pudl.transform.eia176¶
Module to perform data cleaning functions on EIA176 data tables.
Attributes¶
Functions¶
|
Take raw list and return two wide tables with primary keys and one column per variable. |
|
Take a 'long' or entity-attribute-value table and return a wide table with one column per attribute/variable. |
|
Compare reported and calculated totals for different geographical aggregates, report any differences. |
Module Contents¶
- pudl.transform.eia176._core_eia176__data(raw_eia176__data: pandas.DataFrame) tuple[dagster.Output, dagster.Output] [source]¶
Take raw list and return two wide tables with primary keys and one column per variable.
One table with data for each year and company, one with state- and US-level aggregates per year.
- pudl.transform.eia176.get_wide_table(long_table: pandas.DataFrame, primary_key: list[str]) pandas.DataFrame [source]¶
Take a ‘long’ or entity-attribute-value table and return a wide table with one column per attribute/variable.
- pudl.transform.eia176.validate_totals(_core_eia176__yearly_company_data: pandas.DataFrame, _core_eia176__yearly_aggregate_data: pandas.DataFrame) dagster.AssetCheckResult [source]¶
Compare reported and calculated totals for different geographical aggregates, report any differences.