pudl.output.eia923

Denormalized, aggregated, and filled versions of the basic EIA-923 tables.

Attributes

Functions

denorm_by_plant(→ pandas.DataFrame)

Denormalize a table that is reported on a per-plant basis.

denorm_by_gen(→ pandas.DataFrame)

Denormalize a table that is reported on a per-generator basis.

denorm_by_boil(→ pandas.DataFrame)

Denormalize a table that is reported on a per-boiler basis.

_fill_fuel_costs_by_state(→ pandas.DataFrame)

Fill in missing fuel costs with state-level averages.

drop_ytd_for_annual_tables(→ pandas.DataFrame)

Drop records in annual tables where data_maturity is incremental_ytd.

out_eia923__generation(→ pandas.DataFrame)

Denormalize the core_eia923__monthly_generation table.

out_eia923__generation_fuel_combined(→ pandas.DataFrame)

Denormalize the generation_fuel_combined_eia923 table.

out_eia923__boiler_fuel(→ pandas.DataFrame)

Denormalize the core_eia923__monthly_boiler_fuel table.

out_eia923__fuel_receipts_costs(→ pandas.DataFrame)

Denormalize the core_eia923__monthly_fuel_receipts_costs table.

time_aggregated_eia923_asset_factory(...)

Build EIA-923 asset definitions, aggregated by year or month.

Module Contents

pudl.output.eia923.logger[source]
pudl.output.eia923.FIRST_COLS = ['report_date', 'plant_id_eia', 'plant_id_pudl', 'plant_name_eia', 'utility_id_eia',...[source]
pudl.output.eia923.denorm_by_plant(df: pandas.DataFrame, pu: pandas.DataFrame, first_cols: list[str] | None = None) pandas.DataFrame[source]

Denormalize a table that is reported on a per-plant basis.

pudl.output.eia923.denorm_by_gen(df: pandas.DataFrame, pu: pandas.DataFrame, bga: pandas.DataFrame, first_cols: list[str] | None = None) pandas.DataFrame[source]

Denormalize a table that is reported on a per-generator basis.

pudl.output.eia923.denorm_by_boil(df: pandas.DataFrame, pu: pandas.DataFrame, bga: pandas.DataFrame, first_cols: list[str] | None = None) pandas.DataFrame[source]

Denormalize a table that is reported on a per-boiler basis.

pudl.output.eia923._fill_fuel_costs_by_state(frc_df: pandas.DataFrame, fuel_costs: pandas.DataFrame) pandas.DataFrame[source]

Fill in missing fuel costs with state-level averages.

pudl.output.eia923.drop_ytd_for_annual_tables(df: pandas.DataFrame, freq: str) pandas.DataFrame[source]

Drop records in annual tables where data_maturity is incremental_ytd.

This avoids accidental aggregation errors due to sub-annually reported data.

Parameters:
  • df – A pd.DataFrame that contains a data_maturity column and for which you want to drop values where data_maturity = incremental_ytd.

  • freq – either MS or YS to indicate the level of aggretation for a specific table.

Returns:

The same input pd.DataFrames but without any rows where

data_maturity = incremental_ytd.

Return type:

pd.DataFrame

pudl.output.eia923.out_eia923__generation(core_eia923__monthly_generation: pandas.DataFrame, _out_eia__plants_utilities: pandas.DataFrame, core_eia860__assn_boiler_generator: pandas.DataFrame) pandas.DataFrame[source]

Denormalize the core_eia923__monthly_generation table.

pudl.output.eia923.out_eia923__generation_fuel_combined(core_eia923__monthly_generation_fuel: pandas.DataFrame, core_eia923__monthly_generation_fuel_nuclear: pandas.DataFrame, _out_eia__plants_utilities: pandas.DataFrame) pandas.DataFrame[source]

Denormalize the generation_fuel_combined_eia923 table.

This asset first combines the core_eia923__monthly_generation_fuel and core_eia923__monthly_generation_fuel_nuclear into a single table with a uniform primary key (consolidating multiple nuclear unit IDs into a single plant record) and then denormalizes it by merging in some addition plant and utility level columns.

This table contains the records at their originally reported temporal resolution, so it’s outside of time_aggregated_eia923_asset_factory().

pudl.output.eia923.out_eia923__boiler_fuel(core_eia923__monthly_boiler_fuel: pandas.DataFrame, _out_eia__plants_utilities: pandas.DataFrame, core_eia860__assn_boiler_generator: pandas.DataFrame) pandas.DataFrame[source]

Denormalize the core_eia923__monthly_boiler_fuel table.

The total heat content is also calculated as it’s useful in its own right and required later to calculate average heat content per unit of fuel.

pudl.output.eia923.out_eia923__fuel_receipts_costs(context, core_eia923__monthly_fuel_receipts_costs: pandas.DataFrame, core_eia923__entity_coalmine: pandas.DataFrame, _out_eia__plants_utilities: pandas.DataFrame, _out_eia__monthly_state_fuel_prices: pandas.DataFrame, core_eia__entity_plants: pandas.DataFrame) pandas.DataFrame[source]

Denormalize the core_eia923__monthly_fuel_receipts_costs table.

pudl.output.eia923.time_aggregated_eia923_asset_factory(freq: Literal['YS', 'MS'], io_manager_key: str | None = None) list[dagster.AssetsDefinition][source]

Build EIA-923 asset definitions, aggregated by year or month.

pudl.output.eia923.generation_fuel_agg_eia923_assets[source]