudl.dfc.DataFrameCollection method), 218
unpack_table() (in module pudl.transform.ferc1),

200
update() (pudl.dfc.DataFrameCollection method),

218
us_states (in module pudl.constants), 217
UTC_OFFSETS (in module pudl.analysis.state_demand),

106
utc_to_local() (in module

pudl.analysis.state_demand), 111
util_ids (pudl.output.ferc714.Respondents attribute),

167
UTILITIES (in module pudl.output.ferc714), 168
utilities() (in module pudl.transform.eia860), 181
utilities_eia860() (in module

pudl.output.eia860), 159
utility_assn() (in module pudl.transform.eia861),

187
utility_assn_eia861()

(pudl.output.pudltabl.PudlTabl method),
176

utility_data() (in module pudl.transform.eia861),
187

utility_data_eia861()
(pudl.output.pudltabl.PudlTabl method),

176
utils_eia860() (pudl.output.pudltabl.PudlTabl

method), 176

V
validate_cache() (in module

pudl.workspace.datastore), 205
validate_checksum()

(pudl.workspace.datastore.DatapackageDescriptor
method), 203

validate_params() (in module pudl.etl), 220
validate_save_datapkg() (in module

pudl.load.metadata), 154
vs_bounds() (in module pudl.validate), 235
vs_historical() (in module pudl.validate), 235
vs_self() (in module pudl.validate), 235

W
weighted_quantile() (in module pudl.validate),

235
working_partitions (in module pudl.constants),

217

X
x (pudl.analysis.timeseries_cleaning.Timeseries at-

tribute), 112
xi (pudl.analysis.timeseries_cleaning.Timeseries at-

tribute), 112
xlsx_maps_pkg (in module pudl.constants), 217

Y
year (pudl.extract.epacems.EpaCemsPartition at-

tribute), 131
year_state_filter() (in module

pudl.output.epacems), 164

Z
ZenodoFetcher (class in pudl.workspace.datastore),

204
zero_pad_zips() (in module pudl.helpers), 229

Index 253

	What is PUDL?
	What data is available?
	Who is PUDL for?
	How do I access the data?
	Datasette
	Docker + Jupyter
	JupyterHub
	The PUDL Development Environment

	Contributing to PUDL
	Licensing
	Contact Us
	About Catalyst Cooperative
	Introduction
	Data Access
	Data Sources
	Data Dictionaries
	Contributing to PUDL
	Development
	The MIT License
	Catalyst Cooperative Code of Conduct
	PUDL Release Notes
	pudl

	Python Module Index
	Index

