pudl.metadata.resources#

A subpackage to define and organize PUDL database tables by data group.

Submodules#

Package Contents#

Functions#

build_foreign_keys(→ dict[str, list[dict]])

Build foreign keys for each resource.

Attributes#

RESOURCE_METADATA

module

FOREIGN_KEYS

Generated foreign key constraints by resource name.

ENTITIES

Columns kept for either entity or annual EIA tables in the harvesting process.

pudl.metadata.resources.build_foreign_keys(resources: dict[str, dict], prune: bool = True) dict[str, list[dict]][source]#

Build foreign keys for each resource.

A resource’s foreign_key_rules (if present) determines which other resources will be assigned a foreign key (foreign_keys) to the reference’s primary key:

  • fields (list[list[str]]): Sets of field names for which to create a foreign key. These are assumed to match the order of the reference’s primary key fields.

  • exclude (Optional[list[str]]): Names of resources to exclude.

Parameters:
  • resources – Resource descriptors by name.

  • prune – Whether to prune redundant foreign keys.

Returns:

Foreign keys for each resource (if any), by resource name.

  • fields (list[str]): Field names.

  • reference[‘resource’] (str): Reference resource name.

  • reference[‘fields’] (list[str]): Reference resource field names.

Examples

>>> resources = {
...     'x': {
...         'schema': {
...             'fields': ['z'],
...             'primary_key': ['z'],
...             'foreign_key_rules': {'fields': [['z']]}
...         }
...     },
...     'y': {
...         'schema': {
...             'fields': ['z', 'yy'],
...             'primary_key': ['z', 'yy'],
...             'foreign_key_rules': {'fields': [['z', 'zz']]}
...         }
...     },
...     'z': {'schema': {'fields': ['z', 'zz']}}
... }
>>> keys = build_foreign_keys(resources)
>>> keys['z']
[{'fields': ['z', 'zz'], 'reference': {'resource': 'y', 'fields': ['z', 'yy']}}]
>>> keys['y']
[{'fields': ['z'], 'reference': {'resource': 'x', 'fields': ['z']}}]
>>> keys = build_foreign_keys(resources, prune=False)
>>> keys['z'][0]
{'fields': ['z'], 'reference': {'resource': 'x', 'fields': ['z']}}
pudl.metadata.resources.RESOURCE_METADATA[source]#
pudl.metadata.resources.module[source]#
pudl.metadata.resources.FOREIGN_KEYS: dict[str, list[dict]][source]#

Generated foreign key constraints by resource name.

See pudl.metadata.helpers.build_foreign_keys().

pudl.metadata.resources.ENTITIES: dict[str, dict[str, list[str] | dict[str, str]]][source]#

Columns kept for either entity or annual EIA tables in the harvesting process.

For each entity type (key), the ID columns, static columns, annual columns, and mapped columns.

The order of the entities matters. Plants must be harvested before utilities, since plant location must be removed before the utility locations are harvested.

Mapped columns allow for harvesting the same entity ID / value relationship from multiple columns in the same input dataframe. This is useful if a table has multiple sets of entities that should be harvested, for example owner and operator utilities showing up in the same ownership table records. map_col_dict maps from column names of the ‘other’ group of entity ID / value columns to a column name in one of the id_cols, static_cols, or annual_cols list. In the harvesting process, these columns are renamed so the relationship can be harvested and added to the normalized entity tables. Note that not all of the columns in the map_cols_dict need to be present at once, i.e. if map_cols_dict has keys col_a and col_b, then col_a and col_b don’t need to be present in the same table.